X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/f89c705002842291e39d000f27dbaea1ddd78917..1a4b67382ab95dbfdc3872e1dc94cb7c8f0e2854:/client/nonce2key/crapto1.c diff --git a/client/nonce2key/crapto1.c b/client/nonce2key/crapto1.c index c0a158b5..4ecc5943 100644 --- a/client/nonce2key/crapto1.c +++ b/client/nonce2key/crapto1.c @@ -15,7 +15,7 @@ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, US$ - Copyright (C) 2008-2008 bla + Copyright (C) 2008-2014 bla */ #include "crapto1.h" #include @@ -33,7 +33,7 @@ static void __attribute__((constructor)) fill_lut() static void quicksort(uint32_t* const start, uint32_t* const stop) { - uint32_t *it = start + 1, *rit = stop; + uint32_t *it = start + 1, *rit = stop, t; if(it > rit) return; @@ -44,12 +44,12 @@ static void quicksort(uint32_t* const start, uint32_t* const stop) else if(*rit > *start) --rit; else - *it ^= (*it ^= *rit, *rit ^= *it); + t = *it, *it = *rit, *rit = t; if(*rit >= *start) --rit; if(rit != start) - *rit ^= (*rit ^= *start, *start ^= *rit); + t = *rit, *rit = *start, *start = t; quicksort(start, rit - 1); quicksort(rit + 1, stop); @@ -57,8 +57,7 @@ static void quicksort(uint32_t* const start, uint32_t* const stop) /** binsearch * Binary search for the first occurence of *stop's MSB in sorted [start,stop] */ -static inline uint32_t* -binsearch(uint32_t *start, uint32_t *stop) +static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop) { uint32_t mid, val = *stop & 0xff000000; while(start != stop) @@ -108,18 +107,19 @@ extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in /** extend_table_simple * using a bit of the keystream extend the table of possible lfsr states */ -static inline void -extend_table_simple(uint32_t *tbl, uint32_t **end, int bit) +static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit) { for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) - if(filter(*tbl) ^ filter(*tbl | 1)) { + if(filter(*tbl) ^ filter(*tbl | 1)) { // replace *tbl |= filter(*tbl) ^ bit; - } else if(filter(*tbl) == bit) { + } else if(filter(*tbl) == bit) { // insert *++*end = *++tbl; *tbl = tbl[-1] | 1; - } else + } else // drop *tbl-- = *(*end)--; } + + /** recover * recursively narrow down the search space, 4 bits of keystream at a time */ @@ -143,13 +143,16 @@ recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks, } for(i = 0; i < 4 && rem--; i++) { - extend_table(o_head, &o_tail, (oks >>= 1) & 1, - LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0); + oks >>= 1; + eks >>= 1; + in >>= 2; + extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, + LF_POLY_ODD << 1, 0); if(o_head > o_tail) return sl; - extend_table(e_head, &e_tail, (eks >>= 1) & 1, - LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3); + extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD, + LF_POLY_EVEN << 1 | 1, in & 3); if(e_head > e_tail) return sl; } @@ -163,7 +166,7 @@ recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks, e_tail = binsearch(e_head, e = e_tail); sl = recover(o_tail--, o, oks, e_tail--, e, eks, rem, sl, in); - } + } else if(*o_tail > *e_tail) o_tail = binsearch(o_head, o_tail) - 1; else @@ -183,6 +186,7 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in) uint32_t *even_head = 0, *even_tail = 0, eks = 0; int i; + // split the keystream into an odd and even part for(i = 31; i >= 0; i -= 2) oks = oks << 1 | BEBIT(ks2, i); for(i = 30; i >= 0; i -= 2) @@ -191,11 +195,15 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in) odd_head = odd_tail = malloc(sizeof(uint32_t) << 21); even_head = even_tail = malloc(sizeof(uint32_t) << 21); statelist = malloc(sizeof(struct Crypto1State) << 18); - if(!odd_tail-- || !even_tail-- || !statelist) + if(!odd_tail-- || !even_tail-- || !statelist) { + free(statelist); + statelist = 0; goto out; + } statelist->odd = statelist->even = 0; + // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream for(i = 1 << 20; i >= 0; --i) { if(filter(i) == (oks & 1)) *++odd_tail = i; @@ -203,11 +211,15 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in) *++even_tail = i; } + // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even): for(i = 0; i < 4; i++) { extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1); extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1); } + // the statelists now contain all states which could have generated the last 10 Bits of the keystream. + // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in" + // parameter into account. in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1); @@ -255,12 +267,12 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3) sl->odd = sl->even = 0; for(i = 30; i >= 0; i -= 2) { - oks[i >> 1] = BIT(ks2, i ^ 24); - oks[16 + (i >> 1)] = BIT(ks3, i ^ 24); + oks[i >> 1] = BEBIT(ks2, i); + oks[16 + (i >> 1)] = BEBIT(ks3, i); } for(i = 31; i >= 0; i -= 2) { - eks[i >> 1] = BIT(ks2, i ^ 24); - eks[16 + (i >> 1)] = BIT(ks3, i ^ 24); + eks[i >> 1] = BEBIT(ks2, i); + eks[16 + (i >> 1)] = BEBIT(ks3, i); } for(i = 0xfffff; i >= 0; --i) { @@ -311,38 +323,95 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3) /** lfsr_rollback_bit * Rollback the shift register in order to get previous states */ -void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb) +uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb) { int out; + uint8_t ret; + uint32_t t; s->odd &= 0xffffff; - s->odd ^= (s->odd ^= s->even, s->even ^= s->odd); + t = s->odd, s->odd = s->even, s->even = t; out = s->even & 1; out ^= LF_POLY_EVEN & (s->even >>= 1); out ^= LF_POLY_ODD & s->odd; out ^= !!in; - out ^= filter(s->odd) & !!fb; + out ^= (ret = filter(s->odd)) & !!fb; s->even |= parity(out) << 23; + return ret; } /** lfsr_rollback_byte * Rollback the shift register in order to get previous states */ -void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb) +uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb) { - int i; + /* + int i, ret = 0; for (i = 7; i >= 0; --i) - lfsr_rollback_bit(s, BEBIT(in, i), fb); + ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i; +*/ +// unfold loop 20160112 + uint8_t ret = 0; + ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7; + ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6; + ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5; + ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4; + ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3; + ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2; + ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1; + ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0; + return ret; } /** lfsr_rollback_word * Rollback the shift register in order to get previous states */ -void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb) +uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb) { + /* int i; + uint32_t ret = 0; for (i = 31; i >= 0; --i) - lfsr_rollback_bit(s, BEBIT(in, i), fb); + ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24); +*/ +// unfold loop 20160112 + uint32_t ret = 0; + ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24); + + ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24); + + ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24); + + ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24); + return ret; } /** nonce_distance @@ -376,82 +445,62 @@ static uint32_t fastfwd[2][8] = { * Described in the "dark side" paper. It returns an -1 terminated array * of possible partial(21 bit) secret state. * The required keystream(ks) needs to contain the keystream that was used to - * encrypt the NACK which is observed when varying only the 4 last bits of Nr + * encrypt the NACK which is observed when varying only the 3 last bits of Nr * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3 */ uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd) { - uint32_t *candidates = malloc(4 << 21); + uint32_t *candidates = malloc(4 << 10); + if(!candidates) return 0; + uint32_t c, entry; - int size, i; - - if(!candidates) - return 0; - - size = (1 << 21) - 1; - for(i = 0; i <= size; ++i) - candidates[i] = i; - - for(c = 0; c < 8; ++c) - for(i = 0;i <= size; ++i) { - entry = candidates[i] ^ fastfwd[isodd][c]; + int size = 0, i, good; - if(filter(entry >> 1) == BIT(ks[c], isodd)) - if(filter(entry) == BIT(ks[c], isodd + 2)) - continue; - - candidates[i--] = candidates[size--]; + for(i = 0; i < 1 << 21; ++i) { + for(c = 0, good = 1; good && c < 8; ++c) { + entry = i ^ fastfwd[isodd][c]; + good &= (BIT(ks[c], isodd) == filter(entry >> 1)); + good &= (BIT(ks[c], isodd + 2) == filter(entry)); } + if(good) + candidates[size++] = i; + } - candidates[size + 1] = -1; + candidates[size] = -1; return candidates; } -/** brute_top +/** check_pfx_parity * helper function which eliminates possible secret states using parity bits */ -static struct Crypto1State* -brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8], - uint32_t odd, uint32_t even, struct Crypto1State* sl) +static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl) { - struct Crypto1State s; - uint32_t ks1, nr, ks2, rr, ks3, good, c; - - for(c = 0; c < 8; ++c) { - s.odd = odd ^ fastfwd[1][c]; - s.even = even ^ fastfwd[0][c]; - - lfsr_rollback_bit(&s, 0, 0); - lfsr_rollback_bit(&s, 0, 0); - lfsr_rollback_bit(&s, 0, 0); - - lfsr_rollback_word(&s, 0, 0); - lfsr_rollback_word(&s, prefix | c << 5, 1); - - sl->odd = s.odd; - sl->even = s.even; - - ks1 = crypto1_word(&s, prefix | c << 5, 1); - ks2 = crypto1_word(&s,0,0); - ks3 = crypto1_word(&s, 0,0); + uint32_t ks1, nr, ks2, rr, ks3, c, good = 1; + + for(c = 0; good && c < 8; ++c) { + sl->odd = odd ^ fastfwd[1][c]; + sl->even = even ^ fastfwd[0][c]; + + lfsr_rollback_bit(sl, 0, 0); + lfsr_rollback_bit(sl, 0, 0); + + ks3 = lfsr_rollback_bit(sl, 0, 0); + ks2 = lfsr_rollback_word(sl, 0, 0); + ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1); + nr = ks1 ^ (prefix | c << 5); rr = ks2 ^ rresp; - good = 1; good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24); good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16); good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8); good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0); - good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24); - - if(!good) - return sl; + good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3; } - return ++sl; -} - + return sl + good; +} /** lfsr_common_prefix * Implentation of the common prefix attack. @@ -462,8 +511,8 @@ brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8], * It returns a zero terminated list of possible cipher states after the * tag nonce was fed in */ -struct Crypto1State* -lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]) + +struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]) { struct Crypto1State *statelist, *s; uint32_t *odd, *even, *o, *e, top; @@ -471,24 +520,25 @@ lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]) odd = lfsr_prefix_ks(ks, 1); even = lfsr_prefix_ks(ks, 0); - statelist = malloc((sizeof *statelist) << 20); - if(!statelist || !odd || !even) - return 0; - + s = statelist = malloc((sizeof *statelist) << 20); + if(!s || !odd || !even) { + free(statelist); + free(odd); + free(even); + return 0; + } - s = statelist; - for(o = odd; *o != 0xffffffff; ++o) - for(e = even; *e != 0xffffffff; ++e) + for(o = odd; *o + 1; ++o) + for(e = even; *e + 1; ++e) for(top = 0; top < 64; ++top) { - *o = (*o & 0x1fffff) | (top << 21); - *e = (*e & 0x1fffff) | (top >> 3) << 21; - s = brute_top(pfx, rr, par, *o, *e, s); + *o += 1 << 21; + *e += (!(top & 7) + 1) << 21; + s = check_pfx_parity(pfx, rr, par, *o, *e, s); } s->odd = s->even = 0; free(odd); free(even); - return statelist; -} +} \ No newline at end of file