X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/eb191de615e499035904263bcbdbff21539dd103..7d159efe40eb000840e5dbc2274ff8d39f81cbc8:/armsrc/lfops.c?ds=sidebyside

diff --git a/armsrc/lfops.c b/armsrc/lfops.c
index 0ed1c0c3..bbd848ce 100644
--- a/armsrc/lfops.c
+++ b/armsrc/lfops.c
@@ -14,148 +14,70 @@
 #include "hitag2.h"
 #include "crc16.h"
 #include "string.h"
-#include "../common/lfdemod.h"
+#include "lfdemod.h"
+#include "lfsampling.h"
+#include "protocols.h"
+#include "usb_cdc.h" // for usb_poll_validate_length
+
+#ifndef SHORT_COIL
+# define SHORT_COIL()	LOW(GPIO_SSC_DOUT)
+#endif
+#ifndef OPEN_COIL
+# define OPEN_COIL()	HIGH(GPIO_SSC_DOUT)
+#endif
 
-
-/**
-* Does the sample acquisition. If threshold is specified, the actual sampling 
-* is not commenced until the threshold has been reached. 
-* @param trigger_threshold - the threshold
-* @param silent - is true, now outputs are made. If false, dbprints the status
-*/
-void DoAcquisition125k_internal(int trigger_threshold,bool silent)
-{
-	uint8_t *dest = (uint8_t *)BigBuf;
-	int n = sizeof(BigBuf);
-	int i;
-
-	memset(dest, 0, n);
-	i = 0;
-	for(;;) {
-		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-			AT91C_BASE_SSC->SSC_THR = 0x43;
-			LED_D_ON();
-		}
-		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-			LED_D_OFF();
-			if (trigger_threshold != -1 && dest[i] < trigger_threshold)
-				continue;
-			else
-				trigger_threshold = -1;
-			if (++i >= n) break;
-		}
-	}
-	if(!silent)
-	{
-		Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
-				dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
-		
-	}
-}
-/**
-* Perform sample aquisition. 
-*/
-void DoAcquisition125k(int trigger_threshold)
-{
-	DoAcquisition125k_internal(trigger_threshold, false);
-}
-
-/**
-* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream 
-* if not already loaded, sets divisor and starts up the antenna. 
-* @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
-* 				   0 or 95 ==> 125 KHz
-* 				   
-**/
-void LFSetupFPGAForADC(int divisor, bool lf_field)
-{
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-	else if (divisor == 0)
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	else
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
-
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
-
-	// Connect the A/D to the peak-detected low-frequency path.
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(50);
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
-}
-/**
-* Initializes the FPGA, and acquires the samples. 
-**/
-void AcquireRawAdcSamples125k(int divisor)
-{
-	LFSetupFPGAForADC(divisor, true);
-	// Now call the acquisition routine
-	DoAcquisition125k_internal(-1,false);
-}
 /**
-* Initializes the FPGA for snoop-mode, and acquires the samples. 
-**/
-
-void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
-{
-	LFSetupFPGAForADC(divisor, false);
-	DoAcquisition125k(trigger_threshold);
-}
-
-void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
+ * Function to do a modulation and then get samples.
+ * @param delay_off
+ * @param periods  0xFFFF0000 is period_0,  0x0000FFFF is period_1
+ * @param useHighFreg
+ * @param command
+ */
+void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command)
 {
-
 	/* Make sure the tag is reset */
 	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-	SpinDelay(2500);
-
+	SpinDelay(200);
 
-	int divisor_used = 95; // 125 KHz
-	// see if 'h' was specified
-
-	if (command[strlen((char *) command) - 1] == 'h')
-		divisor_used = 88; // 134.8 KHz
+	uint16_t period_0 =  periods >> 16;
+	uint16_t period_1 =  periods & 0xFFFF;
+	
+	// 95 == 125 KHz  88 == 124.8 KHz
+	int divisor_used = (useHighFreq) ? 88 : 95;
+	sample_config sc = { 0,0,1, divisor_used, 0};
+	setSamplingConfig(&sc);
 
+	//clear read buffer
+	BigBuf_Clear_keep_EM();
 
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); 
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(50);
+	LFSetupFPGAForADC(sc.divisor, 1);
 
 	// And a little more time for the tag to fully power up
-	SpinDelay(2000);
-
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
+	SpinDelay(50);
 
 	// now modulate the reader field
 	while(*command != '\0' && *command != ' ') {
 		FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 		LED_D_OFF();
-		SpinDelayUs(delay_off);
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); 
+		WaitUS(delay_off);
+		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
 
 		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
 		LED_D_ON();
 		if(*(command++) == '0')
-			SpinDelayUs(period_0);
+			WaitUS(period_0);
 		else
-			SpinDelayUs(period_1);
+			WaitUS(period_1);
 	}
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LED_D_OFF();
-	SpinDelayUs(delay_off);
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); 
-
+	WaitUS(delay_off);
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
 
 	// now do the read
-	DoAcquisition125k(-1);
+	DoAcquisition_config(false);
 }
 
 /* blank r/w tag data stream
@@ -169,6 +91,7 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1,
 */
 void ReadTItag(void)
 {
+	StartTicks();
 	// some hardcoded initial params
 	// when we read a TI tag we sample the zerocross line at 2Mhz
 	// TI tags modulate a 1 as 16 cycles of 123.2Khz
@@ -177,11 +100,8 @@ void ReadTItag(void)
 	#define FREQLO 123200
 	#define FREQHI 134200
 
-	signed char *dest = (signed char *)BigBuf;
-	int n = sizeof(BigBuf);
-//	int *dest = GraphBuffer;
-//	int n = GraphTraceLen;
-
+	signed char *dest = (signed char *)BigBuf_get_addr();
+	uint16_t n = BigBuf_max_traceLen();
 	// 128 bit shift register [shift3:shift2:shift1:shift0]
 	uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
 
@@ -217,10 +137,10 @@ void ReadTItag(void)
 
 				// TI bits are coming to us lsb first so shift them
 				// right through our 128 bit right shift register
-			  shift0 = (shift0>>1) | (shift1 << 31);
-			  shift1 = (shift1>>1) | (shift2 << 31);
-			  shift2 = (shift2>>1) | (shift3 << 31);
-			  shift3 >>= 1;
+				shift0 = (shift0>>1) | (shift1 << 31);
+				shift1 = (shift1>>1) | (shift2 << 31);
+				shift2 = (shift2>>1) | (shift3 << 31);
+				shift3 >>= 1;
 
 				// check if the cycles fall close to the number
 				// expected for either the low or high frequency
@@ -255,18 +175,18 @@ void ReadTItag(void)
 	if (cycles!=0xF0B) {
 		DbpString("Info: No valid tag detected.");
 	} else {
-	  // put 64 bit data into shift1 and shift0
-	  shift0 = (shift0>>24) | (shift1 << 8);
-	  shift1 = (shift1>>24) | (shift2 << 8);
+		// put 64 bit data into shift1 and shift0
+		shift0 = (shift0>>24) | (shift1 << 8);
+		shift1 = (shift1>>24) | (shift2 << 8);
 
 		// align 16 bit crc into lower half of shift2
-	  shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
+		shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
 
 		// if r/w tag, check ident match
-		if ( shift3&(1<<15) ) {
+		if (shift3 & (1<<15) ) {
 			DbpString("Info: TI tag is rewriteable");
 			// only 15 bits compare, last bit of ident is not valid
-			if ( ((shift3>>16)^shift0)&0x7fff ) {
+			if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
 				DbpString("Error: Ident mismatch!");
 			} else {
 				DbpString("Info: TI tag ident is valid");
@@ -281,7 +201,7 @@ void ReadTItag(void)
 		// calculate CRC
 		uint32_t crc=0;
 
-	 	crc = update_crc16(crc, (shift0)&0xff);
+		crc = update_crc16(crc, (shift0)&0xff);
 		crc = update_crc16(crc, (shift0>>8)&0xff);
 		crc = update_crc16(crc, (shift0>>16)&0xff);
 		crc = update_crc16(crc, (shift0>>24)&0xff);
@@ -290,14 +210,14 @@ void ReadTItag(void)
 		crc = update_crc16(crc, (shift1>>16)&0xff);
 		crc = update_crc16(crc, (shift1>>24)&0xff);
 
-		Dbprintf("Info: Tag data: %x%08x, crc=%x",
-			(unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+		Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
 		if (crc != (shift2&0xffff)) {
 			Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
 		} else {
 			DbpString("Info: CRC is good");
 		}
 	}
+	StopTicks();
 }
 
 void WriteTIbyte(uint8_t b)
@@ -307,20 +227,20 @@ void WriteTIbyte(uint8_t b)
 	// modulate 8 bits out to the antenna
 	for (i=0; i<8; i++)
 	{
-		if (b&(1<<i)) {
-			// stop modulating antenna
+		if ( b & ( 1 << i ) ) {
+			// stop modulating antenna 1ms
 			LOW(GPIO_SSC_DOUT);
-			SpinDelayUs(1000);
-			// modulate antenna
-			HIGH(GPIO_SSC_DOUT);
-			SpinDelayUs(1000);
+			WaitUS(1000);
+			// modulate antenna 1ms
+			HIGH(GPIO_SSC_DOUT); 
+			WaitUS(1000);
 		} else {
-			// stop modulating antenna
+			// stop modulating antenna 1ms
 			LOW(GPIO_SSC_DOUT);
-			SpinDelayUs(300);
-			// modulate antenna
+			WaitUS(300);
+			// modulate antenna 1m
 			HIGH(GPIO_SSC_DOUT);
-			SpinDelayUs(1700);
+			WaitUS(1700);
 		}
 	}
 }
@@ -333,7 +253,10 @@ void AcquireTiType(void)
 	#define TIBUFLEN 1250
 
 	// clear buffer
-	memset(BigBuf,0,sizeof(BigBuf));
+	uint32_t *buf = (uint32_t *)BigBuf_get_addr();
+
+	//clear buffer now so it does not interfere with timing later
+	BigBuf_Clear_ext(false);
 
 	// Set up the synchronous serial port
 	AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
@@ -354,14 +277,14 @@ void AcquireTiType(void)
 	AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
 	AT91C_BASE_SSC->SSC_TCMR = 0;
 	AT91C_BASE_SSC->SSC_TFMR = 0;
-
+	// iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
 	LED_D_ON();
 
 	// modulate antenna
 	HIGH(GPIO_SSC_DOUT);
 
 	// Charge TI tag for 50ms.
-	SpinDelay(50);
+	WaitMS(50);
 
 	// stop modulating antenna and listen
 	LOW(GPIO_SSC_DOUT);
@@ -371,7 +294,7 @@ void AcquireTiType(void)
 	i = 0;
 	for(;;) {
 		if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-			BigBuf[i] = AT91C_BASE_SSC->SSC_RHR;	// store 32 bit values in buffer
+			buf[i] = AT91C_BASE_SSC->SSC_RHR;	// store 32 bit values in buffer
 			i++; if(i >= TIBUFLEN) break;
 		}
 		WDT_HIT();
@@ -381,12 +304,13 @@ void AcquireTiType(void)
 	AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
 	AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
 
-	char *dest = (char *)BigBuf;
-	n = TIBUFLEN*32;
+	char *dest = (char *)BigBuf_get_addr();
+	n = TIBUFLEN * 32;
+	
 	// unpack buffer
-	for (i=TIBUFLEN-1; i>=0; i--) {
-		for (j=0; j<32; j++) {
-			if(BigBuf[i] & (1 << j)) {
+	for (i = TIBUFLEN-1; i >= 0; i--) {
+		for (j = 0; j < 32; j++) {
+			if(buf[i] & (1 << j)) {
 				dest[--n] = 1;
 			} else {
 				dest[--n] = -1;
@@ -400,9 +324,10 @@ void AcquireTiType(void)
 // if not provided a valid crc will be computed from the data and written.
 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 {
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);	
+	StartTicks();
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
 	if(crc == 0) {
-	 	crc = update_crc16(crc, (idlo)&0xff);
+		crc = update_crc16(crc, (idlo)&0xff);
 		crc = update_crc16(crc, (idlo>>8)&0xff);
 		crc = update_crc16(crc, (idlo>>16)&0xff);
 		crc = update_crc16(crc, (idlo>>24)&0xff);
@@ -411,8 +336,7 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 		crc = update_crc16(crc, (idhi>>16)&0xff);
 		crc = update_crc16(crc, (idhi>>24)&0xff);
 	}
-	Dbprintf("Writing to tag: %x%08x, crc=%x",
-		(unsigned int) idhi, (unsigned int) idlo, crc);
+	Dbprintf("Writing to tag: %x%08x, crc=%x",	(unsigned int) idhi, (unsigned int) idlo, crc);
 
 	// TI tags charge at 134.2Khz
 	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
@@ -434,12 +358,12 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 	// start by writing 0xBB (keyword) and 0xEB (password)
 	// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
 	// finally end with 0x0300 (write frame)
-	// all data is sent lsb firts
+	// all data is sent lsb first
 	// finish with 15ms programming time
 
 	// modulate antenna
 	HIGH(GPIO_SSC_DOUT);
-	SpinDelay(50);	// charge time
+	WaitMS(50);	// charge time
 
 	WriteTIbyte(0xbb); // keyword
 	WriteTIbyte(0xeb); // password
@@ -456,7 +380,7 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 	WriteTIbyte(0x00); // write frame lo
 	WriteTIbyte(0x03); // write frame hi
 	HIGH(GPIO_SSC_DOUT);
-	SpinDelay(50);	// programming time
+	WaitMS(50);	// programming time
 
 	LED_A_OFF();
 
@@ -464,63 +388,68 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 	AcquireTiType();
 
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-	DbpString("Now use tiread to check");
+	DbpString("Now use `lf ti read` to check");
+	StopTicks();
 }
 
 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
 {
-	int i;
-	uint8_t *tab = (uint8_t *)BigBuf;
-    
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
-    
+	int i = 0;
+	uint8_t *buf = BigBuf_get_addr();
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
+	//FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
+
 	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
-    
+	//AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
 	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
 	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
-    
-#define SHORT_COIL()	LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL()		HIGH(GPIO_SSC_DOUT)
-    
-	i = 0;
+
+	StartTicks();
+
 	for(;;) {
+		WDT_HIT();
+
+		if (ledcontrol) LED_D_ON();
+				
+		// wait until SSC_CLK goes HIGH
+		// used as a simple detection of a reader field?
 		while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
-			if(BUTTON_PRESS()) {
-				DbpString("Stopped");
-				return;
-			}
 			WDT_HIT();
+			if ( usb_poll_validate_length() || BUTTON_PRESS() )
+				goto OUT;
 		}
-        
-		if (ledcontrol)
-			LED_D_ON();
-        
-		if(tab[i])
+		
+		if(buf[i])
 			OPEN_COIL();
 		else
 			SHORT_COIL();
-        
-		if (ledcontrol)
-			LED_D_OFF();
-        
+
+		if (ledcontrol) LED_D_OFF();
+		
+		//wait until SSC_CLK goes LOW
 		while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
-			if(BUTTON_PRESS()) {
-				DbpString("Stopped");
-				return;
-			}
 			WDT_HIT();
+			if ( usb_poll_validate_length() || BUTTON_PRESS() )
+				goto OUT;
 		}
-        
+
 		i++;
 		if(i == period) {
 			i = 0;
 			if (gap) {
+				WDT_HIT();
 				SHORT_COIL();
-				SpinDelayUs(gap);
+				WaitUS(gap);
 			}
 		}
 	}
+OUT: 
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	StopTicks();
+	LED_D_OFF();
+	DbpString("Simulation stopped");
+	return;	
 }
 
 #define DEBUG_FRAME_CONTENTS 1
@@ -528,29 +457,31 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0)
 {
 }
 
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
-	uint8_t *dest = (uint8_t *)BigBuf;
+// compose fc/8 fc/10 waveform (FSK2)
+static void fc(int c, int *n)
+{
+	uint8_t *dest = BigBuf_get_addr();
 	int idx;
 
 	// for when we want an fc8 pattern every 4 logical bits
 	if(c==0) {
 		dest[((*n)++)]=1;
 		dest[((*n)++)]=1;
-		dest[((*n)++)]=0;
-		dest[((*n)++)]=0;
+		dest[((*n)++)]=1;
+		dest[((*n)++)]=1;
 		dest[((*n)++)]=0;
 		dest[((*n)++)]=0;
 		dest[((*n)++)]=0;
 		dest[((*n)++)]=0;
 	}
-	//	an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples
+
+	//	an fc/8  encoded bit is a bit pattern of  11110000  x6 = 48 samples
 	if(c==8) {
 		for (idx=0; idx<6; idx++) {
 			dest[((*n)++)]=1;
 			dest[((*n)++)]=1;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=1;
 			dest[((*n)++)]=0;
 			dest[((*n)++)]=0;
 			dest[((*n)++)]=0;
@@ -558,9 +489,11 @@ static void fc(int c, int *n) {
 		}
 	}
 
-	//	an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
+	//	an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
 	if(c==10) {
 		for (idx=0; idx<5; idx++) {
+			dest[((*n)++)]=1;
+			dest[((*n)++)]=1;
 			dest[((*n)++)]=1;
 			dest[((*n)++)]=1;
 			dest[((*n)++)]=1;
@@ -569,17 +502,48 @@ static void fc(int c, int *n) {
 			dest[((*n)++)]=0;
 			dest[((*n)++)]=0;
 			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
-			dest[((*n)++)]=0;
 		}
 	}
 }
+// compose fc/X fc/Y waveform (FSKx)
+static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) 
+{
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfFC = fc/2;
+	uint8_t wavesPerClock = clock/fc;
+	uint8_t mod = clock % fc;    //modifier
+	uint8_t modAdj = fc/mod;     //how often to apply modifier
+	bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
+	// loop through clock - step field clock
+	for (uint8_t idx=0; idx < wavesPerClock; idx++){
+		// put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
+		memset(dest+(*n), 0, fc-halfFC);  //in case of odd number use extra here
+		memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+		*n += fc;
+	}
+	if (mod>0) (*modCnt)++;
+	if ((mod>0) && modAdjOk){  //fsk2 
+		if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
+			memset(dest+(*n), 0, fc-halfFC);
+			memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+			*n += fc;
+		}
+	}
+	if (mod>0 && !modAdjOk){  //fsk1
+		memset(dest+(*n), 0, mod-(mod/2));
+		memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
+		*n += mod;
+	}
+}
 
 // prepare a waveform pattern in the buffer based on the ID given then
 // simulate a HID tag until the button is pressed
 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
 {
-	int n=0, i=0;
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+	set_tracing(FALSE);
+		
+	int n = 0, i = 0;
 	/*
 	 HID tag bitstream format
 	 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
@@ -590,13 +554,13 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
 	 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
 	*/
 
-	if (hi>0xFFF) {
-		DbpString("Tags can only have 44 bits.");
+	if (hi > 0xFFF) {
+		DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
 		return;
 	}
 	fc(0,&n);
 	// special start of frame marker containing invalid bit sequences
-	fc(8,  &n);	fc(8,  &n);	// invalid
+	fc(8,  &n);	fc(8,  &n); // invalid
 	fc(8,  &n);	fc(10, &n); // logical 0
 	fc(10, &n);	fc(10, &n); // invalid
 	fc(8,  &n);	fc(10, &n); // logical 0
@@ -606,9 +570,9 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
 	for (i=11; i>=0; i--) {
 		if ((i%4)==3) fc(0,&n);
 		if ((hi>>i)&1) {
-			fc(10, &n);	fc(8,  &n);		// low-high transition
+			fc(10, &n); fc(8,  &n);		// low-high transition
 		} else {
-			fc(8,  &n);	fc(10, &n);		// high-low transition
+			fc(8,  &n); fc(10, &n);		// high-low transition
 		}
 	}
 
@@ -617,180 +581,252 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
 	for (i=31; i>=0; i--) {
 		if ((i%4)==3) fc(0,&n);
 		if ((lo>>i)&1) {
-			fc(10, &n);	fc(8,  &n);		// low-high transition
+			fc(10, &n); fc(8,  &n);		// low-high transition
 		} else {
-			fc(8,  &n);	fc(10, &n);		// high-low transition
+			fc(8,  &n); fc(10, &n);		// high-low transition
 		}
 	}
-
-	if (ledcontrol)
-		LED_A_ON();
+	WDT_HIT();
+	
+	if (ledcontrol)	LED_A_ON();
 	SimulateTagLowFrequency(n, 0, ledcontrol);
-
-	if (ledcontrol)
-		LED_A_OFF();
+	if (ledcontrol)	LED_A_OFF();
 }
-/*
-//translate wave to 11111100000 (1 for each short wave 0 for each long wave) 
-size_t fsk_demod(uint8_t * dest, size_t size)
+
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a FSK tag until the button is pressed
+// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
+void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
 {
-	uint32_t last_transition = 0;
-	uint32_t idx = 1;
-	uint32_t maxVal=0;
-	// // we don't care about actual value, only if it's more or less than a
-	// // threshold essentially we capture zero crossings for later analysis
-
-	// we do care about the actual value as sometimes near the center of the
-	// wave we may get static that changes direction of wave for one value
-	// if our value is too low it might affect the read.  and if our tag or
-	// antenna is weak a setting too high might not see anything. [marshmellow]
-	if (size<100) return size;
-	for(idx=1; idx<100; idx++){
-    	if(maxVal<dest[idx]) maxVal = dest[idx];
-    }
-    // set close to the top of the wave threshold with 13% margin for error
-    // less likely to get a false transition up there. 
-    // (but have to be careful not to go too high and miss some short waves)
-  	uint32_t threshold_value = (uint32_t)(maxVal*.87); 	idx=1;
-	//uint8_t threshold_value = 127;
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+	// free eventually allocated BigBuf memory
+	BigBuf_free(); BigBuf_Clear_ext(false);
+	clear_trace();
+	set_tracing(FALSE);
 	
-	// sync to first lo-hi transition, and threshold
-
-	// Need to threshold first sample
-	if(dest[0] < threshold_value) dest[0] = 0;
-	else dest[0] = 1;
-
-	size_t numBits = 0;
-	// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
-	// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
-	// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
-	for(idx = 1; idx < size; idx++) {
-		// threshold current value
-		if (dest[idx] < threshold_value) dest[idx] = 0;
-		else dest[idx] = 1;
-
-		// Check for 0->1 transition
-		if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
-			if (idx-last_transition<6){
-				//do nothing with extra garbage
-			} else if (idx-last_transition <  9) {
-				dest[numBits]=1;
-			} else {
-				dest[numBits]=0;
-			}
-			last_transition = idx;
-			numBits++;
-		}
+	int ledcontrol = 1, n = 0, i = 0;
+	uint8_t fcHigh = arg1 >> 8;
+	uint8_t fcLow = arg1 & 0xFF;
+	uint16_t modCnt = 0;
+	uint8_t clk = arg2 & 0xFF;
+	uint8_t invert = (arg2 >> 8) & 1;
+
+	for (i=0; i<size; i++){
+		
+		if (BitStream[i] == invert)
+			fcAll(fcLow, &n, clk, &modCnt);
+		else
+			fcAll(fcHigh, &n, clk, &modCnt);
 	}
-	return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
+	WDT_HIT();
+	
+	Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh, fcLow, clk, invert, n);
+
+	if (ledcontrol)	LED_A_ON();
+	SimulateTagLowFrequency(n, 0, ledcontrol);
+	if (ledcontrol)	LED_A_OFF();
 }
 
-uint32_t myround(float f)
+// compose ask waveform for one bit(ASK)
+static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
 {
-  if (f >= 2000) return 2000;//something bad happened
-  return (uint32_t) (f + (float)0.5);
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfClk = clock/2;
+	// c = current bit 1 or 0
+	if (manchester==1){
+		memset(dest+(*n), c, halfClk);
+		memset(dest+(*n) + halfClk, c^1, halfClk);
+	} else {
+		memset(dest+(*n), c, clock);
+	}
+	*n += clock;
 }
 
-//translate 11111100000 to 10 
-size_t aggregate_bits(uint8_t *dest,size_t size,  uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, 
+static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
 {
-	uint8_t lastval=dest[0];
-	uint32_t idx=0;
-	size_t numBits=0;
-	uint32_t n=1;
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfClk = clock/2;
+	if (c){
+		memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
+		memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
+	} else {
+		memset(dest+(*n), c ^ *phase, clock);
+		*phase ^= 1;
+	}
+	*n += clock;
+}
 
-	for( idx=1; idx < size; idx++) {
+static void stAskSimBit(int *n, uint8_t clock) {
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfClk = clock/2;
+	//ST = .5 high .5 low 1.5 high .5 low 1 high	
+	memset(dest+(*n), 1, halfClk);
+	memset(dest+(*n) + halfClk, 0, halfClk);
+	memset(dest+(*n) + clock, 1, clock + halfClk);
+	memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
+	memset(dest+(*n) + clock*3, 1, clock);
+	*n += clock*4;
+}
 
-		if (dest[idx]==lastval) {
-			n++;
-			continue;
+// args clock, ask/man or askraw, invert, transmission separator
+void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);	
+	set_tracing(FALSE);
+	
+	int ledcontrol = 1, n = 0, i = 0;
+	uint8_t clk = (arg1 >> 8) & 0xFF;
+	uint8_t encoding = arg1 & 0xFF;
+	uint8_t separator = arg2 & 1;
+	uint8_t invert = (arg2 >> 8) & 1;
+
+	if (encoding == 2){  //biphase
+		uint8_t phase = 0;
+		for (i=0; i<size; i++){
+			biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
 		}
-		//if lastval was 1, we have a 1->0 crossing
-		if ( dest[idx-1]==1 ) {
-			n=myround((float)(n+1)/((float)(rfLen)/(float)8));
-			//n=(n+1) / h2l_crossing_value;
-		} else {// 0->1 crossing
-			n=myround((float)(n+1)/((float)(rfLen-2)/(float)10));
-			//n=(n+1) / l2h_crossing_value;
+		if (phase == 1) { //run a second set inverted to keep phase in check
+			for (i=0; i<size; i++){
+				biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+			}
 		}
-		if (n == 0) n = 1;
-
-		if(n < maxConsequtiveBits) //Consecutive 
-		{
-			if(invert==0){ //invert bits 
-				memset(dest+numBits, dest[idx-1] , n);
-			}else{
-				memset(dest+numBits, dest[idx-1]^1 , n);	
-			}			
-			numBits += n;
+	} else {  // ask/manchester || ask/raw
+		for (i=0; i<size; i++){
+			askSimBit(BitStream[i]^invert, &n, clk, encoding);
 		}
-		n=0;
-		lastval=dest[idx];
-	}//end for
-	return numBits;
+		if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+			for (i=0; i<size; i++){
+				askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
+			}
+		}
+	}
+	if (separator==1 && encoding == 1)
+		stAskSimBit(&n, clk);
+	else if (separator==1)
+		Dbprintf("sorry but separator option not yet available");
+
+	WDT_HIT();
+	
+	Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
+
+	if (ledcontrol)	LED_A_ON();
+	SimulateTagLowFrequency(n, 0, ledcontrol);
+	if (ledcontrol)	LED_A_OFF();
+}
+
+//carrier can be 2,4 or 8
+static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
+{
+	uint8_t *dest = BigBuf_get_addr();
+	uint8_t halfWave = waveLen/2;
+	//uint8_t idx;
+	int i = 0;
+	if (phaseChg){
+		// write phase change
+		memset(dest+(*n), *curPhase^1, halfWave);
+		memset(dest+(*n) + halfWave, *curPhase, halfWave);
+		*n += waveLen;
+		*curPhase ^= 1;
+		i += waveLen;
+	}
+	//write each normal clock wave for the clock duration
+	for (; i < clk; i+=waveLen){
+		memset(dest+(*n), *curPhase, halfWave);
+		memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
+		*n += waveLen;
+	}
+}
+
+// args clock, carrier, invert,
+void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);	
+	set_tracing(FALSE);
+	
+	int ledcontrol = 1, n = 0, i = 0;
+	uint8_t clk = arg1 >> 8;
+	uint8_t carrier = arg1 & 0xFF;
+	uint8_t invert = arg2 & 0xFF;
+	uint8_t curPhase = 0;
+	for (i=0; i<size; i++){
+		if (BitStream[i] == curPhase){
+			pskSimBit(carrier, &n, clk, &curPhase, FALSE);
+		} else {
+			pskSimBit(carrier, &n, clk, &curPhase, TRUE);
+		}
+	}
+	
+	WDT_HIT();
+	
+	Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
+		   
+	if (ledcontrol)	LED_A_ON();
+	SimulateTagLowFrequency(n, 0, ledcontrol);
+	if (ledcontrol)	LED_A_OFF();
 }
-*/
 
 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
 {
-	uint8_t *dest = (uint8_t *)BigBuf;
-
-	size_t size=0; //, found=0;
+	uint8_t *dest = BigBuf_get_addr();
+	size_t size = 0; 
 	uint32_t hi2=0, hi=0, lo=0;
-
+	int idx=0;
 	// Configure to go in 125Khz listen mode
 	LFSetupFPGAForADC(95, true);
 
-	while(!BUTTON_PRESS()) {
+	//clear read buffer
+	BigBuf_Clear_keep_EM();
+
+	while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
 
 		WDT_HIT();
 		if (ledcontrol) LED_A_ON();
 
-		DoAcquisition125k_internal(-1,true);
-		size  = sizeof(BigBuf);
-    if (size < 2000) continue; 
+		DoAcquisition_default(-1,true);
 		// FSK demodulator
-
-		int bitLen = HIDdemodFSK(dest,size,&hi2,&hi,&lo);
+		size = 50*128*2; //big enough to catch 2 sequences of largest format
+		idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
 		
-		WDT_HIT();
-
-		if (bitLen>0 && lo>0){
-		// final loop, go over previously decoded manchester data and decode into usable tag ID
-		// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-			if (hi2 != 0){ //extra large HID tags
+		if (idx>0 && lo>0 && (size==96 || size==192)){
+			// go over previously decoded manchester data and decode into usable tag ID
+			if (hi2 != 0){ //extra large HID tags  88/192 bits
 				Dbprintf("TAG ID: %x%08x%08x (%d)",
-					 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-			}else {  //standard HID tags <38 bits
-				//Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+				  (unsigned int) hi2,
+				  (unsigned int) hi,
+				  (unsigned int) lo,
+				  (unsigned int) (lo>>1) & 0xFFFF
+				  );
+			} else {  //standard HID tags 44/96 bits
 				uint8_t bitlen = 0;
 				uint32_t fc = 0;
 				uint32_t cardnum = 0;
-				if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
+				
+				if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
 					uint32_t lo2=0;
 					lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
 					uint8_t idx3 = 1;
-					while(lo2>1){ //find last bit set to 1 (format len bit)
-						lo2=lo2>>1;
+					while(lo2 > 1){ //find last bit set to 1 (format len bit)
+						lo2=lo2 >> 1;
 						idx3++;
 					}
-					bitlen =idx3+19;  
+					bitlen = idx3+19;
 					fc =0;
 					cardnum=0;
-					if(bitlen==26){
+					if(bitlen == 26){
 						cardnum = (lo>>1)&0xFFFF;
 						fc = (lo>>17)&0xFF;
 					}
-					if(bitlen==37){
+					if(bitlen == 37){
 						cardnum = (lo>>1)&0x7FFFF;
 						fc = ((hi&0xF)<<12)|(lo>>20);
 					}
-					if(bitlen==34){
+					if(bitlen == 34){
 						cardnum = (lo>>1)&0xFFFF;
 						fc= ((hi&1)<<15)|(lo>>17);
 					}
-					if(bitlen==35){
+					if(bitlen == 35){
 						cardnum = (lo>>1)&0xFFFFF;
 						fc = ((hi&1)<<11)|(lo>>21);
 					}
@@ -804,198 +840,218 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
 						fc = ((hi&0xF)<<12)|(lo>>20);
 					}
 				}
-						//Dbprintf("TAG ID: %x%08x (%d)",
-				// (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);				
 				Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
-					(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
-					(unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
+						 (unsigned int) hi,
+						 (unsigned int) lo,
+						 (unsigned int) (lo>>1) & 0xFFFF,
+						 (unsigned int) bitlen,
+						 (unsigned int) fc,
+						 (unsigned int) cardnum);
 			}
 			if (findone){
 				if (ledcontrol)	LED_A_OFF();
+				*high = hi;
+				*low = lo;
 				return;
 			}
 			// reset
-			hi2 = hi = lo = 0;
 		}
+		hi2 = hi = lo = idx = 0;
 		WDT_HIT();
-	}	
+	}
 	DbpString("Stopped");
 	if (ledcontrol) LED_A_OFF();
 }
 
-/*
 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
-void CmdHIDdemodFSK2(int findone, int *high, int *low, int ledcontrol)
+void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
 {
-	uint8_t *dest = (uint8_t *)BigBuf;
-
-	size_t size=0,idx=0; //, found=0;
-	uint32_t hi2=0, hi=0, lo=0;
-
+	uint8_t *dest = BigBuf_get_addr();
+	size_t size; 
+	int idx=0;
+	//clear read buffer
+	BigBuf_Clear_keep_EM();
 	// Configure to go in 125Khz listen mode
 	LFSetupFPGAForADC(95, true);
 
-	while(!BUTTON_PRESS()) {
+	while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
 
 		WDT_HIT();
 		if (ledcontrol) LED_A_ON();
 
-		DoAcquisition125k_internal(-1,true);
-		size  = sizeof(BigBuf);
-        if (size < 2000) continue; 
+		DoAcquisition_default(-1,true);
 		// FSK demodulator
-		size = fsk_demod(dest, size);
+		size = 50*128*2; //big enough to catch 2 sequences of largest format
+		idx = AWIDdemodFSK(dest, &size);
+		
+		if (idx<=0 || size!=96) continue;
+	        // Index map
+	        // 0            10            20            30              40            50              60
+	        // |            |             |             |               |             |               |
+	        // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
+	        // -----------------------------------------------------------------------------
+	        // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
+	        // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
+	        //          |---26 bit---|    |-----117----||-------------142-------------|
+	        // b = format bit len, o = odd parity of last 3 bits
+	        // f = facility code, c = card number
+	        // w = wiegand parity
+	        // (26 bit format shown)
+
+	        //get raw ID before removing parities
+	        uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
+	        uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
+	        uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
+
+	        size = removeParity(dest, idx+8, 4, 1, 88);
+		if (size != 66) continue;
+
+	        // Index map
+	        // 0           10         20        30          40        50        60
+	        // |           |          |         |           |         |         |
+	        // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
+	        // -----------------------------------------------------------------------------
+	        // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
+	        // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+	        // |26 bit|   |-117--| |-----142------|
+			//
+			// 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000 
+			// bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
+			// |50 bit|   |----4000------||-----------2248975-------------| 			
+			//
+	        // b = format bit len, o = odd parity of last 3 bits
+	        // f = facility code, c = card number
+	        // w = wiegand parity
+
+	        uint32_t fc = 0;
+	        uint32_t cardnum = 0;
+	        uint32_t code1 = 0;
+	        uint32_t code2 = 0;
+	        uint8_t fmtLen = bytebits_to_byte(dest,8);
+			switch(fmtLen) {
+				case 26: 
+					fc = bytebits_to_byte(dest + 9, 8);
+					cardnum = bytebits_to_byte(dest + 17, 16);
+					code1 = bytebits_to_byte(dest + 8,fmtLen);
+					Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
+					break;
+				case 50:
+					fc = bytebits_to_byte(dest + 9, 16);
+					cardnum = bytebits_to_byte(dest + 25, 32);
+					code1 = bytebits_to_byte(dest + 8, (fmtLen-32) );
+					code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32);
+					Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+					break;
+				default:
+					if (fmtLen > 32 ) {
+						cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+						code1 = bytebits_to_byte(dest+8,fmtLen-32);
+						code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
+						Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+					} else {
+						cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+						code1 = bytebits_to_byte(dest+8,fmtLen);
+						Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
+					}
+					break;		
+			}
+			if (findone){
+				if (ledcontrol)	LED_A_OFF();
+				return;
+			}
+		idx = 0;
+		WDT_HIT();
+	}
+	DbpString("Stopped");
+	if (ledcontrol) LED_A_OFF();
+}
+
+void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
+{
+	uint8_t *dest = BigBuf_get_addr();
 
-		// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-		// 1->0 : fc/8 in sets of 6  (RF/50 / 8 = 6.25)
-		// 0->1 : fc/10 in sets of 5 (RF/50 / 10= 5)
-		// do not invert
-		size = aggregate_bits(dest,size, 50,5,0);  //6,5,5,0 
+	size_t size=0, idx=0;
+	int clk=0, invert=0, errCnt=0, maxErr=20;
+	uint32_t hi=0;
+	uint64_t lo=0;
+	//clear read buffer
+	BigBuf_Clear_keep_EM();
+	// Configure to go in 125Khz listen mode
+	LFSetupFPGAForADC(95, true);
+
+	while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
 
 		WDT_HIT();
+		if (ledcontrol) LED_A_ON();
 
-		// final loop, go over previously decoded manchester data and decode into usable tag ID
-		// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-		uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
-		int numshifts = 0;
-		idx = 0;
-		//one scan
-		uint8_t sameCardCount =0;
-		while( idx + sizeof(frame_marker_mask) < size) {
-			// search for a start of frame marker
-			if (sameCardCount>2) break;  //only up to 2 valid sets of data for the same read of looping card data
-			if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-			{ // frame marker found
-				idx+=sizeof(frame_marker_mask);
-				while(dest[idx] != dest[idx+1] && idx < size-2)
-				{	
-					// Keep going until next frame marker (or error)
-					// Shift in a bit. Start by shifting high registers
-					hi2 = (hi2<<1)|(hi>>31);
-					hi = (hi<<1)|(lo>>31);
-					//Then, shift in a 0 or one into low
-					if (dest[idx] && !dest[idx+1])	// 1 0
-						lo=(lo<<1)|0;
-					else // 0 1
-						lo=(lo<<1)|
-								1;
-					numshifts++;
-					idx += 2;
-				}
-				//Dbprintf("Num shifts: %d ", numshifts);
-				// Hopefully, we read a tag and	 hit upon the next frame marker
-				if(idx + sizeof(frame_marker_mask) < size)
-				{
-					if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-					{
-						if (hi2 != 0){ //extra large HID tags
-							Dbprintf("TAG ID: %x%08x%08x (%d)",
-								 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-						}
-						else {  //standard HID tags <38 bits
-							//Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
-							uint8_t bitlen = 0;
-							uint32_t fc = 0;
-							uint32_t cardnum = 0;
-							if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
-								uint32_t lo2=0;
-								lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
-								uint8_t idx3 = 1;
-								while(lo2>1){ //find last bit set to 1 (format len bit)
-									lo2=lo2>>1;
-									idx3++;
-								}
-								bitlen =idx3+19;  
-								fc =0;
-								cardnum=0;
-								if(bitlen==26){
-									cardnum = (lo>>1)&0xFFFF;
-									fc = (lo>>17)&0xFF;
-								}
-								if(bitlen==37){
-									cardnum = (lo>>1)&0x7FFFF;
-									fc = ((hi&0xF)<<12)|(lo>>20);
-								}
-								if(bitlen==34){
-									cardnum = (lo>>1)&0xFFFF;
-									fc= ((hi&1)<<15)|(lo>>17);
-								}
-								if(bitlen==35){
-									cardnum = (lo>>1)&0xFFFFF;
-									fc = ((hi&1)<<11)|(lo>>21);
-								}
-							}
-							else { //if bit 38 is not set then 37 bit format is used
-								bitlen= 37;
-								fc =0;
-								cardnum=0;
-								if(bitlen==37){
-									cardnum = (lo>>1)&0x7FFFF;
-									fc = ((hi&0xF)<<12)|(lo>>20);
-								}
-							}
-									//Dbprintf("TAG ID: %x%08x (%d)",
-							// (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);				
-							Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
-								(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
-								(unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
-						}
-						sameCardCount++;
-						if (findone){
-							if (ledcontrol)	LED_A_OFF();
-							return;
-						}
-					}
+		DoAcquisition_default(-1,true);
+		size  = BigBuf_max_traceLen();
+		//askdemod and manchester decode
+		if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
+		errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
+		WDT_HIT();
+
+		if (errCnt<0) continue;
+	
+			errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
+			if (errCnt){
+				if (size>64){
+					Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
+					  hi,
+					  (uint32_t)(lo>>32),
+					  (uint32_t)lo,
+					  (uint32_t)(lo&0xFFFF),
+					  (uint32_t)((lo>>16LL) & 0xFF),
+					  (uint32_t)(lo & 0xFFFFFF));
+				} else {
+					Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
+					  (uint32_t)(lo>>32),
+					  (uint32_t)lo,
+					  (uint32_t)(lo&0xFFFF),
+					  (uint32_t)((lo>>16LL) & 0xFF),
+					  (uint32_t)(lo & 0xFFFFFF));
 				}
-				// reset
-				hi2 = hi = lo = 0;
-				numshifts = 0;
-			}else
-			{
-				idx++;
+
+			if (findone){
+				if (ledcontrol) LED_A_OFF();
+				*high=lo>>32;
+				*low=lo & 0xFFFFFFFF;
+				return;
 			}
 		}
 		WDT_HIT();
-
+		hi = lo = size = idx = 0;
+		clk = invert = errCnt = 0;
 	}
 	DbpString("Stopped");
 	if (ledcontrol) LED_A_OFF();
 }
-*/
-
-/*
-uint32_t bytebits_to_byte(uint8_t* src, int numbits)
-{
-	uint32_t num = 0;
-	for(int i = 0 ; i < numbits ; i++)
-	{
-		num = (num << 1) | (*src);
-		src++;
-	}
-	return num;
-}
-*/
 
 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
 {
-	uint8_t *dest = (uint8_t *)BigBuf;
-	size_t size=0;
+	uint8_t *dest = BigBuf_get_addr();
 	int idx=0;
 	uint32_t code=0, code2=0;
-
+	uint8_t version=0;
+	uint8_t facilitycode=0;
+	uint16_t number=0;
+	uint8_t crc = 0;
+	uint16_t calccrc = 0;
+
+	//clear read buffer
+	BigBuf_Clear_keep_EM();
+	
 	// Configure to go in 125Khz listen mode
 	LFSetupFPGAForADC(95, true);
-	
-	while(!BUTTON_PRESS()) {
+
+	while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
 		WDT_HIT();
 		if (ledcontrol) LED_A_ON();
-		DoAcquisition125k_internal(-1,true);
-		size  = sizeof(BigBuf);
-		//make sure buffer has data
-		if (size < 2000) continue;
+		DoAcquisition_default(-1,true);
 		//fskdemod and get start index
-		idx = IOdemodFSK(dest,size);
-		if (idx>0){
+		WDT_HIT();
+		idx = IOdemodFSK(dest, BigBuf_max_traceLen());
+		if (idx<0) continue;
 			//valid tag found
 
 			//Index map
@@ -1003,512 +1059,385 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
 			//|           |           |           |           |           |           |
 			//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
 			//-----------------------------------------------------------------------------
-			//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+            //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
 			//
+			//Checksum:  
+			//00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
+			//preamble      F0         E0         01         03         B6         75
+			// How to calc checksum,
+			// http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
+			//   F0 + E0 + 01 + 03 + B6 = 28A
+			//   28A & FF = 8A
+			//   FF - 8A = 75
+			// Checksum: 0x75
 			//XSF(version)facility:codeone+codetwo
 			//Handle the data
-      if(findone){ //only print binary if we are doing one
- 	    	Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
-		    Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);			  
-		    Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
-		    Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
-		    Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
-		    Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
-		    Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+			if(findone){ //only print binary if we are doing one
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
 			}
 			code = bytebits_to_byte(dest+idx,32);
-	    code2 = bytebits_to_byte(dest+idx+32,32); 
-	    short version = bytebits_to_byte(dest+idx+27,8); //14,4
-	    uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
-	    uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
-	    
-	    Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);			
-			// if we're only looking for one tag 
+			code2 = bytebits_to_byte(dest+idx+32,32);
+			version = bytebits_to_byte(dest+idx+27,8); //14,4
+			facilitycode = bytebits_to_byte(dest+idx+18,8);
+			number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+			crc = bytebits_to_byte(dest+idx+54,8);
+			for (uint8_t i=1; i<6; ++i)
+				calccrc += bytebits_to_byte(dest+idx+9*i,8);
+			calccrc &= 0xff;
+			calccrc = 0xff - calccrc;
+			
+			char *crcStr = (crc == calccrc) ? "ok":"!crc";
+
+            Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x)  [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
+			// if we're only looking for one tag
 			if (findone){
 				if (ledcontrol)	LED_A_OFF();
-				//LED_A_OFF();
+				*high=code;
+				*low=code2;
 				return;
 			}
-		}	
-		WDT_HIT();
-	}
-	DbpString("Stopped");
-	if (ledcontrol) LED_A_OFF();
-}
-/*
-void CmdIOdemodFSK2(int findone, int *high, int *low, int ledcontrol)
-{
-	uint8_t *dest = (uint8_t *)BigBuf;
-	size_t size=0, idx=0;
-	uint32_t code=0, code2=0;
+			code=code2=0;
+			version=facilitycode=0;
+			number=0;
+			idx=0;
 
-	// Configure to go in 125Khz listen mode
-	LFSetupFPGAForADC(95, true);
-	
-	while(!BUTTON_PRESS()) {
-		WDT_HIT();
-		if (ledcontrol) LED_A_ON();
-		DoAcquisition125k_internal(-1,true);
-		size  = sizeof(BigBuf);
-		//make sure buffer has data
-		if (size < 64) return;
-		//test samples are not just noise
-		uint8_t testMax=0;
-		for(idx=0;idx<64;idx++){
-			if (testMax<dest[idx]) testMax=dest[idx];
-		}
-		idx=0;
-		//if not just noise
-		if (testMax>170){
-			//Dbprintf("testMax: %d",testMax);		
-			// FSK demodulator
-			size = fsk_demod(dest, size);
-			// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-			// 1->0 : fc/8 in sets of 7  (RF/64 / 8 = 8)
-			// 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4)
-			size = aggregate_bits(dest, size, 64, 13, 1);  //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
-			WDT_HIT();
-			//Index map
-			//0           10          20          30          40          50          60
-			//|           |           |           |           |           |           |
-			//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
-			//-----------------------------------------------------------------------------
-			//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
-			//
-			//XSF(version)facility:codeone+codetwo
-			//Handle the data
-			uint8_t sameCardCount=0;
-	 	    uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
-			for( idx=0; idx < (size - 74); idx++) {
-				if (sameCardCount>2) break;
-	 	    	if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
-	 	    		//frame marker found
-	 	    		if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
-	 	    			//confirmed proper separator bits found
-		                if(findone){ //only print binary if we are doing one
-				 	    	Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
-						    Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);			  
-						    Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
-						    Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
-						    Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
-						    Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
-						    Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
-						}
-						code = bytebits_to_byte(dest+idx,32);
-					    code2 = bytebits_to_byte(dest+idx+32,32); 
-					    short version = bytebits_to_byte(dest+idx+27,8); //14,4
-					    uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ;
-					    uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
-					    
-					    Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2);			
-						// if we're only looking for one tag 
-						if (findone){
-							if (ledcontrol)	LED_A_OFF();
-							//LED_A_OFF();
-							return;
-						}
-						sameCardCount++;
-					}
-				}		
-			}
-		}	
 		WDT_HIT();
 	}
 	DbpString("Stopped");
 	if (ledcontrol) LED_A_OFF();
 }
-*/
 
 /*------------------------------
- * T5555/T5557/T5567 routines
+ * T5555/T5557/T5567/T5577 routines
  *------------------------------
- */
-
-/* T55x7 configuration register definitions */
-#define T55x7_POR_DELAY			0x00000001
-#define T55x7_ST_TERMINATOR		0x00000008
-#define T55x7_PWD			0x00000010
-#define T55x7_MAXBLOCK_SHIFT		5
-#define T55x7_AOR			0x00000200
-#define T55x7_PSKCF_RF_2		0
-#define T55x7_PSKCF_RF_4		0x00000400
-#define T55x7_PSKCF_RF_8		0x00000800
-#define T55x7_MODULATION_DIRECT		0
-#define T55x7_MODULATION_PSK1		0x00001000
-#define T55x7_MODULATION_PSK2		0x00002000
-#define T55x7_MODULATION_PSK3		0x00003000
-#define T55x7_MODULATION_FSK1		0x00004000
-#define T55x7_MODULATION_FSK2		0x00005000
-#define T55x7_MODULATION_FSK1a		0x00006000
-#define T55x7_MODULATION_FSK2a		0x00007000
-#define T55x7_MODULATION_MANCHESTER	0x00008000
-#define T55x7_MODULATION_BIPHASE	0x00010000
-#define T55x7_BITRATE_RF_8		0
-#define T55x7_BITRATE_RF_16		0x00040000
-#define T55x7_BITRATE_RF_32		0x00080000
-#define T55x7_BITRATE_RF_40		0x000C0000
-#define T55x7_BITRATE_RF_50		0x00100000
-#define T55x7_BITRATE_RF_64		0x00140000
-#define T55x7_BITRATE_RF_100		0x00180000
-#define T55x7_BITRATE_RF_128		0x001C0000
-
-/* T5555 (Q5) configuration register definitions */
-#define T5555_ST_TERMINATOR		0x00000001
-#define T5555_MAXBLOCK_SHIFT		0x00000001
-#define T5555_MODULATION_MANCHESTER	0
-#define T5555_MODULATION_PSK1		0x00000010
-#define T5555_MODULATION_PSK2		0x00000020
-#define T5555_MODULATION_PSK3		0x00000030
-#define T5555_MODULATION_FSK1		0x00000040
-#define T5555_MODULATION_FSK2		0x00000050
-#define T5555_MODULATION_BIPHASE	0x00000060
-#define T5555_MODULATION_DIRECT		0x00000070
-#define T5555_INVERT_OUTPUT		0x00000080
-#define T5555_PSK_RF_2			0
-#define T5555_PSK_RF_4			0x00000100
-#define T5555_PSK_RF_8			0x00000200
-#define T5555_USE_PWD			0x00000400
-#define T5555_USE_AOR			0x00000800
-#define T5555_BITRATE_SHIFT		12
-#define T5555_FAST_WRITE		0x00004000
-#define T5555_PAGE_SELECT		0x00008000
-
-/*
- * Relevant times in microsecond
+ * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h 
+ *
+ * Relevant communication times in microsecond
  * To compensate antenna falling times shorten the write times
  * and enlarge the gap ones.
+ * Q5 tags seems to have issues when these values changes. 
  */
-#define START_GAP 250
-#define WRITE_GAP 160
-#define WRITE_0   144 // 192
-#define WRITE_1   400 // 432 for T55x7; 448 for E5550
 
-// Write one bit to card
-void T55xxWriteBit(int bit)
-{
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+#define START_GAP 50*8 // was 250 // SPEC:  1*8 to 50*8 - typ 15*8 (15fc)
+#define WRITE_GAP 20*8 // was 160 // SPEC:  1*8 to 20*8 - typ 10*8 (10fc)
+#define WRITE_0   18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
+#define WRITE_1   54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc)  432 for T55x7; 448 for E5550
+#define READ_GAP  15*8 
+
+//  VALUES TAKEN FROM EM4x function: SendForward
+//  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle)
+//  WRITE_GAP = 128;       (16*8)
+//  WRITE_1   = 256 32*8;  (32*8) 
+
+//  These timings work for 4469/4269/4305 (with the 55*8 above)
+//  WRITE_0 = 23*8 , 9*8 
+
+// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
+// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
+// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
+// T0 = TIMER_CLOCK1 / 125000 = 192
+// 1 Cycle = 8 microseconds(us)  == 1 field clock
+
+// new timer:
+//     = 1us = 1.5ticks
+// 1fc = 8us = 12ticks
+void TurnReadLFOn(uint32_t delay) {
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-	if (bit == 0)
-		SpinDelayUs(WRITE_0);
+
+	// measure antenna strength.
+	//int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
+
+	// Give it a bit of time for the resonant antenna to settle.
+	WaitUS(delay);
+}
+
+// Write one bit to card
+void T55xxWriteBit(int bit) {
+	if (!bit)
+		TurnReadLFOn(WRITE_0);
 	else
-		SpinDelayUs(WRITE_1);
+		TurnReadLFOn(WRITE_1);
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-	SpinDelayUs(WRITE_GAP);
+	WaitUS(WRITE_GAP);
 }
 
-// Write one card block in page 0, no lock
-void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
-{
-	//unsigned int i;  //enio adjustment 12/10/14
-	uint32_t i;
+// Send T5577 reset command then read stream (see if we can identify the start of the stream)
+void T55xxResetRead(void) {
+	LED_A_ON();
+	//clear buffer now so it does not interfere with timing later
+	BigBuf_Clear_keep_EM();
 
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+	// Set up FPGA, 125kHz
+	LFSetupFPGAForADC(95, true);
 
-	// Give it a bit of time for the resonant antenna to settle.
-	// And for the tag to fully power up
-	SpinDelay(150);
+	// Trigger T55x7 in mode.
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	WaitUS(START_GAP);
+
+	// reset tag - op code 00
+	T55xxWriteBit(0);
+	T55xxWriteBit(0);
+
+	// Turn field on to read the response
+	TurnReadLFOn(READ_GAP);
+
+	// Acquisition
+	doT55x7Acquisition(BigBuf_max_traceLen());
+
+	// Turn the field off
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	cmd_send(CMD_ACK,0,0,0,0,0);    
+	LED_A_OFF();
+}
+
+// Write one card block in page 0, no lock
+void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
+	LED_A_ON();
+	bool PwdMode = arg & 0x1;
+	uint8_t Page = (arg & 0x2)>>1;
+	uint32_t i = 0;
 
-	// Now start writting
+	// Set up FPGA, 125kHz
+	LFSetupFPGAForADC(95, true);
+	
+	// Trigger T55x7 in mode.
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-	SpinDelayUs(START_GAP);
+	WaitUS(START_GAP);
 
-	// Opcode
+	// Opcode 10
 	T55xxWriteBit(1);
-	T55xxWriteBit(0); //Page 0
-  if (PwdMode == 1){
-    // Pwd
-    for (i = 0x80000000; i != 0; i >>= 1)
-      T55xxWriteBit(Pwd & i);
-  }
-	// Lock bit
+	T55xxWriteBit(Page); //Page 0
+	if (PwdMode){
+		// Send Pwd
+		for (i = 0x80000000; i != 0; i >>= 1)
+			T55xxWriteBit(Pwd & i);
+	}
+	// Send Lock bit
 	T55xxWriteBit(0);
 
-	// Data
+	// Send Data
 	for (i = 0x80000000; i != 0; i >>= 1)
 		T55xxWriteBit(Data & i);
 
-	// Block
+	// Send Block number
 	for (i = 0x04; i != 0; i >>= 1)
 		T55xxWriteBit(Block & i);
 
-	// Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
+	// Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
 	// so wait a little more)
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-	SpinDelay(20);
+	TurnReadLFOn(20 * 1000);
+	
+	//could attempt to do a read to confirm write took
+	// as the tag should repeat back the new block 
+	// until it is reset, but to confirm it we would 
+	// need to know the current block 0 config mode
+	
+	// turn field off
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	LED_A_OFF();
 }
 
-// Read one card block in page 0
-void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
-{
-	uint8_t *dest = (uint8_t *)BigBuf;
-	//int m=0, i=0; //enio adjustment 12/10/14
-  	uint32_t m=0, i=0;
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	m = sizeof(BigBuf);
-  // Clear destination buffer before sending the command
-	memset(dest, 128, m);
-	// Connect the A/D to the peak-detected low-frequency path.
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
-  
-	LED_D_ON();
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
-	// Give it a bit of time for the resonant antenna to settle.
-	// And for the tag to fully power up
-	SpinDelay(150);
-  
-	// Now start writting
+// Write one card block in page 0, no lock
+void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
+	T55xxWriteBlockExt(Data, Block, Pwd, arg);
+	cmd_send(CMD_ACK,0,0,0,0,0);
+}
+
+// Read one card block in page [page]
+void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
+	LED_A_ON();
+	bool PwdMode = arg0 & 0x1;
+	uint8_t Page = (arg0 & 0x2) >> 1;
+	uint32_t i = 0;
+	bool RegReadMode = (Block == 0xFF);
+	
+	//clear buffer now so it does not interfere with timing later
+	BigBuf_Clear_keep_EM();
+
+	//make sure block is at max 7
+	Block &= 0x7;
+
+	// Set up FPGA, 125kHz to power up the tag
+	LFSetupFPGAForADC(95, true);
+	SpinDelay(3);
+	
+	// Trigger T55x7 Direct Access Mode with start gap
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-	SpinDelayUs(START_GAP);
-  
-	// Opcode
+	WaitUS(START_GAP);
+	
+	// Opcode 1[page]
 	T55xxWriteBit(1);
-	T55xxWriteBit(0); //Page 0
-	if (PwdMode == 1){
-		// Pwd
+	T55xxWriteBit(Page); //Page 0
+
+	if (PwdMode){
+		// Send Pwd
 		for (i = 0x80000000; i != 0; i >>= 1)
 			T55xxWriteBit(Pwd & i);
 	}
-	// Lock bit
+	// Send a zero bit separation
 	T55xxWriteBit(0);
-	// Block
-	for (i = 0x04; i != 0; i >>= 1)
-		T55xxWriteBit(Block & i);
-  
-  // Turn field on to read the response
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
-	// Now do the acquisition
-	i = 0;
-	for(;;) {
-		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-			AT91C_BASE_SSC->SSC_THR = 0x43;
-		}
-		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-			// we don't care about actual value, only if it's more or less than a
-			// threshold essentially we capture zero crossings for later analysis
-      //			if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
-			i++;
-			if (i >= m) break;
-		}
-	}
-  
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-	LED_D_OFF();
-	DbpString("DONE!");
+	
+	// Send Block number (if direct access mode)
+	if (!RegReadMode)
+		for (i = 0x04; i != 0; i >>= 1)
+			T55xxWriteBit(Block & i);
+
+	// Turn field on to read the response
+	TurnReadLFOn(READ_GAP);
+	
+	// Acquisition
+	doT55x7Acquisition(12000);
+	
+	// Turn the field off
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	cmd_send(CMD_ACK,0,0,0,0,0);    
+	LED_A_OFF();
 }
 
-// Read card traceability data (page 1)
-void T55xxReadTrace(void){
-	uint8_t *dest = (uint8_t *)BigBuf;
-	int m=0, i=0;
-  
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	m = sizeof(BigBuf);
-  // Clear destination buffer before sending the command
-	memset(dest, 128, m);
-	// Connect the A/D to the peak-detected low-frequency path.
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
-  
-	LED_D_ON();
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
-	// Give it a bit of time for the resonant antenna to settle.
-	// And for the tag to fully power up
-	SpinDelay(150);
-  
-	// Now start writting
+void T55xxWakeUp(uint32_t Pwd){
+	LED_B_ON();
+	uint32_t i = 0;
+	
+	// Set up FPGA, 125kHz
+	LFSetupFPGAForADC(95, true);
+	
+	// Trigger T55x7 Direct Access Mode
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-	SpinDelayUs(START_GAP);
-  
-	// Opcode
+	WaitUS(START_GAP);
+	
+	// Opcode 10
 	T55xxWriteBit(1);
-	T55xxWriteBit(1); //Page 1
-  
-  // Turn field on to read the response
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
-	// Now do the acquisition
-	i = 0;
-	for(;;) {
-		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-			AT91C_BASE_SSC->SSC_THR = 0x43;
+	T55xxWriteBit(0); //Page 0
+
+	// Send Pwd
+	for (i = 0x80000000; i != 0; i >>= 1)
+		T55xxWriteBit(Pwd & i);
+
+	// Turn and leave field on to let the begin repeating transmission
+	TurnReadLFOn(20*1000);
+}
+
+/*-------------- Cloning routines -----------*/
+void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
+	// write last block first and config block last (if included)
+	for (uint8_t i = numblocks+startblock; i > startblock; i--)
+		T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
+}
+
+// Copy HID id to card and setup block 0 config
+void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
+	uint32_t data[] = {0,0,0,0,0,0,0};
+	uint8_t last_block = 0;
+
+	if (longFMT){
+		// Ensure no more than 84 bits supplied
+		if (hi2 > 0xFFFFF) {
+			DbpString("Tags can only have 84 bits.");
+			return;
 		}
-		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-			i++;
-			if (i >= m) break;
+		// Build the 6 data blocks for supplied 84bit ID
+		last_block = 6;
+		// load preamble (1D) & long format identifier (9E manchester encoded)
+		data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
+		// load raw id from hi2, hi, lo to data blocks (manchester encoded)
+		data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
+		data[3] = manchesterEncode2Bytes(hi >> 16);
+		data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
+		data[5] = manchesterEncode2Bytes(lo >> 16);
+		data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
+	}	else {
+		// Ensure no more than 44 bits supplied
+		if (hi > 0xFFF) {
+			DbpString("Tags can only have 44 bits.");
+			return;
 		}
+		// Build the 3 data blocks for supplied 44bit ID
+		last_block = 3;
+		// load preamble
+		data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
+		data[2] = manchesterEncode2Bytes(lo >> 16);
+		data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
 	}
-  
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	// load chip config block
+	data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
+
+	//TODO add selection of chip for Q5 or T55x7
+	// data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
+
+	LED_D_ON();
+	// Program the data blocks for supplied ID
+	// and the block 0 for HID format
+	WriteT55xx(data, 0, last_block+1);
+
 	LED_D_OFF();
+
 	DbpString("DONE!");
 }
 
-/*-------------- Cloning routines -----------*/
-// Copy HID id to card and setup block 0 config
-void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
-	int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
-	int last_block = 0;
-  
-  if (longFMT){
-	  // Ensure no more than 84 bits supplied
-	  if (hi2>0xFFFFF) {
-		  DbpString("Tags can only have 84 bits.");
-		  return;
-	  }
-    // Build the 6 data blocks for supplied 84bit ID
-    last_block = 6;
-    data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
-	  for (int i=0;i<4;i++) {
-		  if (hi2 & (1<<(19-i)))
-			  data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
-		  else
-			  data1 |= (1<<((3-i)*2)); // 0 -> 01
-	  }
-    
-  	data2 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (hi2 & (1<<(15-i)))
-  			data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data2 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-    
-  	data3 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (hi & (1<<(31-i)))
-  			data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data3 |= (1<<((15-i)*2)); // 0 -> 01
-  	}
-    
-  	data4 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (hi & (1<<(15-i)))
-  			data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data4 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-    
-  	data5 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (lo & (1<<(31-i)))
-  			data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data5 |= (1<<((15-i)*2)); // 0 -> 01
-  	}
-    
-  	data6 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (lo & (1<<(15-i)))
-  			data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data6 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-  }
-  else {
-	  // Ensure no more than 44 bits supplied
-	  if (hi>0xFFF) {
-		  DbpString("Tags can only have 44 bits.");
-		  return;
-	  }
-    
-  	// Build the 3 data blocks for supplied 44bit ID
-  	last_block = 3;
-  	
-  	data1 = 0x1D000000; // load preamble
-    
-    for (int i=0;i<12;i++) {
-      if (hi & (1<<(11-i)))
-        data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
-      else
-        data1 |= (1<<((11-i)*2)); // 0 -> 01
-    }
-    
-  	data2 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (lo & (1<<(31-i)))
-  			data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data2 |= (1<<((15-i)*2)); // 0 -> 01
-  	}
-    
-  	data3 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (lo & (1<<(15-i)))
-  			data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data3 |= (1<<((15-i)*2)); // 0 -> 01
-  	}
-  }
-  
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
+	uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+	//TODO add selection of chip for Q5 or T55x7
+	//t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+	// data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
+
 	LED_D_ON();
 	// Program the data blocks for supplied ID
-	// and the block 0 for HID format
-	T55xxWriteBlock(data1,1,0,0);
-	T55xxWriteBlock(data2,2,0,0);
-	T55xxWriteBlock(data3,3,0,0);
-	
-	if (longFMT) { // if long format there are 6 blocks
-	  T55xxWriteBlock(data4,4,0,0);
-	  T55xxWriteBlock(data5,5,0,0);
-	  T55xxWriteBlock(data6,6,0,0);
-  }
-  
-	// Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
-	T55xxWriteBlock(T55x7_BITRATE_RF_50    |
-                  T55x7_MODULATION_FSK2a |
-                  last_block << T55x7_MAXBLOCK_SHIFT,
-                  0,0,0);
-  
+	// and the block 0 config
+	WriteT55xx(data, 0, 3);
 	LED_D_OFF();
-	
 	DbpString("DONE!");
 }
 
-void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
-{
-   int data1=0, data2=0; //up to six blocks for long format
-  	
-    data1 = hi;  // load preamble
-    data2 = lo;
-    
-    LED_D_ON();
-    // Program the data blocks for supplied ID
-    // and the block 0 for HID format
-    T55xxWriteBlock(data1,1,0,0);
-    T55xxWriteBlock(data2,2,0,0);
-	
-    //Config Block
-    T55xxWriteBlock(0x00147040,0,0,0);
-    LED_D_OFF();
-	
-    DbpString("DONE!");
+// Clone Indala 64-bit tag by UID to T55x7
+void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
+	//Program the 2 data blocks for supplied 64bit UID
+	// and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
+	uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+	//TODO add selection of chip for Q5 or T55x7
+	// data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
+
+	WriteT55xx(data, 0, 3);
+	//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
+	//	T5567WriteBlock(0x603E1042,0);
+	DbpString("DONE!");
+}
+// Clone Indala 224-bit tag by UID to T55x7
+void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
+	//Program the 7 data blocks for supplied 224bit UID
+	uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
+	// and the block 0 for Indala224 format	
+	//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
+	data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
+	//TODO add selection of chip for Q5 or T55x7
+	// data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
+	WriteT55xx(data, 0, 8);
+	//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
+	//	T5567WriteBlock(0x603E10E2,0);
+	DbpString("DONE!");
+}
+// clone viking tag to T55xx
+void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
+	uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
+	//t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+	if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
+	// Program the data blocks for supplied ID and the block 0 config
+	WriteT55xx(data, 0, 3);
+	LED_D_OFF();
+	cmd_send(CMD_ACK,0,0,0,0,0);
 }
 
 // Define 9bit header for EM410x tags
 #define EM410X_HEADER		0x1FF
 #define EM410X_ID_LENGTH	40
 
-void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
-{
+void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
 	int i, id_bit;
 	uint64_t id = EM410X_HEADER;
 	uint64_t rev_id = 0;	// reversed ID
@@ -1568,367 +1497,40 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
 	LED_D_ON();
 
 	// Write EM410x ID
-	T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
-	T55xxWriteBlock((uint32_t)id, 2, 0, 0);
-
-	// Config for EM410x (RF/64, Manchester, Maxblock=2)
-	if (card) {
-		// Clock rate is stored in bits 8-15 of the card value
-		clock = (card & 0xFF00) >> 8;
-		Dbprintf("Clock rate: %d", clock);
-		switch (clock)
-		{
-			case 32:
-				clock = T55x7_BITRATE_RF_32;
-				break;
-			case 16:
-				clock = T55x7_BITRATE_RF_16;
-				break;
-			case 0:
-				// A value of 0 is assumed to be 64 for backwards-compatibility
-				// Fall through...
-			case 64:
-				clock = T55x7_BITRATE_RF_64;
-				break;      
-			default:
-				Dbprintf("Invalid clock rate: %d", clock);
-				return;
+	uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
+
+	clock = (card & 0xFF00) >> 8;
+	clock = (clock == 0) ? 64 : clock;
+	Dbprintf("Clock rate: %d", clock);
+	if (card & 0xFF) { //t55x7
+		clock = GetT55xxClockBit(clock);
+		if (clock == 0) {
+			Dbprintf("Invalid clock rate: %d", clock);
+			return;
 		}
-
-		// Writing configuration for T55x7 tag
-		T55xxWriteBlock(clock	    |
-				T55x7_MODULATION_MANCHESTER |
-				2 << T55x7_MAXBLOCK_SHIFT,
-				0, 0, 0);
-  }
-	else
-		// Writing configuration for T5555(Q5) tag
-		T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
-				T5555_MODULATION_MANCHESTER   |
-				2 << T5555_MAXBLOCK_SHIFT,
-				0, 0, 0);
-
-	LED_D_OFF();
-	Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
-					(uint32_t)(id >> 32), (uint32_t)id);
-}
-
-// Clone Indala 64-bit tag by UID to T55x7
-void CopyIndala64toT55x7(int hi, int lo)
-{
-
-	//Program the 2 data blocks for supplied 64bit UID
-	// and the block 0 for Indala64 format
-	T55xxWriteBlock(hi,1,0,0);
-	T55xxWriteBlock(lo,2,0,0);
-	//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
-	T55xxWriteBlock(T55x7_BITRATE_RF_32    |
-			T55x7_MODULATION_PSK1 |
-			2 << T55x7_MAXBLOCK_SHIFT,
-			0, 0, 0);
-	//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
-//	T5567WriteBlock(0x603E1042,0);
-
-	DbpString("DONE!");
-
-}	
-
-void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
-{
-
-	//Program the 7 data blocks for supplied 224bit UID
-	// and the block 0 for Indala224 format
-	T55xxWriteBlock(uid1,1,0,0);
-	T55xxWriteBlock(uid2,2,0,0);
-	T55xxWriteBlock(uid3,3,0,0);
-	T55xxWriteBlock(uid4,4,0,0);
-	T55xxWriteBlock(uid5,5,0,0);
-	T55xxWriteBlock(uid6,6,0,0);
-	T55xxWriteBlock(uid7,7,0,0);
-	//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
-	T55xxWriteBlock(T55x7_BITRATE_RF_32    |
-			T55x7_MODULATION_PSK1 |
-			7 << T55x7_MAXBLOCK_SHIFT,
-			0,0,0);
-	//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
-//	T5567WriteBlock(0x603E10E2,0);
-
-	DbpString("DONE!");
-
-}
-
-
-#define abs(x) ( ((x)<0) ? -(x) : (x) )
-#define max(x,y) ( x<y ? y:x)
-
-int DemodPCF7931(uint8_t **outBlocks) {
-	uint8_t BitStream[256];
-	uint8_t Blocks[8][16];
-	uint8_t *GraphBuffer = (uint8_t *)BigBuf;
-	int GraphTraceLen = sizeof(BigBuf);
-	int i, j, lastval, bitidx, half_switch;
-	int clock = 64;
-	int tolerance = clock / 8;
-	int pmc, block_done;
-	int lc, warnings = 0;
-	int num_blocks = 0;
-	int lmin=128, lmax=128;
-	uint8_t dir;
-	
-	AcquireRawAdcSamples125k(0);
-	
-	lmin = 64;
-	lmax = 192;
-	
-	i = 2;
-	
-	/* Find first local max/min */
-	if(GraphBuffer[1] > GraphBuffer[0]) {
-    while(i < GraphTraceLen) {
-      if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
-        break;
-      i++;
-    }
-    dir = 0;
-	}
-	else {
-    while(i < GraphTraceLen) {
-      if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
-        break;
-      i++;
-    }
-    dir = 1;
+		data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
+	} else { //t5555 (Q5)
+		clock = (clock-2)>>1;  //n = (RF-2)/2
+		data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
 	}
-	
-	lastval = i++;
-	half_switch = 0;
-	pmc = 0;
-	block_done = 0;
-	
-	for (bitidx = 0; i < GraphTraceLen; i++)
-	{
-	    if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
-	    {
-	      lc = i - lastval;
-	      lastval = i;
-	      
-	      // Switch depending on lc length:
-	      // Tolerance is 1/8 of clock rate (arbitrary)
-	      if (abs(lc-clock/4) < tolerance) {
-	        // 16T0
-	        if((i - pmc) == lc) { /* 16T0 was previous one */
-	          /* It's a PMC ! */
-	          i += (128+127+16+32+33+16)-1;
-	          lastval = i;
-	          pmc = 0;
-	          block_done = 1;
-	        }
-	        else {
-	          pmc = i;
-	        }
-	      } else if (abs(lc-clock/2) < tolerance) {
-	        // 32TO
-	        if((i - pmc) == lc) { /* 16T0 was previous one */
-	          /* It's a PMC ! */
-	          i += (128+127+16+32+33)-1;
-	          lastval = i;
-	          pmc = 0;
-	          block_done = 1;
-	        }
-	        else if(half_switch == 1) {
-	          BitStream[bitidx++] = 0;
-	          half_switch = 0;
-	        }
-	        else
-	          half_switch++;
-	      } else if (abs(lc-clock) < tolerance) {
-	        // 64TO
-	        BitStream[bitidx++] = 1;
-	      } else {
-	        // Error
-	        warnings++;
-	        if (warnings > 10)
-	        {
-	          Dbprintf("Error: too many detection errors, aborting.");
-	          return 0;
-	        }
-	      }
-	      
-	      if(block_done == 1) {
-	        if(bitidx == 128) {
-	          for(j=0; j<16; j++) {
-	            Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
-	            64*BitStream[j*8+6]+
-	            32*BitStream[j*8+5]+
-	            16*BitStream[j*8+4]+
-	            8*BitStream[j*8+3]+
-	            4*BitStream[j*8+2]+
-	            2*BitStream[j*8+1]+
-	            BitStream[j*8];
-	          }
-	          num_blocks++;
-	        }
-	        bitidx = 0;
-	        block_done = 0;
-	        half_switch = 0;
-	      }
-	      if(i < GraphTraceLen)
-	      {
-		      if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
-		      else dir = 1;	      	
-	      }
-	    }
-	    if(bitidx==255)
-	      bitidx=0;
-	    warnings = 0;
-	    if(num_blocks == 4) break;
-	}
-	memcpy(outBlocks, Blocks, 16*num_blocks);
-	return num_blocks;
-}
+ 
+	WriteT55xx(data, 0, 3);
 
-int IsBlock0PCF7931(uint8_t *Block) {
-	// Assume RFU means 0 :)
-	if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
-    return 1;
-	if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
-    return 1;
-	return 0;
-}
-
-int IsBlock1PCF7931(uint8_t *Block) {
-	// Assume RFU means 0 :)
-	if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
-    if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
-      return 1;
-	
-	return 0;
-}
-
-#define ALLOC 16
-
-void ReadPCF7931() {
-	uint8_t Blocks[8][17];
-	uint8_t tmpBlocks[4][16];
-	int i, j, ind, ind2, n;
-	int num_blocks = 0;
-	int max_blocks = 8;
-	int ident = 0;
-	int error = 0;
-	int tries = 0;
-	
-	memset(Blocks, 0, 8*17*sizeof(uint8_t));
-	
-	do {
-    memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
-    n = DemodPCF7931((uint8_t**)tmpBlocks);
-    if(!n)
-      error++;
-    if(error==10 && num_blocks == 0) {
-      Dbprintf("Error, no tag or bad tag");
-      return;
-    }
-    else if (tries==20 || error==10) {
-      Dbprintf("Error reading the tag");
-      Dbprintf("Here is the partial content");
-      goto end;
-    }
-    
-    for(i=0; i<n; i++)
-      Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-               tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
-               tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
-    if(!ident) {
-      for(i=0; i<n; i++) {
-        if(IsBlock0PCF7931(tmpBlocks[i])) {
-          // Found block 0 ?
-          if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
-            // Found block 1!
-            // \o/
-            ident = 1;
-            memcpy(Blocks[0], tmpBlocks[i], 16);
-            Blocks[0][ALLOC] = 1;
-            memcpy(Blocks[1], tmpBlocks[i+1], 16);
-            Blocks[1][ALLOC] = 1;
-            max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
-            // Debug print
-            Dbprintf("(dbg) Max blocks: %d", max_blocks);
-            num_blocks = 2;
-            // Handle following blocks
-            for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
-              if(j==n) j=0;
-              if(j==i) break;
-              memcpy(Blocks[ind2], tmpBlocks[j], 16);
-              Blocks[ind2][ALLOC] = 1;
-            }
-            break;
-          }
-        }
-      }
-    }
-    else {
-      for(i=0; i<n; i++) { // Look for identical block in known blocks
-        if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
-          for(j=0; j<max_blocks; j++) {
-            if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
-              // Found an identical block
-              for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
-                if(ind2 < 0)
-                  ind2 = max_blocks;
-                if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
-                  // Dbprintf("Tmp %d -> Block %d", ind, ind2);
-                  memcpy(Blocks[ind2], tmpBlocks[ind], 16);
-                  Blocks[ind2][ALLOC] = 1;
-                  num_blocks++;
-                  if(num_blocks == max_blocks) goto end;
-                }
-              }
-              for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
-                if(ind2 > max_blocks)
-                  ind2 = 0;
-                if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
-                  // Dbprintf("Tmp %d -> Block %d", ind, ind2);
-                  memcpy(Blocks[ind2], tmpBlocks[ind], 16);
-                  Blocks[ind2][ALLOC] = 1;
-                  num_blocks++;
-                  if(num_blocks == max_blocks) goto end;
-                }
-              }
-            }
-          }
-        }
-      }
-    }
-    tries++;
-    if (BUTTON_PRESS()) return;
-	} while (num_blocks != max_blocks);
-end:
-	Dbprintf("-----------------------------------------");
-	Dbprintf("Memory content:");
-	Dbprintf("-----------------------------------------");
-	for(i=0; i<max_blocks; i++) {
-    if(Blocks[i][ALLOC]==1)
-      Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-               Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
-               Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
-    else
-      Dbprintf("<missing block %d>", i);
-	}
-	Dbprintf("-----------------------------------------");
-	
-	return ;
+	LED_D_OFF();
+	Dbprintf("Tag %s written with 0x%08x%08x\n",
+			card ? "T55x7":"T5555",
+			(uint32_t)(id >> 32),
+			(uint32_t)id);
 }
 
-
 //-----------------------------------
 // EM4469 / EM4305 routines
 //-----------------------------------
-#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
-#define FWD_CMD_WRITE 0xA
-#define FWD_CMD_READ 0x9
+#define FWD_CMD_LOGIN   0xC //including the even parity, binary mirrored
+#define FWD_CMD_WRITE   0xA
+#define FWD_CMD_READ    0x9
 #define FWD_CMD_DISABLE 0x5
 
-
 uint8_t forwardLink_data[64]; //array of forwarded bits
 uint8_t * forward_ptr; //ptr for forward message preparation
 uint8_t fwd_bit_sz; //forwardlink bit counter
@@ -1939,84 +1541,85 @@ uint8_t * fwd_write_ptr; //forwardlink bit pointer
 // see EM4469 spec
 //====================================================================
 //--------------------------------------------------------------------
+//  VALUES TAKEN FROM EM4x function: SendForward
+//  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle)
+//  WRITE_GAP = 128;       (16*8)
+//  WRITE_1   = 256 32*8;  (32*8) 
+
+//  These timings work for 4469/4269/4305 (with the 55*8 above)
+//  WRITE_0 = 23*8 , 9*8
+
 uint8_t Prepare_Cmd( uint8_t cmd ) {
-  //--------------------------------------------------------------------
-  
-  *forward_ptr++ = 0; //start bit
-  *forward_ptr++ = 0; //second pause for 4050 code
-  
-  *forward_ptr++ = cmd;
-  cmd >>= 1;
-  *forward_ptr++ = cmd;
-  cmd >>= 1;
-  *forward_ptr++ = cmd;
-  cmd >>= 1;
-  *forward_ptr++ = cmd;
-  
-  return 6; //return number of emited bits
+
+	*forward_ptr++ = 0; //start bit
+	*forward_ptr++ = 0; //second pause for 4050 code
+
+	*forward_ptr++ = cmd;
+	cmd >>= 1;
+	*forward_ptr++ = cmd;
+	cmd >>= 1;
+	*forward_ptr++ = cmd;
+	cmd >>= 1;
+	*forward_ptr++ = cmd;
+
+	return 6; //return number of emited bits
 }
 
 //====================================================================
 // prepares address bits
 // see EM4469 spec
 //====================================================================
-
-//--------------------------------------------------------------------
 uint8_t Prepare_Addr( uint8_t addr ) {
-  //--------------------------------------------------------------------
-  
-  register uint8_t line_parity;
-  
-  uint8_t i;
-  line_parity = 0;
-  for(i=0;i<6;i++) {
-    *forward_ptr++ = addr;
-    line_parity ^= addr;
-    addr >>= 1;
-  }
-  
-  *forward_ptr++ = (line_parity & 1);
-  
-  return 7; //return number of emited bits
+
+	register uint8_t line_parity;
+
+	uint8_t i;
+	line_parity = 0;
+	for(i=0;i<6;i++) {
+		*forward_ptr++ = addr;
+		line_parity ^= addr;
+		addr >>= 1;
+	}
+
+	*forward_ptr++ = (line_parity & 1);
+
+	return 7; //return number of emited bits
 }
 
 //====================================================================
 // prepares data bits intreleaved with parity bits
 // see EM4469 spec
 //====================================================================
-
-//--------------------------------------------------------------------
 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
-  //--------------------------------------------------------------------
-  
-  register uint8_t line_parity;
-  register uint8_t column_parity;
-  register uint8_t i, j;
-  register uint16_t data;
-  
-  data = data_low;
-  column_parity = 0;
-  
-  for(i=0; i<4; i++) {
-    line_parity = 0;
-    for(j=0; j<8; j++) {
-      line_parity ^= data;
-      column_parity ^= (data & 1) << j;
-      *forward_ptr++ = data;
-      data >>= 1;
-    }
-    *forward_ptr++ = line_parity;
-    if(i == 1)
-      data = data_hi;
-  }
-  
-  for(j=0; j<8; j++) {
-    *forward_ptr++ = column_parity;
-    column_parity >>= 1;
-  }
-  *forward_ptr = 0;
-  
-  return 45; //return number of emited bits
+
+	register uint8_t line_parity;
+	register uint8_t column_parity;
+	register uint8_t i, j;
+	register uint16_t data;
+
+	data = data_low;
+	column_parity = 0;
+
+	for(i=0; i<4; i++) {
+		line_parity = 0;
+		for(j=0; j<8; j++) {
+			line_parity ^= data;
+			column_parity ^= (data & 1) << j;
+			*forward_ptr++ = data;
+			data >>= 1;
+		}
+		*forward_ptr++ = line_parity;
+		if(i == 1)
+			data = data_hi;
+	}
+
+	for(j=0; j<8; j++) {
+		*forward_ptr++ = column_parity;
+		column_parity >>= 1;
+	}
+	*forward_ptr = 0;
+
+	return 45; //return number of emited bits
 }
 
 //====================================================================
@@ -2025,115 +1628,103 @@ uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
 // fwd_bit_count set with number of bits to be sent
 //====================================================================
 void SendForward(uint8_t fwd_bit_count) {
-  
-  fwd_write_ptr = forwardLink_data;
-  fwd_bit_sz = fwd_bit_count;
-  
-  LED_D_ON();
-  
-  //Field on
-  FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-  FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
-  // Give it a bit of time for the resonant antenna to settle.
-  // And for the tag to fully power up
-  SpinDelay(150);
-  
-  // force 1st mod pulse (start gap must be longer for 4305)
-  fwd_bit_sz--; //prepare next bit modulation
-  fwd_write_ptr++;
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
-  FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
-  SpinDelayUs(16*8); //16 cycles on (8us each)
-  
-  // now start writting
-  while(fwd_bit_sz-- > 0) { //prepare next bit modulation
-    if(((*fwd_write_ptr++) & 1) == 1)
-      SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
-    else {
-      //These timings work for 4469/4269/4305 (with the 55*8 above)
-      FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-      SpinDelayUs(23*8); //16-4 cycles off (8us each)
-      FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-      FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
-      SpinDelayUs(9*8); //16 cycles on (8us each)
-    }
-  }
+
+	fwd_write_ptr = forwardLink_data;
+	fwd_bit_sz = fwd_bit_count;
+
+	LED_D_ON();
+
+	// Set up FPGA, 125kHz
+	LFSetupFPGAForADC(95, true);
+	
+	// force 1st mod pulse (start gap must be longer for 4305)
+	fwd_bit_sz--; //prepare next bit modulation
+	fwd_write_ptr++;
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	WaitUS(55*8); //55 cycles off (8us each)for 4305	// ICEMAN:  problem with (us) clock is  21.3us increments
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+	WaitUS(16*8); //16 cycles on (8us each)	// ICEMAN:  problem with (us) clock is  21.3us increments
+
+	// now start writting
+	while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+		if(((*fwd_write_ptr++) & 1) == 1)
+			WaitUS(32*8); //32 cycles at 125Khz (8us each)	// ICEMAN:  problem with (us) clock is  21.3us increments
+		else {
+			//These timings work for 4469/4269/4305 (with the 55*8 above)
+			FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+			WaitUS(16*8); //16-4 cycles off (8us each)	// ICEMAN:  problem with (us) clock is  21.3us increments
+			FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+			WaitUS(16*8); //16 cycles on (8us each)	// ICEMAN:  problem with (us) clock is  21.3us increments
+		}
+	}
 }
 
 void EM4xLogin(uint32_t Password) {
-  
-  uint8_t fwd_bit_count;
-  
-  forward_ptr = forwardLink_data;
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
-  fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
-  
-  SendForward(fwd_bit_count);
-  
-  //Wait for command to complete
-  SpinDelay(20);
-  
+
+	uint8_t fwd_bit_count;
+	forward_ptr = forwardLink_data;
+	fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+	fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+	SendForward(fwd_bit_count);
+
+	//Wait for command to complete
+	WaitMS(20);
 }
 
 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-  
-  uint8_t fwd_bit_count;
-  uint8_t *dest = (uint8_t *)BigBuf;
-  int m=0, i=0;
-  
-  //If password mode do login
-  if (PwdMode == 1) EM4xLogin(Pwd);
-  
-  forward_ptr = forwardLink_data;
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
-  fwd_bit_count += Prepare_Addr( Address );
-  
-  m = sizeof(BigBuf);
-  // Clear destination buffer before sending the command
-  memset(dest, 128, m);
-  // Connect the A/D to the peak-detected low-frequency path.
-  SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-  // Now set up the SSC to get the ADC samples that are now streaming at us.
-  FpgaSetupSsc();
-  
-  SendForward(fwd_bit_count);
-  
-  // Now do the acquisition
-  i = 0;
-  for(;;) {
-    if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-      AT91C_BASE_SSC->SSC_THR = 0x43;
-    }
-    if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-      dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-      i++;
-      if (i >= m) break;
-    }
-  }
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  LED_D_OFF();
+
+	uint8_t fwd_bit_count;
+	uint8_t *dest = BigBuf_get_addr();
+	uint16_t bufsize = BigBuf_max_traceLen();  // ICEMAN: this tries to fill up all tracelog space
+	uint32_t i = 0;
+
+	// Clear destination buffer before sending the command
+	BigBuf_Clear_ext(false);
+	
+	//If password mode do login
+	if (PwdMode == 1) EM4xLogin(Pwd);
+
+	forward_ptr = forwardLink_data;
+	fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+	fwd_bit_count += Prepare_Addr( Address );
+
+	SendForward(fwd_bit_count);
+
+	// Now do the acquisition
+	// ICEMAN, change to the one in lfsampling.c
+	i = 0;
+	for(;;) {
+		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+			AT91C_BASE_SSC->SSC_THR = 0x43;
+		}
+		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+			++i;
+			if (i >= bufsize) break;
+		}
+	}
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off	
+	cmd_send(CMD_ACK,0,0,0,0,0);
+	LED_D_OFF();
 }
 
 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-  
-  uint8_t fwd_bit_count;
-  
-  //If password mode do login
-  if (PwdMode == 1) EM4xLogin(Pwd);
-  
-  forward_ptr = forwardLink_data;
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
-  fwd_bit_count += Prepare_Addr( Address );
-  fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
-  
-  SendForward(fwd_bit_count);
-  
-  //Wait for write to complete
-  SpinDelay(20);
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  LED_D_OFF();
+
+	uint8_t fwd_bit_count;
+
+	//If password mode do login
+	if (PwdMode == 1) EM4xLogin(Pwd);
+
+	forward_ptr = forwardLink_data;
+	fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+	fwd_bit_count += Prepare_Addr( Address );
+	fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+	SendForward(fwd_bit_count);
+
+	//Wait for write to complete
+	WaitMS(20);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	LED_D_OFF();
 }