X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/d6e1d482844d6979533250dedc3724ce14f80294..refs/pull/938/head:/client/mifare/mifarehost.c?ds=inline diff --git a/client/mifare/mifarehost.c b/client/mifare/mifarehost.c index bc53e1fe..a9fbaac7 100644 --- a/client/mifare/mifarehost.c +++ b/client/mifare/mifarehost.c @@ -30,14 +30,14 @@ #include "mifare4.h" // mifare tracer flags used in mfTraceDecode() -#define TRACE_IDLE 0x00 -#define TRACE_AUTH1 0x01 -#define TRACE_AUTH2 0x02 -#define TRACE_AUTH_OK 0x03 -#define TRACE_READ_DATA 0x04 -#define TRACE_WRITE_OK 0x05 -#define TRACE_WRITE_DATA 0x06 -#define TRACE_ERROR 0xFF +#define TRACE_IDLE 0x00 +#define TRACE_AUTH1 0x01 +#define TRACE_AUTH2 0x02 +#define TRACE_AUTH_OK 0x03 +#define TRACE_READ_DATA 0x04 +#define TRACE_WRITE_OK 0x05 +#define TRACE_WRITE_DATA 0x06 +#define TRACE_ERROR 0xFF static int compare_uint64(const void *a, const void *b) { @@ -90,7 +90,7 @@ static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, u for (pos=0; pos<8; pos++) { ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; bt = (par_info >> (pos*8)) & 0xff; - for (i=0; i<8; i++) { + for (i=0; i<8; i++) { par[7-pos][i] = (bt >> i) & 0x01; } } @@ -200,7 +200,7 @@ int mfDarkside(uint64_t *key) { for (int i = 0; i < keycount; i++) { num_to_bytes(keylist[i], 6, keys_to_chk+i); } - + *key = -1; mfCheckKeys(0, 0, 0, false, keycount, keys_to_chk, key); @@ -221,19 +221,20 @@ int mfDarkside(uint64_t *key) { } -int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key) { +static int mfCheckKeysEx(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key, bool fixed_nonce) { bool display_progress = false; uint64_t start_time = msclock(); uint64_t next_print_time = start_time + 5 * 1000; if (keycnt > 1000) { - PrintAndLog("We have %d keys to check. This will take some time!", keycnt); + PrintAndLog("We have %d keys to check. This can take some time!", keycnt); PrintAndLog("Press button to abort."); display_progress = true; } - uint32_t max_keys = (keycnt > (USB_CMD_DATA_SIZE / 6)) ? (USB_CMD_DATA_SIZE / 6) : keycnt; + uint8_t bytes_per_key = fixed_nonce ? 5 : 6; + uint32_t max_keys = keycnt > USB_CMD_DATA_SIZE/bytes_per_key ? USB_CMD_DATA_SIZE/bytes_per_key : keycnt; *found_key = -1; bool multisectorCheck = false; @@ -245,10 +246,10 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea bool init = (i == 0); bool drop_field = (max_keys == keycnt); - uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3; + uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3 | fixed_nonce << 4; - UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, max_keys}}; - memcpy(c.d.asBytes, keys + i * 6, max_keys * 6); + UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, max_keys}}; + memcpy(c.d.asBytes, keys + i * bytes_per_key, max_keys * bytes_per_key); SendCommand(&c); UsbCommand resp; @@ -256,7 +257,7 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea return 1; if ((resp.arg[0] & 0xff) != 0x01) { - if (((int)resp.arg[1]) < 0) { // error + if ((int)resp.arg[1] < 0) { // error or user aborted return (int)resp.arg[1]; } else { // nothing found yet if (display_progress && msclock() >= next_print_time) { @@ -267,17 +268,31 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clea PrintAndLog(" %8d keys left | %5.1f keys/sec | worst case %6.1f seconds remaining", keycnt - i, brute_force_per_second, (keycnt-i)/brute_force_per_second); } } - } else { // success - *found_key = bytes_to_num(resp.d.asBytes, 6); + } else { // success + if (fixed_nonce) { + *found_key = i + resp.arg[1] - 1; + } else { + *found_key = bytes_to_num(resp.d.asBytes, 6); + } return 0; } } - return 2; // nothing found + return 2; // nothing found +} + + +int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key) { + return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, found_key, false); } -int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool clear_trace, bool init, bool drop_field, uint8_t keycnt, uint8_t * keyBlock, sector_t * e_sector) { +static int mfCheckKeysFixedNonce(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint32_t *key_index) { + return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, (uint64_t*)key_index, true); +} + + +int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool clear_trace, bool init, bool drop_field, uint8_t keycnt, uint8_t *keyBlock, sector_t *e_sector) { uint8_t keyPtr = 0; @@ -287,14 +302,14 @@ int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool bool multisectorCheck = true; uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3; - UsbCommand c = {CMD_MIFARE_CHKKEYS, {((sectorCnt & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, keycnt}}; + UsbCommand c = {CMD_MIFARE_CHKKEYS, {((sectorCnt & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, keycnt}}; memcpy(c.d.asBytes, keyBlock, 6 * keycnt); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeoutW(CMD_ACK, &resp, MAX(3000, 1000 + 13 * sectorCnt * keycnt * (keyType == 2 ? 2 : 1)), false)) return 1; // timeout: 13 ms / fail auth if ((resp.arg[0] & 0xff) != 0x01) return 2; - + bool foundAKey = false; for(int sec = 0; sec < sectorCnt; sec++){ for(int keyAB = 0; keyAB < 2; keyAB++){ @@ -330,7 +345,7 @@ typedef uint32_t uid; uint32_t blockNo; uint32_t keyType; - uint32_t nt_enc; + uint32_t nt; uint32_t ks1; } StateList_t; @@ -339,14 +354,14 @@ typedef void #ifdef __has_attribute #if __has_attribute(force_align_arg_pointer) -__attribute__((force_align_arg_pointer)) +__attribute__((force_align_arg_pointer)) #endif #endif *nested_worker_thread(void *arg) { struct Crypto1State *p1; StateList_t *statelist = arg; - statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt_enc ^ statelist->uid); + statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid); for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++); statelist->len = p1 - statelist->head.slhead; statelist->tail.sltail = --p1; @@ -356,94 +371,84 @@ __attribute__((force_align_arg_pointer)) } -int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) { - uint32_t i; - uint32_t uid; - UsbCommand resp; - - int num_unique_nonces; - - StateList_t statelists[2]; - struct Crypto1State *p1, *p2, *p3, *p4; +static int nested_fixed_nonce(StateList_t statelist, uint32_t fixed_nt, uint32_t authentication_timeout, uint8_t *resultKey) { + // We have a tag with a fixed nonce (nt) and therefore only one (usually long) list of possible crypto states. + // Instead of testing all those keys on the device with a complete authentication cycle, we do all of the crypto operations here. + uint8_t nr_enc[4] = NESTED_FIXED_NR_ENC; // we use a fixed {nr} + uint8_t ar[4]; + num_to_bytes(prng_successor(fixed_nt, 64), 4, ar); // ... and ar is fixed too - uint8_t *keyBlock = NULL; - uint64_t key64; - - int isOK = 1; - - // flush queue - (void)WaitForResponseTimeout(CMD_ACK,NULL,100); - - UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}}; - memcpy(c.d.asBytes, key, 6); - SendCommand(&c); - - if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) { - // some cards can cause it to get stuck in a loop, so break out of it - UsbCommand c = {CMD_PING}; - SendCommand(&c); - (void)WaitForResponseTimeout(CMD_ACK,NULL,500); - return -1; - } - - if (resp.arg[0]) { - return resp.arg[0]; // error during nested + // create an array of possible {ar} and parity bits + uint32_t num_ar_par = statelist.len; + uint8_t *ar_par = calloc(num_ar_par, 5); + if (ar_par == NULL) { + free(statelist.head.slhead); + return -4; } - memcpy(&uid, resp.d.asBytes, 4); - PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8); - - for (i = 0; i < 2; i++) { - statelists[i].blockNo = resp.arg[2] & 0xff; - statelists[i].keyType = (resp.arg[2] >> 8) & 0xff; - statelists[i].uid = uid; - memcpy(&statelists[i].nt_enc, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4); - memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4); + for (int i = 0; i < num_ar_par; i++) { + // roll back to initial state using the nt observed with the nested authentication + lfsr_rollback_word(statelist.head.slhead + i, statelist.nt ^ statelist.uid, 0); + // instead feed in the fixed_nt for the first authentication + struct Crypto1State cs = *(statelist.head.slhead + i); + crypto1_word(&cs, fixed_nt ^ statelist.uid, 0); + // determine nr such that the resulting {nr} is constant and feed it into the cypher. Calculate the encrypted parity bits + uint8_t par_enc = 0; + for (int j = 0; j < 4; j++) { + uint8_t nr_byte = crypto1_byte(&cs, nr_enc[j], 1) ^ nr_enc[j]; + par_enc |= (((filter(cs.odd) ^ oddparity8(nr_byte)) & 0x01) << (7-j)); + } + // calculate the encrypted reader response {ar} and its parity bits + for (int j = 0; j < 4; j++) { + ar_par[5*i + j] = crypto1_byte(&cs, 0, 0) ^ ar[j]; + par_enc |= ((filter(cs.odd) ^ oddparity8(ar[j])) & 0x01) << (3-j); + } + ar_par[5*i + 4] = par_enc; } - uint32_t authentication_timeout; - memcpy(&authentication_timeout, resp.d.asBytes + 20, 4); - PrintAndLog("Setting authentication timeout to %" PRIu32 "us", authentication_timeout * 1000 / 106); - - if (statelists[0].nt_enc == statelists[1].nt_enc && statelists[0].ks1 == statelists[1].ks1) - num_unique_nonces = 1; - else - num_unique_nonces = 2; - - // calc keys + // test each {ar} response + uint32_t key_index; - pthread_t thread_id[2]; + int isOK = mfCheckKeysFixedNonce(statelist.blockNo, statelist.keyType, authentication_timeout, true, num_ar_par, ar_par, &key_index); - // create and run worker threads - for (i = 0; i < 2; i++) { - pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]); + if (isOK == 0) { // success, key found + // key_index contains the index into the cypher state list + struct Crypto1State *p1 = statelist.head.slhead + key_index; + uint64_t key64; + crypto1_get_lfsr(p1, &key64); + num_to_bytes(key64, 6, resultKey); } - - // wait for threads to terminate: - for (i = 0; i < 2; i++) { - pthread_join(thread_id[i], (void*)&statelists[i].head.slhead); + if (isOK == 1) { // timeout + isOK = -1; } + free(statelist.head.slhead); + free(ar_par); + return isOK; +} - // the first 16 Bits of the cryptostate already contain part of our key. +static int nested_standard(StateList_t statelists[2], uint32_t authentication_timeout, uint8_t *resultKey) { + + // the first 16 Bits of the crypto states already contain part of our key. // Create the intersection of the two lists based on these 16 Bits and - // roll back the cryptostate + // roll back the crypto state for the remaining states + struct Crypto1State *p1, *p2, *p3, *p4; p1 = p3 = statelists[0].head.slhead; p2 = p4 = statelists[1].head.slhead; while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) { if (Compare16Bits(p1, p2) == 0) { struct Crypto1State savestate, *savep = &savestate; savestate = *p1; - while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) { + while (Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) { *p3 = *p1; - lfsr_rollback_word(p3, statelists[0].nt_enc ^ statelists[0].uid, 0); + lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0); p3++; p1++; } savestate = *p2; - while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) { + while (Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) { *p4 = *p2; - lfsr_rollback_word(p4, statelists[1].nt_enc ^ statelists[1].uid, 0); + lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0); p4++; p2++; } @@ -460,84 +465,137 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key statelists[0].tail.sltail=--p3; statelists[1].tail.sltail=--p4; - for (i = 0; i < 2; i++) { - PrintAndLog("statelist %d: length:%d block:%02d keytype:%d nt_enc:%08X ks1:%08X", i, statelists[i].len, statelists[i].blockNo, statelists[i].keyType, statelists[i].nt_enc, statelists[i].ks1); - } - - // the statelists now contain possible keys. The key we are searching for must be in the - // intersection of both lists. Create the intersection: + // the statelists now contain possible crypto states initialized with the key. The key we are searching for + // must be in the intersection of both lists. Sort the lists and create the intersection: qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64); + qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64); + statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead); - if (num_unique_nonces > 1) { - qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64); - statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead); - } - else { - PrintAndLog("Nonce 1 and 2 are the same!"); - } - + // create an array of the possible keys uint32_t num_keys = statelists[0].len; - keyBlock = calloc(num_keys, 6); - if (keyBlock == NULL) { + uint8_t *keys = calloc(num_keys, 6); + if (keys == NULL) { free(statelists[0].head.slhead); free(statelists[1].head.slhead); return -4; } - for (i = 0; i < num_keys; i++) { + uint64_t key64 = 0; + for (int i = 0; i < num_keys; i++) { crypto1_get_lfsr(statelists[0].head.slhead + i, &key64); - num_to_bytes(key64, 6, keyBlock + i*6); + num_to_bytes(key64, 6, keys + i*6); } - // The list may still contain several key candidates. Test each of them with mfCheckKeys - isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, authentication_timeout, true, num_keys, keyBlock, &key64); + // and test each key with mfCheckKeys + int isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, authentication_timeout, true, num_keys, keys, &key64); if (isOK == 0) { // success, key found num_to_bytes(key64, 6, resultKey); } - if (isOK == 1) { // timeout isOK = -1; } - free(statelists[0].head.slhead); free(statelists[1].head.slhead); - free(keyBlock); - + free(keys); return isOK; } + +int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) { + + // flush queue + clearCommandBuffer(); + + UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}}; + memcpy(c.d.asBytes, key, 6); + SendCommand(&c); + + UsbCommand resp; + if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { + return -1; + } + + if ((int)resp.arg[0]) { + return (int)resp.arg[0]; // error during nested + } + + uint32_t uid; + memcpy(&uid, resp.d.asBytes, 4); + PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8); + + StateList_t statelists[2]; + for (int i = 0; i < 2; i++) { + statelists[i].blockNo = resp.arg[2] & 0xff; + statelists[i].keyType = (resp.arg[2] >> 8) & 0xff; + statelists[i].uid = uid; + memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4); + memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4); + } + + uint32_t authentication_timeout; + memcpy(&authentication_timeout, resp.d.asBytes + 20, 4); + PrintAndLog("Setting authentication timeout to %" PRIu32 "us", authentication_timeout * 1000 / 106); + + uint8_t num_unique_nonces; + uint32_t fixed_nt = 0; + if (statelists[0].nt == statelists[1].nt && statelists[0].ks1 == statelists[1].ks1) { + num_unique_nonces = 1; + memcpy(&fixed_nt, resp.d.asBytes + 24, 4); + PrintAndLog("Fixed nt detected: %08" PRIx32 " on first authentication, %08" PRIx32 " on nested authentication", fixed_nt, statelists[0].nt); + } else { + num_unique_nonces = 2; + } + + // create and run worker threads to calculate possible crypto states + pthread_t thread_id[2]; + for (int i = 0; i < num_unique_nonces; i++) { + pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]); + } + // wait for threads to terminate: + for (int i = 0; i < num_unique_nonces; i++) { + pthread_join(thread_id[i], (void*)&statelists[i].head.slhead); + } + + if (num_unique_nonces == 2) { + return nested_standard(statelists, authentication_timeout, resultKey); + } else { + return nested_fixed_nonce(statelists[0], fixed_nt, authentication_timeout, resultKey); + } +} + + // MIFARE int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) { - UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}}; - memcpy(c.d.asBytes, key, 6); - clearCommandBuffer(); - SendCommand(&c); - - UsbCommand resp; - if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { - uint8_t isOK = resp.arg[0] & 0xff; - - if (isOK) { - memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16); - return 0; - } else { - return 1; - } - } else { - PrintAndLogEx(ERR, "Command execute timeout"); - return 2; - } - - return 0; + UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}}; + memcpy(c.d.asBytes, key, 6); + clearCommandBuffer(); + SendCommand(&c); + + UsbCommand resp; + if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { + uint8_t isOK = resp.arg[0] & 0xff; + + if (isOK) { + memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16); + return 0; + } else { + return 1; + } + } else { + PrintAndLogEx(ERR, "Command execute timeout"); + return 2; + } + + return 0; } // EMULATOR int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) { UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}}; - SendCommand(&c); + SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1; @@ -603,7 +661,7 @@ int mfCWipe(uint32_t numSectors, bool gen1b, bool wantWipe, bool wantFill) { UsbCommand resp; WaitForResponse(CMD_ACK,&resp); isOK = resp.arg[0] & 0xff; - + return isOK; } @@ -620,7 +678,7 @@ int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID) { /* generation 1b magic card */ cmdParams = CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B; } - + res = mfCGetBlock(0, oldblock0, cmdParams); if (res == 0) { @@ -649,7 +707,7 @@ int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID) { PrintAndLog("Can't set block 0. Error: %d", res); return res; } - + return 0; } @@ -760,7 +818,7 @@ int loadTraceCard(uint8_t *tuid) { PrintAndLog("File reading error."); fclose(f); return 2; - } + } if (strlen(buf) < 32){ if (feof(f)) break; @@ -802,7 +860,7 @@ int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFil } void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){ - uint8_t bt = 0; + uint8_t bt = 0; int i; if (len != 1) { @@ -825,7 +883,7 @@ bool NTParityCheck(uint32_t ntx) { (oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((nt_enc_par >> 7) & 0x01) ^ (nt_enc >> 16 & 0x01)) ) return false; - + uint32_t ar = prng_successor(ntx, 64); if ( (oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ar_enc_par >> 5) & 0x01) ^ (ar_enc & 0x01)) || @@ -842,7 +900,7 @@ bool NTParityCheck(uint32_t ntx) { (oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((at_enc_par >> 7) & 0x01) ^ (at_enc >> 16 & 0x01)) ) return false; - + return true; } @@ -997,8 +1055,8 @@ int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEml crypto1_get_lfsr(revstate, &lfsr); crypto1_destroy(revstate); ui64Key = lfsr; - printf("key> probable key:%x%x Prng:%s ks2:%08x ks3:%08x\n", - (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF), + printf("key> probable key:%x%x Prng:%s ks2:%08x ks3:%08x\n", + (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF), validate_prng_nonce(nt) ? "WEAK": "HARDEND", ks2, ks3); @@ -1021,7 +1079,7 @@ int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEml printf("key> the same key test OK. key=%x%x\n", (unsigned int)((ui64Key & 0xFFFFFFFF00000000) >> 32), (unsigned int)(ui64Key & 0xFFFFFFFF)); else printf("key> the same key test. check nt parity error.\n"); - + uint32_t ntc = prng_successor(nt, 90); uint32_t ntx = 0; int ntcnt = 0; @@ -1031,7 +1089,7 @@ int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEml if (!ntcnt) ntx = ntc; ntcnt++; - } + } } if (ntcnt) printf("key> nt candidate=%08x nonce distance=%d candidates count=%d\n", ntx, nonce_distance(nt, ntx), ntcnt); @@ -1052,14 +1110,14 @@ int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEml crypto1_get_lfsr(revstate, &lfsr); crypto1_destroy(revstate); ui64Key = lfsr; - printf("key> probable key:%x%x ks2:%08x ks3:%08x\n", + printf("key> probable key:%x%x ks2:%08x ks3:%08x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF), ks2, ks3); AddLogUint64(logHexFileName, "key> ", lfsr); - } else { + } else { printf("key> hardnested not implemented!\n"); - + crypto1_destroy(traceCrypto1); // not implemented @@ -1139,44 +1197,44 @@ bool validate_prng_nonce(uint32_t nonce) { dist[(x & 0xff) << 8 | x >> 8] = i; x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; } - + uint32_t res = (65535 - dist[nonce >> 16] + dist[nonce & 0xffff]) % 65535; - - free(dist); + + free(dist); return (res == 16); } -/* Detect Tag Prng, +/* Detect Tag Prng, * function performs a partial AUTH, where it tries to authenticate against block0, key A, but only collects tag nonce. * the tag nonce is check to see if it has a predictable PRNG. -* @returns -* TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack) +* @returns +* TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack) * FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key) */ int DetectClassicPrng(void){ - UsbCommand resp, respA; + UsbCommand resp, respA; uint8_t cmd[] = {0x60, 0x00}; // MIFARE_AUTH_KEYA uint32_t flags = ISO14A_CONNECT | ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_RATS; - + UsbCommand c = {CMD_READER_ISO_14443a, {flags, sizeof(cmd), 0}}; memcpy(c.d.asBytes, cmd, sizeof(cmd)); clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_NACK, &resp, 2000)) { - PrintAndLog("PRNG UID: Reply timeout."); + PrintAndLog("PRNG UID: Reply timeout."); return -1; } - + // if select tag failed. if (resp.arg[0] == 0) { PrintAndLog("PRNG error: selecting tag failed, can't detect prng."); return -1; } - + if (!WaitForResponseTimeout(CMD_ACK, &respA, 5000)) { - PrintAndLog("PRNG data: Reply timeout."); + PrintAndLog("PRNG data: Reply timeout."); return -1; }