X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/e6b8c965bb27650b3ead5738ba46dd4c82f937de..5cba446201ea8f27e696750e64cc0c864a664274:/client/ui.c

diff --git a/client/ui.c b/client/ui.c
index 554230cb..6645a99e 100644
--- a/client/ui.c
+++ b/client/ui.c
@@ -12,14 +12,23 @@
 #include <stdarg.h>
 #include <stdlib.h>
 #include <stdio.h>
+#include <stdbool.h>
 #include <time.h>
 #include <readline/readline.h>
-
+#include <pthread.h>
+#include "loclass/cipherutils.h"
 #include "ui.h"
+#include "cmdmain.h"
+#include "cmddata.h"
+#include "graph.h"
+//#include <liquid/liquid.h>
+#define M_PI 3.14159265358979323846264338327
 
 double CursorScaleFactor;
-int PlotGridX, PlotGridY;
+int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
 int offline;
+int flushAfterWrite = 0;
+extern pthread_mutex_t print_lock;
 
 static char *logfilename = "proxmark3.log";
 
@@ -27,17 +36,20 @@ void PrintAndLog(char *fmt, ...)
 {
 	char *saved_line;
 	int saved_point;
-  va_list argptr, argptr2;
-  static FILE *logfile = NULL;
-  static int logging=1;
-
-  if (logging && !logfile) {
-    logfile=fopen(logfilename, "a");
-    if (!logfile) {
-      fprintf(stderr, "Can't open logfile, logging disabled!\n");
-      logging=0;
-    }
-  }
+	va_list argptr, argptr2;
+	static FILE *logfile = NULL;
+	static int logging = 1;
+
+	// lock this section to avoid interlacing prints from different threats
+	pthread_mutex_lock(&print_lock);
+  
+	if (logging && !logfile) {
+		logfile = fopen(logfilename, "a");
+		if (!logfile) {
+			fprintf(stderr, "Can't open logfile, logging disabled!\n");
+			logging=0;
+		}
+	}
 	
 	int need_hack = (rl_readline_state & RL_STATE_READCMD) > 0;
 
@@ -49,12 +61,12 @@ void PrintAndLog(char *fmt, ...)
 		rl_redisplay();
 	}
 	
-  va_start(argptr, fmt);
-  va_copy(argptr2, argptr);
-  vprintf(fmt, argptr);
-  printf("          "); // cleaning prompt
-  va_end(argptr);
-  printf("\n");
+	va_start(argptr, fmt);
+	va_copy(argptr2, argptr);
+	vprintf(fmt, argptr);
+	printf("          "); // cleaning prompt
+	va_end(argptr);
+	printf("\n");
 
 	if (need_hack) {
 		rl_restore_prompt();
@@ -64,15 +76,406 @@ void PrintAndLog(char *fmt, ...)
 		free(saved_line);
 	}
 	
-  if (logging && logfile) {
-    vfprintf(logfile, fmt, argptr2);
-    fprintf(logfile,"\n");
-    fflush(logfile);
-  }
-  va_end(argptr2);
+	if (logging && logfile) {
+		vfprintf(logfile, fmt, argptr2);
+		fprintf(logfile,"\n");
+		fflush(logfile);
+	}
+	va_end(argptr2);
+
+	if (flushAfterWrite == 1) {
+		fflush(NULL);
+	}
+	//release lock
+	pthread_mutex_unlock(&print_lock);  
 }
 
 void SetLogFilename(char *fn)
 {
   logfilename = fn;
 }
+
+int manchester_decode( int * data, const size_t len, uint8_t * dataout,  size_t dataoutlen){
+	
+	int bitlength = 0;
+	int clock, high, low, startindex;
+	low = startindex = 0;
+	high = 1;
+	uint8_t * bitStream =  (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen);	
+	memset(bitStream, 0x00, dataoutlen);	
+	
+	/* Detect high and lows */
+	DetectHighLowInGraph(&high, &low, TRUE); 
+
+	/* get clock */
+	clock = GetAskClock("",false, false);
+
+	startindex = DetectFirstTransition(data, len, high);
+  
+	if (high != 1)
+		// decode "raw"
+		bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex);
+	else
+		// decode manchester
+		bitlength = ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex);
+
+	memcpy(dataout, bitStream, bitlength);
+	free(bitStream);
+	return bitlength;
+}
+ 
+ int DetectFirstTransition(const int * data, const size_t len, int threshold){
+
+	int i = 0;
+	/* now look for the first threshold */
+	for (; i < len; ++i) {
+		if (data[i] == threshold) {
+			break;
+		}
+	}
+	return i;
+ }
+
+ int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){
+
+	int i, j, z, hithigh, hitlow, bitIndex, startType;
+	i = 0;
+	bitIndex = 0;
+	
+	int isDamp = 0;
+	int damplimit = (int)((high / 2) * 0.3);
+	int dampHi =  (high/2)+damplimit;
+	int dampLow = (high/2)-damplimit;
+	int firstST = 0;
+
+	// i = clock frame of data
+	for (; i < (int)(len/clock); i++)
+	{
+		hithigh = 0;
+		hitlow = 0;
+		startType = -1;
+		z = startIndex + (i*clock);
+		isDamp = 0;
+			
+		/* Find out if we hit both high and low peaks */
+		for (j = 0; j < clock; j++)
+		{		
+			if (data[z+j] == high){
+				hithigh = 1;
+				if ( startType == -1)
+					startType = 1;
+			}
+			
+			if (data[z+j] == low ){
+				hitlow = 1;
+				if ( startType == -1)
+					startType = 0;
+			} 
+		
+			if (hithigh && hitlow)
+			  break;
+		}
+		
+		// No high value found, are we in a dampening field?
+		if ( !hithigh ) {
+			//PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
+			for (j = 0; j < clock; j++) {
+				if ( 
+				     (data[z+j] <= dampHi && data[z+j] >= dampLow)
+				   ){
+				   isDamp++;
+				}
+			}
+		}
+
+		/*  Manchester Switching..
+			0: High -> Low   
+			1: Low -> High  
+		*/
+		if (startType == 0)
+			dataout[bitIndex++] = 1;
+		else if (startType == 1) 
+			dataout[bitIndex++] = 0;
+		else
+			dataout[bitIndex++] = 2;
+			
+		if ( isDamp > clock/2 ) {
+			firstST++;
+		}
+		
+		if ( firstST == 4)
+			break;
+		if ( bitIndex >= dataoutlen-1 )
+			break;
+	}
+	return bitIndex;
+ }
+ 
+ int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){
+
+	int i,j, bitindex, lc, tolerance, warnings;
+	warnings = 0;
+	int upperlimit = len*2/clock+8;
+	i = startIndex;
+	j = 0;
+	tolerance = clock/4;
+	uint8_t decodedArr[len];
+	
+	/* Detect duration between 2 successive transitions */
+	for (bitindex = 1; i < len; i++) {
+	
+		if (data[i-1] != data[i]) {
+			lc = i - startIndex;
+			startIndex = i;
+
+			// Error check: if bitindex becomes too large, we do not
+			// have a Manchester encoded bitstream or the clock is really wrong!
+			if (bitindex > upperlimit ) {
+				PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
+				return 0;
+			}
+			// Then switch depending on lc length:
+			// Tolerance is 1/4 of clock rate (arbitrary)
+			if (abs((lc-clock)/2) < tolerance) {
+				// Short pulse : either "1" or "0"
+				decodedArr[bitindex++] = data[i-1];
+			} else if (abs(lc-clock) < tolerance) {
+				// Long pulse: either "11" or "00"
+				decodedArr[bitindex++] = data[i-1];
+				decodedArr[bitindex++] = data[i-1];
+			} else {
+				++warnings;
+				PrintAndLog("Warning: Manchester decode error for pulse width detection.");
+				if (warnings > 10) {
+					PrintAndLog("Error: too many detection errors, aborting.");
+					return 0; 
+				}
+			}
+		}
+	}
+	
+	/* 
+	* We have a decodedArr of "01" ("1") or "10" ("0")
+	* parse it into final decoded dataout
+    */ 
+    for (i = 0; i < bitindex; i += 2) {
+
+	    if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
+			dataout[j++] = 1;
+		} else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
+			dataout[j++] = 0;
+		} else {
+			i++;
+			warnings++;
+			PrintAndLog("Unsynchronized, resync...");
+			PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
+
+			if (warnings > 10) {	
+				PrintAndLog("Error: too many decode errors, aborting.");
+				return 0;
+			}
+		}
+    }
+	
+	PrintAndLog("%s", sprint_hex(dataout, j));
+	return j;
+ }
+ 
+ void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
+	/* 
+	* We have a bitstream of "01" ("1") or "10" ("0")
+	* parse it into final decoded bitstream
+    */ 
+	int i, j, warnings; 
+	uint8_t decodedArr[(len/2)+1];
+
+	j = warnings = 0;
+	
+	uint8_t lastbit = 0;
+	
+    for (i = 0; i < len; i += 2) {
+	
+		uint8_t first = bitstream[i];
+		uint8_t second = bitstream[i+1];
+
+		if ( first == second ) {
+			++i;
+			++warnings;
+			if (warnings > 10) {
+				PrintAndLog("Error: too many decode errors, aborting.");
+				return;
+			}
+		} 
+		else if ( lastbit != first ) {
+			decodedArr[j++] = 0 ^ invert;
+		}
+		else {
+			decodedArr[j++] = 1 ^ invert;
+		}
+		lastbit = second;
+    }
+	
+	PrintAndLog("%s", sprint_hex(decodedArr, j));
+}
+ 
+void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
+
+	PrintAndLog(" Manchester decoded  : %d bits", len);
+	  
+	uint8_t mod = len % blocksize;
+	uint8_t div = len / blocksize;
+	int i;
+  
+	// Now output the bitstream to the scrollback by line of 16 bits
+	for (i = 0; i < div*blocksize; i+=blocksize) {
+		PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
+	}
+	
+	if ( mod > 0 )
+		PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );	
+}
+
+/* Sliding DFT
+   Smooths out 
+*/ 
+void iceFsk2(int * data, const size_t len){
+
+	int i, j;
+	int * output =  (int* ) malloc(sizeof(int) * len);	
+	memset(output, 0x00, len);
+
+	// for (i=0; i<len-5; ++i){
+		// for ( j=1; j <=5; ++j) {
+			// output[i] += data[i*j];
+		// }
+		// output[i] /= 5;
+	// }
+	int rest = 127;
+	int tmp =0;
+	for (i=0; i<len; ++i){
+		if ( data[i] < 127)
+			output[i] = 0;
+		else {
+			tmp =  (100 * (data[i]-rest)) / rest;
+			output[i] = (tmp > 60)? 100:0;
+		}
+	}
+	
+	for (j=0; j<len; ++j)
+		data[j] = output[j];
+		
+	free(output);
+}
+
+void iceFsk3(int * data, const size_t len){
+
+	int i,j;
+	
+	int * output =  (int* ) malloc(sizeof(int) * len);	
+	memset(output, 0x00, len);
+	float fc           = 0.1125f;          // center frequency
+	size_t adjustedLen = len;
+	
+    // create very simple low-pass filter to remove images (2nd-order Butterworth)
+    float complex iir_buf[3] = {0,0,0};
+    float b[3] = {0.003621681514929,  0.007243363029857, 0.003621681514929};
+    float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
+    
+    float sample           = 0;      // input sample read from file
+    float complex x_prime  = 1.0f;   // save sample for estimating frequency
+    float complex x;
+		
+	for (i=0; i<adjustedLen; ++i) {
+
+		sample = data[i]+128;
+		
+        // remove DC offset and mix to complex baseband
+        x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
+
+        // apply low-pass filter, removing spectral image (IIR using direct-form II)
+        iir_buf[2] = iir_buf[1];
+        iir_buf[1] = iir_buf[0];
+        iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
+        x          = b[0]*iir_buf[0] +
+                     b[1]*iir_buf[1] +
+                     b[2]*iir_buf[2];
+					 
+        // compute instantaneous frequency by looking at phase difference
+        // between adjacent samples
+        float freq = cargf(x*conjf(x_prime));
+        x_prime = x;    // retain this sample for next iteration
+
+		output[i] =(freq > 0)? 10 : -10;
+    } 
+
+	// show data
+	for (j=0; j<adjustedLen; ++j)
+		data[j] = output[j];
+		
+	CmdLtrim("30");
+	adjustedLen -= 30;
+	
+	// zero crossings.
+	for (j=0; j<adjustedLen; ++j){
+		if ( data[j] == 10) break;
+	}
+	int startOne =j;
+	
+	for (;j<adjustedLen; ++j){
+		if ( data[j] == -10 ) break;
+	}
+	int stopOne = j-1;
+	
+	int fieldlen = stopOne-startOne;
+	
+	fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
+	fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
+	if ( fieldlen != 40 && fieldlen != 50){
+		printf("Detected field Length: %d \n", fieldlen);
+		printf("Can only handle 40 or 50.  Aborting...\n");
+		return;
+	}
+	
+	// FSK sequence start == 000111
+	int startPos = 0;
+	for (i =0; i<adjustedLen; ++i){
+		int dec = 0;
+		for ( j = 0; j < 6*fieldlen; ++j){
+			dec += data[i + j];
+		}
+		if (dec == 0) {
+			startPos = i;
+			break;
+		}
+	}
+	
+	printf("000111 position: %d \n", startPos);
+
+	startPos += 6*fieldlen+5;
+	
+	int bit =0;
+	printf("BINARY\n");
+	printf("R/40 :  ");
+	for (i =startPos ; i < adjustedLen; i += 40){
+		bit = data[i]>0 ? 1:0;
+		printf("%d", bit );
+	}
+	printf("\n");	
+	
+	printf("R/50 :  ");
+	for (i =startPos ; i < adjustedLen; i += 50){
+		bit = data[i]>0 ? 1:0;
+		printf("%d", bit );	}
+	printf("\n");	
+	
+	free(output);
+}
+
+float complex cexpf (float complex Z)
+{
+  float complex  Res;
+  double rho = exp (__real__ Z);
+  __real__ Res = rho * cosf(__imag__ Z);
+  __imag__ Res = rho * sinf(__imag__ Z);
+  return Res;
+}