X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/f2d46122d30004b152f9c581a438b9939707bab9..735a11ed56c0208031035fc41ade4d47d98cc929:/armsrc/iso14443a.c?ds=inline diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index e7477789..ca6fd960 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -1,4 +1,4 @@ -//----------------------------------------------------------------------------- + //----------------------------------------------------------------------------- // Merlok - June 2011, 2012 // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 @@ -15,18 +15,22 @@ #include "util.h" #include "string.h" #include "cmd.h" - #include "iso14443crc.h" #include "iso14443a.h" +#include "iso14443b.h" #include "crapto1.h" #include "mifareutil.h" #include "BigBuf.h" +#include "parity.h" + static uint32_t iso14a_timeout; int rsamples = 0; uint8_t trigger = 0; // the block number for the ISO14443-4 PCB static uint8_t iso14_pcb_blocknum = 0; +static uint8_t* free_buffer_pointer; + // // ISO14443 timing: // @@ -105,8 +109,6 @@ static uint32_t NextTransferTime; static uint32_t LastTimeProxToAirStart; static uint32_t LastProxToAirDuration; - - // CARD TO READER - manchester // Sequence D: 11110000 modulation with subcarrier during first half // Sequence E: 00001111 modulation with subcarrier during second half @@ -122,77 +124,50 @@ static uint32_t LastProxToAirDuration; #define SEC_Y 0x00 #define SEC_Z 0xc0 -const uint8_t OddByteParity[256] = { - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 -}; - - void iso14a_set_trigger(bool enable) { trigger = enable; } - void iso14a_set_timeout(uint32_t timeout) { iso14a_timeout = timeout; if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106); } - void iso14a_set_ATS_timeout(uint8_t *ats) { - uint8_t tb1; uint8_t fwi; uint32_t fwt; if (ats[0] > 1) { // there is a format byte T0 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1) - if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1) + + if ((ats[1] & 0x10) == 0x10) // there is an interface byte TA(1) preceding TB(1) tb1 = ats[3]; - } else { + else tb1 = ats[2]; - } + fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI) fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc + //fwt = 4096 * (1 << fwi); iso14a_set_timeout(fwt/(8*16)); + //iso14a_set_timeout(fwt/128); } } } - //----------------------------------------------------------------------------- // Generate the parity value for a byte sequence // //----------------------------------------------------------------------------- -byte_t oddparity (const byte_t bt) -{ - return OddByteParity[bt]; -} - -void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) -{ +void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) { uint16_t paritybit_cnt = 0; uint16_t paritybyte_cnt = 0; uint8_t parityBits = 0; for (uint16_t i = 0; i < iLen; i++) { // Generate the parity bits - parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt)); + parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt)); if (paritybit_cnt == 7) { par[paritybyte_cnt] = parityBits; // save 8 Bits parity parityBits = 0; // and advance to next Parity Byte @@ -204,12 +179,10 @@ void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) } // save remaining parity bits - par[paritybyte_cnt] = parityBits; - + par[paritybyte_cnt] = parityBits; } -void AppendCrc14443a(uint8_t* data, int len) -{ +void AppendCrc14443a(uint8_t* data, int len) { ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); } @@ -232,73 +205,78 @@ void AppendCrc14443a(uint8_t* data, int len) static tUart Uart; // Lookup-Table to decide if 4 raw bits are a modulation. -// We accept two or three consecutive "0" in any position with the rest "1" +// We accept the following: +// 0001 - a 3 tick wide pause +// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left +// 0111 - a 2 tick wide pause shifted left +// 1001 - a 2 tick wide pause shifted right const bool Mod_Miller_LUT[] = { - TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, - TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE + FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, + FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE }; -#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4]) -#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)]) +#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4]) +#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)]) -void UartReset() -{ +void UartReset() { Uart.state = STATE_UNSYNCD; Uart.bitCount = 0; Uart.len = 0; // number of decoded data bytes Uart.parityLen = 0; // number of decoded parity bytes Uart.shiftReg = 0; // shiftreg to hold decoded data bits Uart.parityBits = 0; // holds 8 parity bits - Uart.twoBits = 0x0000; // buffer for 2 Bits - Uart.highCnt = 0; Uart.startTime = 0; Uart.endTime = 0; + + Uart.byteCntMax = 0; + Uart.posCnt = 0; + Uart.syncBit = 9999; } -void UartInit(uint8_t *data, uint8_t *parity) -{ +void UartInit(uint8_t *data, uint8_t *parity) { Uart.output = data; Uart.parity = parity; + Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits UartReset(); } // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time -static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) -{ - - Uart.twoBits = (Uart.twoBits << 8) | bit; +static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) { + Uart.fourBits = (Uart.fourBits << 8) | bit; if (Uart.state == STATE_UNSYNCD) { // not yet synced - - if (Uart.highCnt < 2) { // wait for a stable unmodulated signal - if (Uart.twoBits == 0xffff) { - Uart.highCnt++; - } else { - Uart.highCnt = 0; - } - } else { - Uart.syncBit = 0xFFFF; // not set - // we look for a ...1111111100x11111xxxxxx pattern (the start bit) - if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx, - // check for 00x11111 xxxxxxxx - else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1' - else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ... - else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5; - else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4; - else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3; - else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2; - else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1; - if (Uart.syncBit != 0xFFFF) { // found a sync bit - Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); - Uart.startTime -= Uart.syncBit; - Uart.endTime = Uart.startTime; - Uart.state = STATE_START_OF_COMMUNICATION; - } + Uart.syncBit = 9999; // not set + + // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication") + // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information") + // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1") + + // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from + // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111) + // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern + // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's) + // +#define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000 +#define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000 + + if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0; + + if (Uart.syncBit != 9999) { // found a sync bit + Uart.startTime = non_real_time ? non_real_time : (GetCountSspClk() & 0xfffffff8); + Uart.startTime -= Uart.syncBit; + Uart.endTime = Uart.startTime; + Uart.state = STATE_START_OF_COMMUNICATION; } - } else { - if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) { - if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error + if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) { + if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error UartReset(); } else { // Modulation in first half = Sequence Z = logic "0" if (Uart.state == STATE_MILLER_X) { // error - must not follow after X @@ -322,7 +300,7 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) } } } else { - if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" + if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" Uart.bitCount++; Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg Uart.state = STATE_MILLER_X; @@ -358,12 +336,10 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) return TRUE; // we are finished with decoding the raw data sequence } else { UartReset(); // Nothing received - start over - Uart.highCnt = 1; } } if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC UartReset(); - Uart.highCnt = 1; } else { // a logic "0" Uart.bitCount++; Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg @@ -382,14 +358,10 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) } } } - } - return FALSE; // not finished yet, need more data } - - //============================================================================= // ISO 14443 Type A - Manchester decoder //============================================================================= @@ -417,9 +389,7 @@ const bool Mod_Manchester_LUT[] = { #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4]) #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)]) - -void DemodReset() -{ +void DemodReset() { Demod.state = DEMOD_UNSYNCD; Demod.len = 0; // number of decoded data bytes Demod.parityLen = 0; @@ -429,20 +399,20 @@ void DemodReset() Demod.twoBits = 0xffff; // buffer for 2 Bits Demod.highCnt = 0; Demod.startTime = 0; - Demod.endTime = 0; + Demod.endTime = 0; + Demod.bitCount = 0; + Demod.syncBit = 0xFFFF; + Demod.samples = 0; } -void DemodInit(uint8_t *data, uint8_t *parity) -{ +void DemodInit(uint8_t *data, uint8_t *parity) { Demod.output = data; Demod.parity = parity; DemodReset(); } // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time -static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) -{ - +static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) { Demod.twoBits = (Demod.twoBits << 8) | bit; if (Demod.state == DEMOD_UNSYNCD) { @@ -470,7 +440,6 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non Demod.state = DEMOD_MANCHESTER_DATA; } } - } else { if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half @@ -528,9 +497,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non } } } - } - return FALSE; // not finished yet, need more data } @@ -543,24 +510,22 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non // Record the sequence of commands sent by the reader to the tag, with // triggering so that we start recording at the point that the tag is moved // near the reader. +// "hf 14a sniff" //----------------------------------------------------------------------------- -void RAMFUNC SnoopIso14443a(uint8_t param) { +void RAMFUNC SniffIso14443a(uint8_t param) { // param: // bit 0 - trigger from first card answer // bit 1 - trigger from first reader 7-bit request - LEDsoff(); - // We won't start recording the frames that we acquire until we trigger; - // a good trigger condition to get started is probably when we see a - // response from the tag. - // triggered == FALSE -- to wait first for card - bool triggered = !(param & 0x03); + iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); // Allocate memory from BigBuf for some buffers // free all previous allocations first - BigBuf_free(); - + BigBuf_free(); BigBuf_Clear_ext(false); + clear_trace(); + set_tracing(TRUE); + // The command (reader -> tag) that we're receiving. uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); @@ -572,10 +537,6 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // The DMA buffer, used to stream samples from the FPGA uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); - // init trace buffer - clear_trace(); - set_tracing(TRUE); - uint8_t *data = dmaBuf; uint8_t previous_data = 0; int maxDataLen = 0; @@ -583,8 +544,6 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { bool TagIsActive = FALSE; bool ReaderIsActive = FALSE; - iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); - // Set up the demodulator for tag -> reader responses. DemodInit(receivedResponse, receivedResponsePar); @@ -594,6 +553,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // Setup and start DMA. FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); + // We won't start recording the frames that we acquire until we trigger; + // a good trigger condition to get started is probably when we see a + // response from the tag. + // triggered == FALSE -- to wait first for card + bool triggered = !(param & 0x03); + // And now we loop, receiving samples. for(uint32_t rsamples = 0; TRUE; ) { @@ -680,6 +645,8 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // And ready to receive another response. DemodReset(); + // And reset the Miller decoder including itS (now outdated) input buffer + UartInit(receivedCmd, receivedCmdPar); LED_C_OFF(); } TagIsActive = (Demod.state != DEMOD_UNSYNCD); @@ -694,19 +661,20 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { } } // main cycle - DbpString("COMMAND FINISHED"); - + if (MF_DBGLEVEL >= 1) { + Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); + Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); + } FpgaDisableSscDma(); - Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); - Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); + set_tracing(FALSE); } //----------------------------------------------------------------------------- // Prepare tag messages //----------------------------------------------------------------------------- -static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) -{ +static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) { ToSendReset(); // Correction bit, might be removed when not needed @@ -750,21 +718,17 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *par ToSend[++ToSendMax] = SEC_F; // Convert from last byte pos to length - ToSendMax++; + ++ToSendMax; } -static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) -{ - uint8_t par[MAX_PARITY_SIZE]; - +static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) { + uint8_t par[MAX_PARITY_SIZE] = {0}; GetParity(cmd, len, par); CodeIso14443aAsTagPar(cmd, len, par); } - -static void Code4bitAnswerAsTag(uint8_t cmd) -{ - int i; +static void Code4bitAnswerAsTag(uint8_t cmd) { + uint8_t b = cmd; ToSendReset(); @@ -781,8 +745,7 @@ static void Code4bitAnswerAsTag(uint8_t cmd) // Send startbit ToSend[++ToSendMax] = SEC_D; - uint8_t b = cmd; - for(i = 0; i < 4; i++) { + for(uint8_t i = 0; i < 4; i++) { if(b & 1) { ToSend[++ToSendMax] = SEC_D; LastProxToAirDuration = 8 * ToSendMax - 4; @@ -805,15 +768,14 @@ static void Code4bitAnswerAsTag(uint8_t cmd) // Stop when button is pressed // Or return TRUE when command is captured //----------------------------------------------------------------------------- -static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) -{ +static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) { // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen // only, since we are receiving, not transmitting). // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - // Now run a `software UART' on the stream of incoming samples. + // Now run a `software UART` on the stream of incoming samples. UartInit(received, parity); // clear RXRDY: @@ -834,26 +796,6 @@ static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int } } -static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded); -int EmSend4bitEx(uint8_t resp, bool correctionNeeded); -int EmSend4bit(uint8_t resp); -int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par); -int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded); -int EmSendCmd(uint8_t *resp, uint16_t respLen); -int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); -bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, - uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity); - -static uint8_t* free_buffer_pointer; - -typedef struct { - uint8_t* response; - size_t response_n; - uint8_t* modulation; - size_t modulation_n; - uint32_t ProxToAirDuration; -} tag_response_info_t; - bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes // This will need the following byte array for a modulation sequence @@ -865,93 +807,115 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe // ----------- + // 166 bytes, since every bit that needs to be send costs us a byte // - - - // Prepare the tag modulation bits from the message - CodeIso14443aAsTag(response_info->response,response_info->response_n); - - // Make sure we do not exceed the free buffer space - if (ToSendMax > max_buffer_size) { - Dbprintf("Out of memory, when modulating bits for tag answer:"); - Dbhexdump(response_info->response_n,response_info->response,false); - return false; - } - - // Copy the byte array, used for this modulation to the buffer position - memcpy(response_info->modulation,ToSend,ToSendMax); - - // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them - response_info->modulation_n = ToSendMax; - response_info->ProxToAirDuration = LastProxToAirDuration; - - return true; -} + // Prepare the tag modulation bits from the message + CodeIso14443aAsTag(response_info->response,response_info->response_n); + + // Make sure we do not exceed the free buffer space + if (ToSendMax > max_buffer_size) { + Dbprintf("Out of memory, when modulating bits for tag answer:"); + Dbhexdump(response_info->response_n,response_info->response,false); + return FALSE; + } + // Copy the byte array, used for this modulation to the buffer position + memcpy(response_info->modulation,ToSend,ToSendMax); + + // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them + response_info->modulation_n = ToSendMax; + response_info->ProxToAirDuration = LastProxToAirDuration; + return TRUE; +} // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit. // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits // -> need 273 bytes buffer -#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273 +// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370 +// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits +#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { - // Retrieve and store the current buffer index - response_info->modulation = free_buffer_pointer; - - // Determine the maximum size we can use from our buffer - size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; - - // Forward the prepare tag modulation function to the inner function - if (prepare_tag_modulation(response_info, max_buffer_size)) { - // Update the free buffer offset - free_buffer_pointer += ToSendMax; - return true; - } else { - return false; - } + // Retrieve and store the current buffer index + response_info->modulation = free_buffer_pointer; + + // Determine the maximum size we can use from our buffer + size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; + + // Forward the prepare tag modulation function to the inner function + if (prepare_tag_modulation(response_info, max_buffer_size)) { + // Update the free buffer offset + free_buffer_pointer += ToSendMax; + return true; + } else { + return false; + } } //----------------------------------------------------------------------------- // Main loop of simulated tag: receive commands from reader, decide what // response to send, and send it. //----------------------------------------------------------------------------- -void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) -{ - uint8_t sak; +void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { + //Here, we collect CUID, NT, NR, AR, CUID, NT2, NR2, AR2 + // This can be used in a reader-only attack. + uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0}; + uint8_t ar_nr_collected = 0; + uint8_t sak = 0; + uint32_t cuid = 0; + uint32_t nonce = 0; + + // PACK response to PWD AUTH for EV1/NTAG + uint8_t response8[4] = {0,0,0,0}; + // Counter for EV1/NTAG + uint32_t counters[] = {0,0,0}; + // The first response contains the ATQA (note: bytes are transmitted in reverse order). - uint8_t response1[2]; + uint8_t response1[] = {0,0}; switch (tagType) { - case 1: { // MIFARE Classic - // Says: I am Mifare 1k - original line + case 1: { // MIFARE Classic 1k response1[0] = 0x04; - response1[1] = 0x00; sak = 0x08; } break; case 2: { // MIFARE Ultralight - // Says: I am a stupid memory tag, no crypto - response1[0] = 0x04; - response1[1] = 0x00; + response1[0] = 0x44; sak = 0x00; } break; case 3: { // MIFARE DESFire - // Says: I am a DESFire tag, ph33r me response1[0] = 0x04; response1[1] = 0x03; sak = 0x20; } break; - case 4: { // ISO/IEC 14443-4 - // Says: I am a javacard (JCOP) + case 4: { // ISO/IEC 14443-4 - javacard (JCOP) response1[0] = 0x04; - response1[1] = 0x00; sak = 0x28; } break; case 5: { // MIFARE TNP3XXX - // Says: I am a toy response1[0] = 0x01; response1[1] = 0x0f; sak = 0x01; + } break; + case 6: { // MIFARE Mini 320b + response1[0] = 0x44; + sak = 0x09; + } break; + case 7: { // NTAG + response1[0] = 0x44; + sak = 0x00; + // PACK + response8[0] = 0x80; + response8[1] = 0x80; + ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]); + // uid not supplied then get from emulator memory + if (data[0]==0) { + uint16_t start = 4 * (0+12); + uint8_t emdata[8]; + emlGetMemBt( emdata, start, sizeof(emdata)); + memcpy(data, emdata, 3); //uid bytes 0-2 + memcpy(data+3, emdata+4, 4); //uid bytes 3-7 + flags |= FLAG_7B_UID_IN_DATA; + } } break; default: { Dbprintf("Error: unkown tagtype (%d)",tagType); @@ -962,31 +926,39 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) // The second response contains the (mandatory) first 24 bits of the UID uint8_t response2[5] = {0x00}; - // Check if the uid uses the (optional) part + // For UID size 7, uint8_t response2a[5] = {0x00}; - if (uid_2nd) { - response2[0] = 0x88; - num_to_bytes(uid_1st,3,response2+1); - num_to_bytes(uid_2nd,4,response2a); + if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA ) { + response2[0] = 0x88; // Cascade Tag marker + response2[1] = data[0]; + response2[2] = data[1]; + response2[3] = data[2]; + + response2a[0] = data[3]; + response2a[1] = data[4]; + response2a[2] = data[5]; + response2a[3] = data[6]; //?? response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3]; // Configure the ATQA and SAK accordingly response1[0] |= 0x40; sak |= 0x04; + + cuid = bytes_to_num(data+3, 4); } else { - num_to_bytes(uid_1st,4,response2); + memcpy(response2, data, 4); // Configure the ATQA and SAK accordingly response1[0] &= 0xBF; sak &= 0xFB; + cuid = bytes_to_num(data, 4); } // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; // Prepare the mandatory SAK (for 4 and 7 byte UID) - uint8_t response3[3] = {0x00}; - response3[0] = sak; + uint8_t response3[3] = {sak, 0x00, 0x00}; ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit @@ -994,15 +966,24 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) response3a[0] = sak & 0xFB; ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); - uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce - uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: + uint8_t response5[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce + uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us) // TC(1) = 0x02: CID supported, NAD not supported ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); - #define TAG_RESPONSE_COUNT 7 + // the randon nonce + nonce = bytes_to_num(response5, 4); + + // Prepare GET_VERSION (different for UL EV-1 / NTAG) + //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION. + //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215 + // Prepare CHK_TEARING + //uint8_t response9[] = {0xBD,0x90,0x3f}; + + #define TAG_RESPONSE_COUNT 10 tag_response_info_t responses[TAG_RESPONSE_COUNT] = { { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid @@ -1011,7 +992,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS - }; + + { .response = response8, .response_n = sizeof(response8) } // EV1/NTAG PACK response + }; + //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response + //{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response + // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it // Such a response is less time critical, so we can prepare them on the fly @@ -1026,22 +1012,22 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) .modulation_n = 0 }; + // We need to listen to the high-frequency, peak-detected path. + iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); + BigBuf_free_keep_EM(); + clear_trace(); + set_tracing(TRUE); // allocate buffers: uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); - // clear trace - clear_trace(); - set_tracing(TRUE); - // Prepare the responses of the anticollision phase // there will be not enough time to do this at the moment the reader sends it REQA - for (size_t i=0; i 0) { + num_to_bytes(counters[index], 3, data); + AppendCrc14443a(data, sizeof(data)-2); + } + EmSendCmdEx(data,sizeof(data),false); + p_response = NULL; + } else if (receivedCmd[0] == MIFARE_ULEV1_INCR_CNT && tagType == 7) { // Received a INC COUNTER -- + // number of counter + uint8_t counter = receivedCmd[1]; + uint32_t val = bytes_to_num(receivedCmd+2,4); + counters[counter] = val; + + // send ACK + uint8_t ack[] = {0x0a}; + EmSendCmdEx(ack,sizeof(ack),false); + p_response = NULL; + } else if(receivedCmd[0] == MIFARE_ULEV1_CHECKTEAR && tagType == 7) { // Received a CHECK_TEARING_EVENT -- + //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature] + uint8_t emdata[3]; + uint8_t counter=0; + if (receivedCmd[1]<3) counter = receivedCmd[1]; + emlGetMemBt( emdata, 10+counter, 1); + AppendCrc14443a(emdata, sizeof(emdata)-2); + EmSendCmdEx(emdata, sizeof(emdata), false); + p_response = NULL; + } else if(receivedCmd[0] == ISO14443A_CMD_HALT) { // Received a HALT + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); p_response = NULL; - } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request - p_response = &responses[5]; order = 7; - } else if(receivedCmd[0] == 0xE0) { // Received a RATS request + } else if(receivedCmd[0] == MIFARE_AUTH_KEYA || receivedCmd[0] == MIFARE_AUTH_KEYB) { // Received an authentication request + + if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request. + uint8_t emdata[10]; + emlGetMemBt( emdata, 0, 8 ); + AppendCrc14443a(emdata, sizeof(emdata)-2); + EmSendCmdEx(emdata, sizeof(emdata), false); + p_response = NULL; + } else { + p_response = &responses[5]; order = 7; + } + } else if(receivedCmd[0] == ISO14443A_CMD_RATS) { // Received a RATS request if (tagType == 1 || tagType == 2) { // RATS not supported EmSend4bit(CARD_NACK_NA); p_response = NULL; @@ -1106,18 +1156,66 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) p_response = &responses[6]; order = 70; } } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication) - if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - } + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); uint32_t nr = bytes_to_num(receivedCmd,4); uint32_t ar = bytes_to_num(receivedCmd+4,4); - Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar); + + if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) { + if(ar_nr_collected < 2){ + // Avoid duplicates... probably not necessary, nr should vary. + // nr doesn't change in pm3's reading etc. its fixed. + //if(ar_nr_responses[3] != nr){ + ar_nr_responses[ar_nr_collected*4] = cuid; + ar_nr_responses[ar_nr_collected*4+1] = nonce; + ar_nr_responses[ar_nr_collected*4+2] = nr; + ar_nr_responses[ar_nr_collected*4+3] = ar; + ar_nr_collected++; + //} + } + + if(ar_nr_collected > 1 ) { + if (MF_DBGLEVEL >= 2 && !(flags & FLAG_INTERACTIVE)) { + Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); + Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", + ar_nr_responses[0], // CUID + ar_nr_responses[1], // NT + ar_nr_responses[2], // AR1 + ar_nr_responses[3], // NR1 + ar_nr_responses[6], // AR2 + ar_nr_responses[7] // NR2 + ); + } + uint8_t len = ar_nr_collected*4*4; + cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len); + ar_nr_collected = 0; + memset(ar_nr_responses, 0x00, len); + } + } + } else if (receivedCmd[0] == MIFARE_ULC_AUTH_1 ) { // ULC authentication, or Desfire Authentication + } else if (receivedCmd[0] == MIFARE_ULEV1_AUTH) { // NTAG / EV-1 authentication + if ( tagType == 7 ) { + uint16_t start = 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00] + uint8_t emdata[4]; + emlGetMemBt( emdata, start, 2); + AppendCrc14443a(emdata, 2); + EmSendCmdEx(emdata, sizeof(emdata), false); + p_response = NULL; + uint32_t pwd = bytes_to_num(receivedCmd+1,4); + + if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd); + } } else { // Check for ISO 14443A-4 compliant commands, look at left nibble switch (receivedCmd[0]) { - + case 0x02: + case 0x03: { // IBlock (command no CID) + dynamic_response_info.response[0] = receivedCmd[0]; + dynamic_response_info.response[1] = 0x90; + dynamic_response_info.response[2] = 0x00; + dynamic_response_info.response_n = 3; + } break; case 0x0B: - case 0x0A: { // IBlock (command) + case 0x0A: { // IBlock (command CID) dynamic_response_info.response[0] = receivedCmd[0]; dynamic_response_info.response[1] = 0x00; dynamic_response_info.response[2] = 0x90; @@ -1137,22 +1235,22 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) dynamic_response_info.response_n = 2; } break; - case 0xBA: { // - memcpy(dynamic_response_info.response,"\xAB\x00",2); - dynamic_response_info.response_n = 2; + case 0xBA: { // ping / pong + dynamic_response_info.response[0] = 0xAB; + dynamic_response_info.response[1] = 0x00; + dynamic_response_info.response_n = 2; } break; case 0xCA: case 0xC2: { // Readers sends deselect command - memcpy(dynamic_response_info.response,"\xCA\x00",2); - dynamic_response_info.response_n = 2; + dynamic_response_info.response[0] = 0xCA; + dynamic_response_info.response[1] = 0x00; + dynamic_response_info.response_n = 2; } break; default: { // Never seen this command before - if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - } + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); Dbprintf("Received unknown command (len=%d):",len); Dbhexdump(len,receivedCmd,false); // Do not respond @@ -1170,9 +1268,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { Dbprintf("Error preparing tag response"); - if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - } + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } p_response = &dynamic_response_info; @@ -1185,6 +1281,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) // Count number of other messages after a halt if(order != 6 && lastorder == 5) { happened2++; } + // comment this limit if you want to simulation longer + if (!tracing) { + Dbprintf("Trace Full. Simulation stopped."); + break; + } + // comment this limit if you want to simulation longer if(cmdsRecvd > 999) { DbpString("1000 commands later..."); break; @@ -1194,7 +1296,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) if (p_response != NULL) { EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); // do the tracing for the previous reader request and this tag answer: - uint8_t par[MAX_PARITY_SIZE]; + uint8_t par[MAX_PARITY_SIZE] = {0x00}; GetParity(p_response->response, p_response->response_n, par); EmLogTrace(Uart.output, @@ -1208,41 +1310,43 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, par); } - - if (!tracing) { - Dbprintf("Trace Full. Simulation stopped."); - break; - } } - Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); - LED_A_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + set_tracing(FALSE); BigBuf_free_keep_EM(); + LED_A_OFF(); + + if (MF_DBGLEVEL >= 4){ + Dbprintf("-[ Wake ups after halt [%d]", happened); + Dbprintf("-[ Messages after halt [%d]", happened2); + Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd); + } } - // prepare a delayed transfer. This simply shifts ToSend[] by a number // of bits specified in the delay parameter. -void PrepareDelayedTransfer(uint16_t delay) -{ +void PrepareDelayedTransfer(uint16_t delay) { + delay &= 0x07; + if (!delay) return; + uint8_t bitmask = 0; uint8_t bits_to_shift = 0; uint8_t bits_shifted = 0; - - delay &= 0x07; - if (delay) { - for (uint16_t i = 0; i < delay; i++) { - bitmask |= (0x01 << i); - } - ToSend[ToSendMax++] = 0x00; - for (uint16_t i = 0; i < ToSendMax; i++) { + uint16_t i = 0; + + for (i = 0; i < delay; ++i) + bitmask |= (0x01 << i); + + ToSend[++ToSendMax] = 0x00; + + for (i = 0; i < ToSendMax; ++i) { bits_to_shift = ToSend[i] & bitmask; ToSend[i] = ToSend[i] >> delay; ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay)); bits_shifted = bits_to_shift; } } -} //------------------------------------------------------------------------------------- @@ -1253,9 +1357,7 @@ void PrepareDelayedTransfer(uint16_t delay) // if == 0: transfer immediately and return time of transfer // if != 0: delay transfer until time specified //------------------------------------------------------------------------------------- -static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) -{ - +static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) { FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); uint32_t ThisTransferTime = 0; @@ -1271,7 +1373,9 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing LastTimeProxToAirStart = *timing; } else { ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8); + while(GetCountSspClk() < ThisTransferTime); + LastTimeProxToAirStart = ThisTransferTime; } @@ -1282,24 +1386,22 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = cmd[c]; - c++; - if(c >= len) { + ++c; + if(c >= len) break; - } } } NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); } - //----------------------------------------------------------------------------- // Prepare reader command (in bits, support short frames) to send to FPGA //----------------------------------------------------------------------------- void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) { int i, j; - int last; + int last = 0; uint8_t b; ToSendReset(); @@ -1307,7 +1409,6 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8 // Start of Communication (Seq. Z) ToSend[++ToSendMax] = SEC_Z; LastProxToAirDuration = 8 * (ToSendMax+1) - 6; - last = 0; size_t bytecount = nbytes(bits); // Generate send structure for the data bits @@ -1337,7 +1438,7 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8 } // Only transmit parity bit if we transmitted a complete byte - if (j == 8) { + if (j == 8 && parity != NULL) { // Get the parity bit if (parity[i>>3] & (0x80 >> (i&0x0007))) { // Sequence X @@ -1371,25 +1472,22 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8 ToSend[++ToSendMax] = SEC_Y; // Convert to length of command: - ToSendMax++; + ++ToSendMax; } //----------------------------------------------------------------------------- // Prepare reader command to send to FPGA //----------------------------------------------------------------------------- -void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) -{ +void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) { CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); } - //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed (return 1) or field was gone (return 2) // Or return 0 when command is captured //----------------------------------------------------------------------------- -static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) -{ +static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) { *len = 0; uint32_t timer = 0, vtime = 0; @@ -1449,13 +1547,10 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) return 0; } } - } } - -static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) -{ +int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) { uint8_t b; uint16_t i = 0; uint32_t ThisTransferTime; @@ -1467,12 +1562,8 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe if (Uart.parityBits & 0x01) { correctionNeeded = TRUE; } - if(correctionNeeded) { - // 1236, so correction bit needed - i = 0; - } else { - i = 1; - } + // 1236, so correction bit needed + i = (correctionNeeded) ? 0 : 1; // clear receiving shift register and holding register while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); @@ -1498,13 +1589,11 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; } - if(BUTTON_PRESS()) { - break; - } + if(BUTTON_PRESS()) break; } // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: - uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; + uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; // twich /8 ?? >>3, for (i = 0; i <= fpga_queued_bits/8 + 1; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = SEC_F; @@ -1512,9 +1601,7 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe i++; } } - LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0); - return 0; } @@ -1522,7 +1609,7 @@ int EmSend4bitEx(uint8_t resp, bool correctionNeeded){ Code4bitAnswerAsTag(resp); int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); // do the tracing for the previous reader request and this tag answer: - uint8_t par[1]; + uint8_t par[1] = {0x00}; GetParity(&resp, 1, par); EmLogTrace(Uart.output, Uart.len, @@ -1559,13 +1646,13 @@ int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8 } int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){ - uint8_t par[MAX_PARITY_SIZE]; + uint8_t par[MAX_PARITY_SIZE] = {0x00}; GetParity(resp, respLen, par); return EmSendCmdExPar(resp, respLen, correctionNeeded, par); } int EmSendCmd(uint8_t *resp, uint16_t respLen){ - uint8_t par[MAX_PARITY_SIZE]; + uint8_t par[MAX_PARITY_SIZE] = {0x00}; GetParity(resp, respLen, par); return EmSendCmdExPar(resp, respLen, false, par); } @@ -1577,21 +1664,20 @@ int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity) { - if (tracing) { - // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from - // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. - // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: - uint16_t reader_modlen = reader_EndTime - reader_StartTime; - uint16_t approx_fdt = tag_StartTime - reader_EndTime; - uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; - reader_EndTime = tag_StartTime - exact_fdt; - reader_StartTime = reader_EndTime - reader_modlen; - if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) { - return FALSE; - } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE)); - } else { - return TRUE; - } + // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from + // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. + // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: + uint16_t reader_modlen = reader_EndTime - reader_StartTime; + uint16_t approx_fdt = tag_StartTime - reader_EndTime; + uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; + reader_EndTime = tag_StartTime - exact_fdt; + reader_StartTime = reader_EndTime - reader_modlen; + + if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) + return FALSE; + else + return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE)); + } //----------------------------------------------------------------------------- @@ -1599,9 +1685,8 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start // If a response is captured return TRUE // If it takes too long return FALSE //----------------------------------------------------------------------------- -static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) -{ - uint32_t c; +static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) { + uint32_t c = 0x00; // Set FPGA mode to "reader listen mode", no modulation (listen // only, since we are receiving, not transmitting). @@ -1615,7 +1700,6 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive // clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - c = 0; for(;;) { WDT_HIT(); @@ -1631,79 +1715,69 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive } } -void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) -{ +void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) { + CodeIso14443aBitsAsReaderPar(frame, bits, par); - // Send command to tag TransmitFor14443a(ToSend, ToSendMax, timing); - if(trigger) - LED_A_ON(); + if(trigger) LED_A_ON(); - // Log reader command in trace buffer - if (tracing) { - LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); - } + LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE); } -void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) -{ +void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) { ReaderTransmitBitsPar(frame, len*8, par, timing); } -void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) -{ - // Generate parity and redirect - uint8_t par[MAX_PARITY_SIZE]; - GetParity(frame, len/8, par); - ReaderTransmitBitsPar(frame, len, par, timing); +void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) { + // Generate parity and redirect + uint8_t par[MAX_PARITY_SIZE] = {0x00}; + GetParity(frame, len/8, par); + ReaderTransmitBitsPar(frame, len, par, timing); } -void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) -{ - // Generate parity and redirect - uint8_t par[MAX_PARITY_SIZE]; - GetParity(frame, len, par); - ReaderTransmitBitsPar(frame, len*8, par, timing); +void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) { + // Generate parity and redirect + uint8_t par[MAX_PARITY_SIZE] = {0x00}; + GetParity(frame, len, par); + ReaderTransmitBitsPar(frame, len*8, par, timing); } -int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) -{ - if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE; - if (tracing) { - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); - } +int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) { + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) + return FALSE; + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); return Demod.len; } -int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) -{ - if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE; - if (tracing) { - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); - } +int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) { + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) + return FALSE; + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); return Demod.len; } -/* performs iso14443a anticollision procedure - * fills the uid pointer unless NULL - * fills resp_data unless NULL */ -int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) { +// performs iso14443a anticollision (optional) and card select procedure +// fills the uid and cuid pointer unless NULL +// fills the card info record unless NULL +// if anticollision is false, then the UID must be provided in uid_ptr[] +// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID) +int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) { uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP uint8_t sel_all[] = { 0x93,0x20 }; uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 - uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller - uint8_t resp_par[MAX_PARITY_SIZE]; - byte_t uid_resp[4]; - size_t uid_resp_len; + uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller + uint8_t resp_par[MAX_PARITY_SIZE] = {0}; + byte_t uid_resp[4] = {0}; + size_t uid_resp_len = 0; uint8_t sak = 0x04; // cascade uid int cascade_level = 0; int len; // Broadcast for a card, WUPA (0x52) will force response from all cards in the field - ReaderTransmitBitsPar(wupa,7,0, NULL); + ReaderTransmitBitsPar(wupa, 7, NULL, NULL); // Receive the ATQA if(!ReaderReceive(resp, resp_par)) return 0; @@ -1714,11 +1788,15 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u memset(p_hi14a_card->uid,0,10); } - // clear uid - if (uid_ptr) { - memset(uid_ptr,0,10); + if (anticollision) { + // clear uid + if (uid_ptr) + memset(uid_ptr,0,10); } + // check for proprietary anticollision: + if ((resp[0] & 0x1F) == 0) return 3; + // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in // which case we need to make a cascade 2 request and select - this is a long UID // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. @@ -1726,73 +1804,81 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; + if (anticollision) { // SELECT_ALL - ReaderTransmit(sel_all, sizeof(sel_all), NULL); - if (!ReaderReceive(resp, resp_par)) return 0; - - if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit - memset(uid_resp, 0, 4); - uint16_t uid_resp_bits = 0; - uint16_t collision_answer_offset = 0; - // anti-collision-loop: - while (Demod.collisionPos) { - Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); - for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point - uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; - uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); + ReaderTransmit(sel_all, sizeof(sel_all), NULL); + if (!ReaderReceive(resp, resp_par)) return 0; + + if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit + memset(uid_resp, 0, 4); + uint16_t uid_resp_bits = 0; + uint16_t collision_answer_offset = 0; + // anti-collision-loop: + while (Demod.collisionPos) { + Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); + for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point + uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; + uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); + } + uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position + uid_resp_bits++; + // construct anticollosion command: + sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits + for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { + sel_uid[2+i] = uid_resp[i]; + } + collision_answer_offset = uid_resp_bits%8; + ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); + if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; } - uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position - uid_resp_bits++; - // construct anticollosion command: - sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits - for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { - sel_uid[2+i] = uid_resp[i]; + // finally, add the last bits and BCC of the UID + for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { + uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; + uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); } - collision_answer_offset = uid_resp_bits%8; - ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); - if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; + + } else { // no collision, use the response to SELECT_ALL as current uid + memcpy(uid_resp, resp, 4); } - // finally, add the last bits and BCC of the UID - for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { - uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; - uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); + + } else { + if (cascade_level < num_cascades - 1) { + uid_resp[0] = 0x88; + memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3); + } else { + memcpy(uid_resp, uid_ptr+cascade_level*3, 4); } - - } else { // no collision, use the response to SELECT_ALL as current uid - memcpy(uid_resp, resp, 4); } uid_resp_len = 4; // calculate crypto UID. Always use last 4 Bytes. - if(cuid_ptr) { + if(cuid_ptr) *cuid_ptr = bytes_to_num(uid_resp, 4); - } // Construct SELECT UID command sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) - memcpy(sel_uid+2, uid_resp, 4); // the UID + memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC AppendCrc14443a(sel_uid, 7); // calculate and add CRC ReaderTransmit(sel_uid, sizeof(sel_uid), NULL); // Receive the SAK if (!ReaderReceive(resp, resp_par)) return 0; + sak = resp[0]; - // Test if more parts of the uid are coming + // Test if more parts of the uid are coming if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: // http://www.nxp.com/documents/application_note/AN10927.pdf uid_resp[0] = uid_resp[1]; uid_resp[1] = uid_resp[2]; uid_resp[2] = uid_resp[3]; - uid_resp_len = 3; } - if(uid_ptr) { + if(uid_ptr && anticollision) memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); - } if(p_hi14a_card) { memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); @@ -1813,7 +1899,6 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u ReaderTransmit(rats, sizeof(rats), NULL); if (!(len = ReaderReceive(resp, resp_par))) return 0; - if(p_hi14a_card) { memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); @@ -1836,26 +1921,29 @@ void iso14443a_setup(uint8_t fpga_minor_mode) { // connect Demodulated Signal to ADC: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); + + LED_D_OFF(); // Signal field is on with the appropriate LED - if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD - || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) { + if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD || + fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) LED_D_ON(); - } else { - LED_D_OFF(); - } - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); - // Start the timer - StartCountSspClk(); - + // Prepare the demodulation functions DemodReset(); UartReset(); - NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; - iso14a_set_timeout(1050); // 10ms default -} -int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { - uint8_t parity[MAX_PARITY_SIZE]; + iso14a_set_timeout(10*106); // 10ms default + + //NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER; + NextTransferTime = DELAY_ARM2AIR_AS_READER << 1; + + // Start the timer + StartCountSspClk(); +} + +int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { + uint8_t parity[MAX_PARITY_SIZE] = {0x00}; uint8_t real_cmd[cmd_len+4]; real_cmd[0] = 0x0a; //I-Block // put block number into the PCB @@ -1866,12 +1954,14 @@ int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { ReaderTransmit(real_cmd, cmd_len+4, NULL); size_t len = ReaderReceive(data, parity); + //DATA LINK ERROR + if (!len) return 0; + uint8_t *data_bytes = (uint8_t *) data; - if (!len) - return 0; //DATA LINK ERROR + // if we received an I- or R(ACK)-Block with a block number equal to the // current block number, toggle the current block number - else if (len >= 4 // PCB+CID+CRC = 4 bytes + if (len >= 4 // PCB+CID+CRC = 4 bytes && ((data_bytes[0] & 0xC0) == 0 // I-Block || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers @@ -1886,97 +1976,126 @@ int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { // Read an ISO 14443a tag. Send out commands and store answers. // //----------------------------------------------------------------------------- -void ReaderIso14443a(UsbCommand *c) -{ +void ReaderIso14443a(UsbCommand *c) { iso14a_command_t param = c->arg[0]; - uint8_t *cmd = c->d.asBytes; size_t len = c->arg[1] & 0xffff; size_t lenbits = c->arg[1] >> 16; uint32_t timeout = c->arg[2]; + uint8_t *cmd = c->d.asBytes; uint32_t arg0 = 0; - byte_t buf[USB_CMD_DATA_SIZE]; - uint8_t par[MAX_PARITY_SIZE]; + byte_t buf[USB_CMD_DATA_SIZE] = {0x00}; + uint8_t par[MAX_PARITY_SIZE] = {0x00}; - if(param & ISO14A_CONNECT) { + if (param & ISO14A_CONNECT) clear_trace(); - } set_tracing(TRUE); - if(param & ISO14A_REQUEST_TRIGGER) { + if (param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(TRUE); - } - if(param & ISO14A_CONNECT) { + if (param & ISO14A_CONNECT) { iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); if(!(param & ISO14A_NO_SELECT)) { iso14a_card_select_t *card = (iso14a_card_select_t*)buf; - arg0 = iso14443a_select_card(NULL,card,NULL); - cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t)); + arg0 = iso14443a_select_card(NULL,card,NULL, true, 0); + cmd_send(CMD_ACK, arg0, card->uidlen, 0, buf, sizeof(iso14a_card_select_t)); + // if it fails, the cmdhf14a.c client quites.. however this one still executes. + if ( arg0 == 0 ) return; } } - if(param & ISO14A_SET_TIMEOUT) { + if (param & ISO14A_SET_TIMEOUT) iso14a_set_timeout(timeout); - } - if(param & ISO14A_APDU) { + if (param & ISO14A_APDU) { arg0 = iso14_apdu(cmd, len, buf); cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); } - if(param & ISO14A_RAW) { + if (param & ISO14A_RAW) { if(param & ISO14A_APPEND_CRC) { - AppendCrc14443a(cmd,len); + if(param & ISO14A_TOPAZMODE) { + AppendCrc14443b(cmd,len); + } else { + AppendCrc14443a(cmd,len); + } len += 2; if (lenbits) lenbits += 16; } - if(lenbits>0) { + if(lenbits>0) { // want to send a specific number of bits (e.g. short commands) + if(param & ISO14A_TOPAZMODE) { + int bits_to_send = lenbits; + uint16_t i = 0; + ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity + bits_to_send -= 7; + while (bits_to_send > 0) { + ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity + bits_to_send -= 8; + } + } else { GetParity(cmd, lenbits/8, par); - ReaderTransmitBitsPar(cmd, lenbits, par, NULL); + ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity + } + } else { // want to send complete bytes only + if(param & ISO14A_TOPAZMODE) { + uint16_t i = 0; + ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy + while (i < len) { + ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy + } } else { - ReaderTransmit(cmd,len, NULL); + ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity + } } arg0 = ReaderReceive(buf, par); cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); } - if(param & ISO14A_REQUEST_TRIGGER) { + if (param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(FALSE); - } - if(param & ISO14A_NO_DISCONNECT) { + if (param & ISO14A_NO_DISCONNECT) return; - } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + set_tracing(FALSE); LEDsoff(); } - // Determine the distance between two nonces. // Assume that the difference is small, but we don't know which is first. // Therefore try in alternating directions. int32_t dist_nt(uint32_t nt1, uint32_t nt2) { - uint16_t i; - uint32_t nttmp1, nttmp2; - if (nt1 == nt2) return 0; - - nttmp1 = nt1; - nttmp2 = nt2; - for (i = 1; i < 32768; i++) { - nttmp1 = prng_successor(nttmp1, 1); - if (nttmp1 == nt2) return i; - nttmp2 = prng_successor(nttmp2, 1); - if (nttmp2 == nt1) return -i; - } - - return(-99999); // either nt1 or nt2 are invalid nonces -} + uint16_t i; + uint32_t nttmp1 = nt1; + uint32_t nttmp2 = nt2; + for (i = 1; i < (32768/8); ++i) { + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i; + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -i; + + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+1; + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+1); + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+2; + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+2); + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+3; + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+3); + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+4; + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+4); + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+5; + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+5); + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+6; + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+6); + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+7; + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+7); + } + // either nt1 or nt2 are invalid nonces + return(-99999); +} //----------------------------------------------------------------------------- // Recover several bits of the cypher stream. This implements (first stages of) @@ -1984,157 +2103,204 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) { // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime" // (article by Nicolas T. Courtois, 2009) //----------------------------------------------------------------------------- -void ReaderMifare(bool first_try) -{ - // Mifare AUTH - uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; - uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; - static uint8_t mf_nr_ar3; - - uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; - uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; - - // free eventually allocated BigBuf memory. We want all for tracing. - BigBuf_free(); - - clear_trace(); - set_tracing(TRUE); - - byte_t nt_diff = 0; +void ReaderMifare(bool first_try, uint8_t block ) { + uint8_t mf_auth[] = { MIFARE_AUTH_KEYA, block, 0x00, 0x00 }; + uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; + uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0}; + uint8_t par_list[8] = {0,0,0,0,0,0,0,0}; + uint8_t ks_list[8] = {0,0,0,0,0,0,0,0}; + uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; + uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough - static byte_t par_low = 0; - bool led_on = TRUE; - uint8_t uid[10] ={0}; - uint32_t cuid; - + byte_t nt_diff = 0; uint32_t nt = 0; - uint32_t previous_nt = 0; + uint32_t previous_nt = 0; + uint32_t cuid = 0; + + int32_t catch_up_cycles = 0; + int32_t last_catch_up = 0; + int32_t isOK = 0; + int32_t nt_distance = 0; + + uint16_t elapsed_prng_sequences = 1; + uint16_t consecutive_resyncs = 0; + uint16_t unexpected_random = 0; + uint16_t sync_tries = 0; + + // static variables here, is re-used in the next call static uint32_t nt_attacked = 0; - byte_t par_list[8] = {0x00}; - byte_t ks_list[8] = {0x00}; + static uint32_t sync_time = 0; + static uint32_t sync_cycles = 0; + static uint8_t par_low = 0; + static uint8_t mf_nr_ar3 = 0; + + #define PRNG_SEQUENCE_LENGTH (1 << 16) + #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up. + #define MAX_SYNC_TRIES 32 - static uint32_t sync_time; - static uint32_t sync_cycles; - int catch_up_cycles = 0; - int last_catch_up = 0; - uint16_t consecutive_resyncs = 0; - int isOK = 0; + BigBuf_free(); BigBuf_Clear_ext(false); + clear_trace(); + set_tracing(TRUE); + iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); + AppendCrc14443a(mf_auth, 2); + if (first_try) { - mf_nr_ar3 = 0; - iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); sync_time = GetCountSspClk() & 0xfffffff8; - sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). + sync_cycles = PRNG_SEQUENCE_LENGTH + 1130; //65536; //0x10000 // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). + mf_nr_ar3 = 0; nt_attacked = 0; - nt = 0; - par[0] = 0; - } - else { - // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) - mf_nr_ar3++; + par_low = 0; + } else { + // we were unsuccessful on a previous call. + // Try another READER nonce (first 3 parity bits remain the same) + ++mf_nr_ar3; mf_nr_ar[3] = mf_nr_ar3; par[0] = par_low; } - LED_A_ON(); - LED_B_OFF(); - LED_C_OFF(); - - - for(uint16_t i = 0; TRUE; i++) { - + bool have_uid = FALSE; + uint8_t cascade_levels = 0; + + LED_C_ON(); + uint16_t i; + for(i = 0; TRUE; ++i) { + WDT_HIT(); // Test if the action was cancelled if(BUTTON_PRESS()) { + isOK = -1; break; } - LED_C_ON(); - - if(!iso14443a_select_card(uid, NULL, &cuid)) { - if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); - continue; + // this part is from Piwi's faster nonce collecting part in Hardnested. + if (!have_uid) { // need a full select cycle to get the uid first + iso14a_card_select_t card_info; + if(!iso14443a_select_card(uid, &card_info, &cuid, true, 0)) { + if (MF_DBGLEVEL >= 4) Dbprintf("Mifare: Can't select card (ALL)"); + break; + } + switch (card_info.uidlen) { + case 4 : cascade_levels = 1; break; + case 7 : cascade_levels = 2; break; + case 10: cascade_levels = 3; break; + default: break; + } + have_uid = TRUE; + } else { // no need for anticollision. We can directly select the card + if(!iso14443a_select_card(uid, NULL, &cuid, false, cascade_levels)) { + if (MF_DBGLEVEL >= 4) Dbprintf("Mifare: Can't select card (UID)"); + continue; + } } - - sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; + + // Sending timeslot of ISO14443a frame + sync_time = (sync_time & 0xfffffff8 ) + sync_cycles + catch_up_cycles; catch_up_cycles = 0; - + // if we missed the sync time already, advance to the next nonce repeat - while(GetCountSspClk() > sync_time) { - sync_time = (sync_time & 0xfffffff8) + sync_cycles; - } + while( GetCountSspClk() > sync_time) { + ++elapsed_prng_sequences; + sync_time = (sync_time & 0xfffffff8 ) + sync_cycles; + } - // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) + // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); - // Receive the (4 Byte) "random" nonce - if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) { - if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); + // Receive the (4 Byte) "random" nonce from TAG + if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) continue; - } previous_nt = nt; nt = bytes_to_num(receivedAnswer, 4); - + // Transmit reader nonce with fake par ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); - + + WDT_HIT(); + LED_B_ON(); if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet - int nt_distance = dist_nt(previous_nt, nt); + + nt_distance = dist_nt(previous_nt, nt); + + // if no distance between, then we are in sync. if (nt_distance == 0) { nt_attacked = nt; - } - else { - if (nt_distance == -99999) { // invalid nonce received, try again - continue; + } else { + if (nt_distance == -99999) { // invalid nonce received + ++unexpected_random; + if (unexpected_random > MAX_UNEXPECTED_RANDOM) { + isOK = -3; // Card has an unpredictable PRNG. Give up + break; + } else { + if (sync_cycles <= 0) sync_cycles += PRNG_SEQUENCE_LENGTH; + LED_B_OFF(); + continue; // continue trying... + } } - sync_cycles = (sync_cycles - nt_distance); - if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles); + + if (++sync_tries > MAX_SYNC_TRIES) { + isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly + break; + } + + sync_cycles = (sync_cycles - nt_distance)/elapsed_prng_sequences; + + if (sync_cycles <= 0) + sync_cycles += PRNG_SEQUENCE_LENGTH; + + if (MF_DBGLEVEL >= 4) + Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles); + + LED_B_OFF(); continue; } } + LED_B_OFF(); if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... - catch_up_cycles = -dist_nt(nt_attacked, nt); + + catch_up_cycles = ABS(dist_nt(nt_attacked, nt)); if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. catch_up_cycles = 0; continue; - } + } + // average? + catch_up_cycles /= elapsed_prng_sequences; + if (catch_up_cycles == last_catch_up) { - consecutive_resyncs++; - } - else { + ++consecutive_resyncs; + } else { last_catch_up = catch_up_cycles; consecutive_resyncs = 0; - } + } + if (consecutive_resyncs < 3) { - if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); - } - else { - sync_cycles = sync_cycles + catch_up_cycles; - if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); + if (MF_DBGLEVEL >= 4) + Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, catch_up_cycles, consecutive_resyncs); + } else { + sync_cycles += catch_up_cycles; + + if (MF_DBGLEVEL >= 4) + Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, catch_up_cycles, sync_cycles); + + last_catch_up = 0; + catch_up_cycles = 0; + consecutive_resyncs = 0; } continue; } - consecutive_resyncs = 0; - // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding - if (ReaderReceive(receivedAnswer, receivedAnswerPar)) - { + if (ReaderReceive(receivedAnswer, receivedAnswerPar)) { catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer if (nt_diff == 0) - { par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change - } - - led_on = !led_on; - if(led_on) LED_B_ON(); else LED_B_OFF(); par_list[nt_diff] = SwapBits(par[0], 8); - ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; + ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; // xor with NACK value to get keystream // Test if the information is complete if (nt_diff == 0x07) { @@ -2145,32 +2311,41 @@ void ReaderMifare(bool first_try) nt_diff = (nt_diff + 1) & 0x07; mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); par[0] = par_low; + } else { - if (nt_diff == 0 && first_try) - { + // No NACK. + if (nt_diff == 0 && first_try) { par[0]++; + if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK. + isOK = -2; + break; + } } else { + // Why this? par[0] = ((par[0] & 0x1F) + 1) | par_low; } } - } - + + // reset the resyncs since we got a complete transaction on right time. + consecutive_resyncs = 0; + } // end for loop mf_nr_ar[3] &= 0x1F; + + if (MF_DBGLEVEL >= 4) Dbprintf("Number of sent auth requestes: %u", i); - byte_t buf[28]; - memcpy(buf + 0, uid, 4); + uint8_t buf[28] = {0x00}; + memset(buf, 0x00, sizeof(buf)); + num_to_bytes(cuid, 4, buf); num_to_bytes(nt, 4, buf + 4); memcpy(buf + 8, par_list, 8); memcpy(buf + 16, ks_list, 8); memcpy(buf + 24, mf_nr_ar, 4); - cmd_send(CMD_ACK,isOK,0,0,buf,28); + cmd_send(CMD_ACK, isOK, 0, 0, buf, sizeof(buf) ); - // Thats it... FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - set_tracing(FALSE); } @@ -2178,118 +2353,165 @@ void ReaderMifare(bool first_try) *MIFARE 1K simulate. * *@param flags : - * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK - * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that - * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that - * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later + * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK + * FLAG_4B_UID_IN_DATA - use 4-byte UID in the data-section + * FLAG_7B_UID_IN_DATA - use 7-byte UID in the data-section + * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section + * FLAG_UID_IN_EMUL - use 4-byte UID from emulator memory + * FLAG_NR_AR_ATTACK - collect NR_AR responses for bruteforcing later *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite */ -void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) -{ +void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) { int cardSTATE = MFEMUL_NOFIELD; - int _7BUID = 0; + int _UID_LEN = 0; // 4, 7, 10 int vHf = 0; // in mV - int res; + int res = 0; uint32_t selTimer = 0; uint32_t authTimer = 0; uint16_t len = 0; uint8_t cardWRBL = 0; uint8_t cardAUTHSC = 0; uint8_t cardAUTHKEY = 0xff; // no authentication - uint32_t cardRr = 0; uint32_t cuid = 0; - //uint32_t rn_enc = 0; uint32_t ans = 0; uint32_t cardINTREG = 0; uint8_t cardINTBLOCK = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; - uint32_t numReads = 0;//Counts numer of times reader read a block - uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; - uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; - uint8_t response[MAX_MIFARE_FRAME_SIZE]; - uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; + uint32_t numReads = 0; //Counts numer of times reader read a block + uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00}; + uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00}; + uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00}; + uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00}; - uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID - uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; - uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! - uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; - uint8_t rSAK1[] = {0x04, 0xda, 0x17}; + uint8_t atqa[] = {0x04, 0x00}; // Mifare classic 1k + uint8_t sak_4[] = {0x0C, 0x00, 0x00}; // CL1 - 4b uid + uint8_t sak_7[] = {0x0C, 0x00, 0x00}; // CL2 - 7b uid + uint8_t sak_10[] = {0x0C, 0x00, 0x00}; // CL3 - 10b uid + //uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini + + uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; + uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; + uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; - uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; + uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01}; // very random nonce + //uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this? uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; - //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2 + // Here, we collect CUID, NT, NR, AR, CUID2, NT2, NR2, AR2 // This can be used in a reader-only attack. - // (it can also be retrieved via 'hf 14a list', but hey... - uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0}; + uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0}; uint8_t ar_nr_collected = 0; - // free eventually allocated BigBuf memory but keep Emulator Memory - BigBuf_free_keep_EM(); - - // clear trace - clear_trace(); - set_tracing(TRUE); - // Authenticate response - nonce uint32_t nonce = bytes_to_num(rAUTH_NT, 4); + ar_nr_responses[1] = nonce; //-- Determine the UID - // Can be set from emulator memory, incoming data - // and can be 7 or 4 bytes long - if (flags & FLAG_4B_UID_IN_DATA) - { - // 4B uid comes from data-portion of packet - memcpy(rUIDBCC1,datain,4); - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - - } else if (flags & FLAG_7B_UID_IN_DATA) { - // 7B uid comes from data-portion of packet - memcpy(&rUIDBCC1[1],datain,3); - memcpy(rUIDBCC2, datain+3, 4); - _7BUID = true; - } else { - // get UID from emul memory - emlGetMemBt(receivedCmd, 7, 1); - _7BUID = !(receivedCmd[0] == 0x00); - if (!_7BUID) { // ---------- 4BUID - emlGetMemBt(rUIDBCC1, 0, 4); - } else { // ---------- 7BUID - emlGetMemBt(&rUIDBCC1[1], 0, 3); - emlGetMemBt(rUIDBCC2, 3, 4); - } + // Can be set from emulator memory or incoming data + // Length: 4,7,or 10 bytes + if ( (flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL) + emlGetMemBt(datain, 0, 10); // load 10bytes from EMUL to the datain pointer. to be used below. + + if ( (flags & FLAG_4B_UID_IN_DATA) == FLAG_4B_UID_IN_DATA) { + memcpy(rUIDBCC1, datain, 4); + _UID_LEN = 4; + } else if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) { + memcpy(&rUIDBCC1[1], datain, 3); + memcpy( rUIDBCC2, datain+3, 4); + _UID_LEN = 7; + } else if ( (flags & FLAG_10B_UID_IN_DATA) == FLAG_10B_UID_IN_DATA) { + memcpy(&rUIDBCC1[1], datain, 3); + memcpy(&rUIDBCC2[1], datain+3, 3); + memcpy( rUIDBCC3, datain+6, 4); + _UID_LEN = 10; } - /* - * Regardless of what method was used to set the UID, set fifth byte and modify - * the ATQA for 4 or 7-byte UID - */ - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - if (_7BUID) { - rATQA[0] = 0x44; - rUIDBCC1[0] = 0x88; - rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; + switch (_UID_LEN) { + case 4: + sak_4[0] &= 0xFB; + // save CUID + ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC1, 4); + // BCC + rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; + if (MF_DBGLEVEL >= 2) { + Dbprintf("4B UID: %02x%02x%02x%02x", + rUIDBCC1[0], + rUIDBCC1[1], + rUIDBCC1[2], + rUIDBCC1[3] + ); + } + break; + case 7: + atqa[0] |= 0x40; + sak_7[0] &= 0xFB; + // save CUID + ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC2, 4); + // CascadeTag, CT + rUIDBCC1[0] = 0x88; + // BCC + rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; + rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; + if (MF_DBGLEVEL >= 2) { + Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x", + rUIDBCC1[1], + rUIDBCC1[2], + rUIDBCC1[3], + rUIDBCC2[0], + rUIDBCC2[1], + rUIDBCC2[2], + rUIDBCC2[3] + ); + } + break; + case 10: + atqa[0] |= 0x80; + sak_10[0] &= 0xFB; + // save CUID + ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC3, 4); + // CascadeTag, CT + rUIDBCC1[0] = 0x88; + rUIDBCC2[0] = 0x88; + // BCC + rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; + rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; + rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3]; + + if (MF_DBGLEVEL >= 2) { + Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", + rUIDBCC1[1], + rUIDBCC1[2], + rUIDBCC1[3], + rUIDBCC2[1], + rUIDBCC2[2], + rUIDBCC2[3], + rUIDBCC3[0], + rUIDBCC3[1], + rUIDBCC3[2], + rUIDBCC3[3] + ); + } + break; + default: + break; } - + // calc some crcs + ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]); + ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]); + ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]); + // We need to listen to the high-frequency, peak-detected path. iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); - - if (MF_DBGLEVEL >= 1) { - if (!_7BUID) { - Dbprintf("4B UID: %02x%02x%02x%02x", - rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]); - } else { - Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x", - rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], - rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]); - } - } + // free eventually allocated BigBuf memory but keep Emulator Memory + BigBuf_free_keep_EM(); + clear_trace(); + set_tracing(TRUE); bool finished = FALSE; - while (!BUTTON_PRESS() && !finished) { + while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) { WDT_HIT(); // find reader field @@ -2300,8 +2522,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * LED_A_ON(); } } - if(cardSTATE == MFEMUL_NOFIELD) continue; + if (cardSTATE == MFEMUL_NOFIELD) continue; + //Now, get data res = EmGetCmd(receivedCmd, &len, receivedCmd_par); if (res == 2) { //Field is off! cardSTATE = MFEMUL_NOFIELD; @@ -2312,16 +2535,14 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } // REQ or WUP request in ANY state and WUP in HALTED state - if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) { + if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) { selTimer = GetTickCount(); - EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52)); + EmSendCmdEx(atqa, sizeof(atqa), (receivedCmd[0] == ISO14443A_CMD_WUPA)); cardSTATE = MFEMUL_SELECT1; - - // init crypto block - LED_B_OFF(); - LED_C_OFF(); crypto1_destroy(pcs); cardAUTHKEY = 0xff; + LEDsoff(); + nonce++; continue; } @@ -2333,155 +2554,183 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } case MFEMUL_SELECT1:{ - // select all - if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) { + if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) { if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received"); EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1)); break; } - - if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 ) - { - Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]); - } // select card if (len == 9 && - (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { - EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK)); - cuid = bytes_to_num(rUIDBCC1, 4); - if (!_7BUID) { - cardSTATE = MFEMUL_WORK; - LED_B_ON(); - if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); - break; - } else { - cardSTATE = MFEMUL_SELECT2; + ( receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && + receivedCmd[1] == 0x70 && + memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { + + // SAK 4b + EmSendCmd(sak_4, sizeof(sak_4)); + switch(_UID_LEN){ + case 4: + cardSTATE = MFEMUL_WORK; + LED_B_ON(); + if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); + continue; + case 7: + case 10: + cardSTATE = MFEMUL_SELECT2; + continue; + default:break; } + } else { + cardSTATE_TO_IDLE(); + } + break; + } + case MFEMUL_SELECT2:{ + if (!len) { + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); + break; } + if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) { + EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); + break; + } + if (len == 9 && + (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && + receivedCmd[1] == 0x70 && + memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) { + + EmSendCmd(sak_7, sizeof(sak_7)); + switch(_UID_LEN){ + case 7: + cardSTATE = MFEMUL_WORK; + LED_B_ON(); + if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); + continue; + case 10: + cardSTATE = MFEMUL_SELECT3; + continue; + default:break; + } + } + cardSTATE_TO_IDLE(); + break; + } + case MFEMUL_SELECT3:{ + if (!len) { + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); + break; + } + if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) { + EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3)); + break; + } + if (len == 9 && + (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && + receivedCmd[1] == 0x70 && + memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) { + + EmSendCmd(sak_10, sizeof(sak_10)); + cardSTATE = MFEMUL_WORK; + LED_B_ON(); + if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer); + break; + } + cardSTATE_TO_IDLE(); break; } case MFEMUL_AUTH1:{ - if( len != 8) - { + if( len != 8) { cardSTATE_TO_IDLE(); LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } - uint32_t ar = bytes_to_num(receivedCmd, 4); - uint32_t nr = bytes_to_num(&receivedCmd[4], 4); + uint32_t nr = bytes_to_num(receivedCmd, 4); + uint32_t ar = bytes_to_num(&receivedCmd[4], 4); //Collect AR/NR - if(ar_nr_collected < 2 && cardAUTHSC == 2){ - if(ar_nr_responses[2] != ar) - {// Avoid duplicates... probably not necessary, ar should vary. - ar_nr_responses[ar_nr_collected*4] = cuid; + //if(ar_nr_collected < 2 && cardAUTHSC == 2){ + if(ar_nr_collected < 2) { + //if(ar_nr_responses[2] != nr) { + ar_nr_responses[ar_nr_collected*4] = cuid; ar_nr_responses[ar_nr_collected*4+1] = nonce; - ar_nr_responses[ar_nr_collected*4+2] = ar; - ar_nr_responses[ar_nr_collected*4+3] = nr; + ar_nr_responses[ar_nr_collected*4+2] = nr; + ar_nr_responses[ar_nr_collected*4+3] = ar; ar_nr_collected++; - } + //} + // Interactive mode flag, means we need to send ACK - if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2) - { - finished = true; - } + finished = ( ((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE)&& ar_nr_collected == 2); } - - // --- crypto + /* crypto1_word(pcs, ar , 1); cardRr = nr ^ crypto1_word(pcs, 0, 0); - - // test if auth OK + + test if auth OK if (cardRr != prng_successor(nonce, 64)){ - if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", - cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', + + if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", + cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', cardRr, prng_successor(nonce, 64)); - // Shouldn't we respond anything here? - // Right now, we don't nack or anything, which causes the - // reader to do a WUPA after a while. /Martin - // -- which is the correct response. /piwi + Shouldn't we respond anything here? + Right now, we don't nack or anything, which causes the + reader to do a WUPA after a while. /Martin + -- which is the correct response. /piwi cardSTATE_TO_IDLE(); LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } - + */ + ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); - num_to_bytes(ans, 4, rAUTH_AT); - // --- crypto EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); LED_C_ON(); - cardSTATE = MFEMUL_WORK; - if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", - cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', - GetTickCount() - authTimer); - break; - } - case MFEMUL_SELECT2:{ - if (!len) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - break; - } - if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { - EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); - break; - } - - // select 2 card - if (len == 9 && - (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { - EmSendCmd(rSAK, sizeof(rSAK)); - cuid = bytes_to_num(rUIDBCC2, 4); - cardSTATE = MFEMUL_WORK; - LED_B_ON(); - if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); - break; - } - // i guess there is a command). go into the work state. - if (len != 4) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - break; + if (MF_DBGLEVEL >= 4) { + Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", + cardAUTHSC, + cardAUTHKEY == 0 ? 'A' : 'B', + GetTickCount() - authTimer + ); } cardSTATE = MFEMUL_WORK; - //goto lbWORK; - //intentional fall-through to the next case-stmt + break; } - case MFEMUL_WORK:{ if (len == 0) { LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; - } - + } bool encrypted_data = (cardAUTHKEY != 0xFF) ; - if(encrypted_data) { - // decrypt seqence + if(encrypted_data) mf_crypto1_decrypt(pcs, receivedCmd, len); - } - if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { + if (len == 4 && (receivedCmd[0] == MIFARE_AUTH_KEYA || + receivedCmd[0] == MIFARE_AUTH_KEYB) ) { + authTimer = GetTickCount(); cardAUTHSC = receivedCmd[1] / 4; // received block num - cardAUTHKEY = receivedCmd[0] - 0x60; - crypto1_destroy(pcs);//Added by martin + cardAUTHKEY = receivedCmd[0] - 0x60; // & 1 + crypto1_destroy(pcs); crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); - if (!encrypted_data) { // first authentication - if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); - + if (!encrypted_data) { + // first authentication crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce - } else { // nested authentication - if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); + + if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); + + } else { + // nested authentication ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); num_to_bytes(ans, 4, rAUTH_AT); + + if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); } EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); - //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]); cardSTATE = MFEMUL_AUTH1; break; } @@ -2504,29 +2753,29 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } - if(receivedCmd[0] == 0x30 // read block - || receivedCmd[0] == 0xA0 // write block - || receivedCmd[0] == 0xC0 // inc - || receivedCmd[0] == 0xC1 // dec - || receivedCmd[0] == 0xC2 // restore - || receivedCmd[0] == 0xB0) { // transfer + if ( receivedCmd[0] == ISO14443A_CMD_READBLOCK || + receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK || + receivedCmd[0] == MIFARE_CMD_INC || + receivedCmd[0] == MIFARE_CMD_DEC || + receivedCmd[0] == MIFARE_CMD_RESTORE || + receivedCmd[0] == MIFARE_CMD_TRANSFER ) { + if (receivedCmd[1] >= 16 * 4) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); + if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); break; } if (receivedCmd[1] / 4 != cardAUTHSC) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); + if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); break; } } // read block - if (receivedCmd[0] == 0x30) { - if (MF_DBGLEVEL >= 4) { - Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]); - } + if (receivedCmd[0] == ISO14443A_CMD_READBLOCK) { + if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)", receivedCmd[1], receivedCmd[1]); + emlGetMem(response, receivedCmd[1], 1); AppendCrc14443a(response, 16); mf_crypto1_encrypt(pcs, response, 18, response_par); @@ -2539,34 +2788,35 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } // write block - if (receivedCmd[0] == 0xA0) { - if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]); + if (receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK) { + if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", receivedCmd[1], receivedCmd[1]); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); cardSTATE = MFEMUL_WRITEBL2; cardWRBL = receivedCmd[1]; break; } // increment, decrement, restore - if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) { - if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); + if ( receivedCmd[0] == MIFARE_CMD_INC || + receivedCmd[0] == MIFARE_CMD_DEC || + receivedCmd[0] == MIFARE_CMD_RESTORE) { + + if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0], receivedCmd[1], receivedCmd[1]); + if (emlCheckValBl(receivedCmd[1])) { - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); + if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - if (receivedCmd[0] == 0xC1) - cardSTATE = MFEMUL_INTREG_INC; - if (receivedCmd[0] == 0xC0) - cardSTATE = MFEMUL_INTREG_DEC; - if (receivedCmd[0] == 0xC2) - cardSTATE = MFEMUL_INTREG_REST; + if (receivedCmd[0] == MIFARE_CMD_INC) cardSTATE = MFEMUL_INTREG_INC; + if (receivedCmd[0] == MIFARE_CMD_DEC) cardSTATE = MFEMUL_INTREG_DEC; + if (receivedCmd[0] == MIFARE_CMD_RESTORE) cardSTATE = MFEMUL_INTREG_REST; cardWRBL = receivedCmd[1]; break; } // transfer - if (receivedCmd[0] == 0xB0) { - if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); + if (receivedCmd[0] == MIFARE_CMD_TRANSFER) { + if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)", receivedCmd[0], receivedCmd[1], receivedCmd[1]); if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); else @@ -2574,7 +2824,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } // halt - if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) { + if (receivedCmd[0] == ISO14443A_CMD_HALT && receivedCmd[1] == 0x00) { LED_B_OFF(); LED_C_OFF(); cardSTATE = MFEMUL_HALTED; @@ -2583,7 +2833,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } // RATS - if (receivedCmd[0] == 0xe0) {//RATS + if (receivedCmd[0] == ISO14443A_CMD_RATS) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } @@ -2593,7 +2843,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } case MFEMUL_WRITEBL2:{ - if (len == 18){ + if (len == 18) { mf_crypto1_decrypt(pcs, receivedCmd, len); emlSetMem(receivedCmd, cardWRBL, 1); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); @@ -2604,7 +2854,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } break; } - case MFEMUL_INTREG_INC:{ mf_crypto1_decrypt(pcs, receivedCmd, len); memcpy(&ans, receivedCmd, 4); @@ -2646,76 +2895,73 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } } - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LEDsoff(); - - if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK - { + // Interactive mode flag, means we need to send ACK + if((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE) { //May just aswell send the collected ar_nr in the response aswell - cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,1,0,&ar_nr_responses,ar_nr_collected*4*4); + uint8_t len = ar_nr_collected * 4 * 4; + cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len); } - if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) - { + if( ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) && MF_DBGLEVEL >= 1 ) { if(ar_nr_collected > 1 ) { Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); - Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", - ar_nr_responses[0], // UID - ar_nr_responses[1], //NT - ar_nr_responses[2], //AR1 - ar_nr_responses[3], //NR1 - ar_nr_responses[6], //AR2 - ar_nr_responses[7] //NR2 - ); + Dbprintf("../tools/mfkey/mfkey32v2.exe %08x %08x %08x %08x %08x %08x %08x", + ar_nr_responses[0], // CUID + ar_nr_responses[1], // NT1 + ar_nr_responses[2], // NR1 + ar_nr_responses[3], // AR1 + //ar_nr_responses[4], // CUID2 + ar_nr_responses[5], // NT2 + ar_nr_responses[6], // NR2 + ar_nr_responses[7] // AR2 + ); } else { Dbprintf("Failed to obtain two AR/NR pairs!"); - if(ar_nr_collected > 0 ) { - Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x", - ar_nr_responses[0], // UID - ar_nr_responses[1], //NT - ar_nr_responses[2], //AR1 - ar_nr_responses[3] //NR1 - ); + if(ar_nr_collected == 1 ) { + Dbprintf("Only got these: UID=%08x, nonce=%08x, NR1=%08x, AR1=%08x", + ar_nr_responses[0], // CUID + ar_nr_responses[1], // NT + ar_nr_responses[2], // NR1 + ar_nr_responses[3] // AR1 + ); } } } - if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); + if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LEDsoff(); + set_tracing(FALSE); } - //----------------------------------------------------------------------------- // MIFARE sniffer. // +// if no activity for 2sec, it sends the collected data to the client. //----------------------------------------------------------------------------- +// "hf mf sniff" void RAMFUNC SniffMifare(uint8_t param) { - // param: - // bit 0 - trigger from first card answer - // bit 1 - trigger from first reader 7-bit request - // C(red) A(yellow) B(green) LEDsoff(); - // init trace buffer + + // free eventually allocated BigBuf memory + BigBuf_free(); BigBuf_Clear_ext(false); clear_trace(); set_tracing(TRUE); // The command (reader -> tag) that we're receiving. - // The length of a received command will in most cases be no more than 18 bytes. - // So 32 should be enough! - uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; - uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE]; + uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00}; + uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; + // The response (tag -> reader) that we're receiving. - uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE]; - uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE]; + uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE] = {0x00}; + uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE] = {0x00}; + + iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); - // As we receive stuff, we copy it from receivedCmd or receivedResponse - // into trace, along with its length and other annotations. - //uint8_t *trace = (uint8_t *)BigBuf; - - // free eventually allocated BigBuf memory - BigBuf_free(); // allocate the DMA buffer, used to stream samples from the FPGA + // [iceman] is this sniffed data unsigned? uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); uint8_t *data = dmaBuf; uint8_t previous_data = 0; @@ -2724,33 +2970,30 @@ void RAMFUNC SniffMifare(uint8_t param) { bool ReaderIsActive = FALSE; bool TagIsActive = FALSE; - iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); - // Set up the demodulator for tag -> reader responses. DemodInit(receivedResponse, receivedResponsePar); // Set up the demodulator for the reader -> tag commands UartInit(receivedCmd, receivedCmdPar); - // Setup for the DMA. - FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. + // set transfer address and number of bytes. Start transfer. + FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); LED_D_OFF(); - - // init sniffer + MfSniffInit(); // And now we loop, receiving samples. - for(uint32_t sniffCounter = 0; TRUE; ) { + for(uint32_t sniffCounter = 0;; ) { + + LED_A_ON(); + WDT_HIT(); if(BUTTON_PRESS()) { DbpString("cancelled by button"); break; } - - LED_A_ON(); - WDT_HIT(); - + if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time // check if a transaction is completed (timeout after 2000ms). // if yes, stop the DMA transfer and send what we have so far to the client @@ -2767,11 +3010,12 @@ void RAMFUNC SniffMifare(uint8_t param) { int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred - if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred + + if (readBufDataP <= dmaBufDataP) // we are processing the same block of data which is currently being transferred dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed - } else { + else dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed - } + // test for length of buffer if(dataLen > maxDataLen) { // we are more behind than ever... maxDataLen = dataLen; @@ -2786,7 +3030,7 @@ void RAMFUNC SniffMifare(uint8_t param) { if (!AT91C_BASE_PDC_SSC->PDC_RCR) { AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; - Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary + Dbprintf("RxEmpty ERROR, data length:%d", dataLen); // temporary } // secondary buffer sets as primary, secondary buffer was stopped if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { @@ -2798,30 +3042,30 @@ void RAMFUNC SniffMifare(uint8_t param) { if (sniffCounter & 0x01) { - if(!TagIsActive) { // no need to try decoding tag data if the reader is sending + // no need to try decoding tag data if the reader is sending + if(!TagIsActive) { uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { LED_C_INV(); + if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break; - /* And ready to receive another command. */ - UartReset(); - - /* And also reset the demod code */ + UartInit(receivedCmd, receivedCmdPar); DemodReset(); } ReaderIsActive = (Uart.state != STATE_UNSYNCD); } - if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending + // no need to try decoding tag data if the reader is sending + if(!ReaderIsActive) { uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { LED_C_INV(); if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break; - // And ready to receive another response. DemodReset(); + UartInit(receivedCmd, receivedCmdPar); } TagIsActive = (Demod.state != DEMOD_UNSYNCD); } @@ -2830,17 +3074,17 @@ void RAMFUNC SniffMifare(uint8_t param) { previous_data = *data; sniffCounter++; data++; - if(data == dmaBuf + DMA_BUFFER_SIZE) { + + if(data == dmaBuf + DMA_BUFFER_SIZE) data = dmaBuf; - } } // main cycle - - DbpString("COMMAND FINISHED"); - + + if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); + FpgaDisableSscDma(); MfSniffEnd(); - - Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); + set_tracing(FALSE); }