X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/f8ada309e9e521b0e57f67fad111ae1500b660f4..b2c6371761a1e575da4451776fefc2b36101f793:/client/cmdhfmfhard.c?ds=inline diff --git a/client/cmdhfmfhard.c b/client/cmdhfmfhard.c index 9a938d64..acdea715 100644 --- a/client/cmdhfmfhard.c +++ b/client/cmdhfmfhard.c @@ -1,6 +1,6 @@ //----------------------------------------------------------------------------- // Copyright (C) 2015 piwi -// +// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp) // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. @@ -14,24 +14,32 @@ // Computer and Communications Security, 2015 //----------------------------------------------------------------------------- -#include #include +#include #include #include +#include #include #include "proxmark3.h" #include "cmdmain.h" #include "ui.h" #include "util.h" #include "nonce2key/crapto1.h" +#include "nonce2key/crypto1_bs.h" #include "parity.h" - -// uint32_t test_state_odd = 0; -// uint32_t test_state_even = 0; +#ifdef __WIN32 + #include +#endif +// don't include for APPLE/mac which has malloc stuff elsewhere. +#ifndef __APPLE__ + #include +#endif +#include #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull -#define GOOD_BYTES_REQUIRED 60 +#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster +#define END_OF_LIST_MARKER 0xFFFFFFFF static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, @@ -67,7 +75,6 @@ static const float p_K[257] = { // the probability that a random nonce has a Su 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0290 }; - typedef struct noncelistentry { uint32_t nonce_enc; @@ -83,19 +90,21 @@ typedef struct noncelist { float Sum8_prob; bool updated; noncelistentry_t *first; + float score1, score2; } noncelist_t; - -static uint32_t cuid; +static size_t nonces_to_bruteforce = 0; +static noncelistentry_t *brute_force_nonces[256]; +static uint32_t cuid = 0; static noncelist_t nonces[256]; +static uint8_t best_first_bytes[256]; static uint16_t first_byte_Sum = 0; static uint16_t first_byte_num = 0; static uint16_t num_good_first_bytes = 0; static uint64_t maximum_states = 0; static uint64_t known_target_key; - -#define MAX_BEST_BYTES 256 -static uint8_t best_first_bytes[MAX_BEST_BYTES]; +static bool write_stats = false; +static FILE *fstats = NULL; typedef enum { @@ -121,10 +130,8 @@ typedef struct { static partial_indexed_statelist_t partial_statelist[17]; static partial_indexed_statelist_t statelist_bitflip; - static statelist_t *candidates = NULL; - static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) { uint8_t first_byte = nonce_enc >> 24; @@ -167,6 +174,11 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) p2->nonce_enc = nonce_enc; p2->par_enc = par_enc; + if(nonces_to_bruteforce < 256){ + brute_force_nonces[nonces_to_bruteforce] = p2; + nonces_to_bruteforce++; + } + nonces[first_byte].num++; nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04)); nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte @@ -174,6 +186,37 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) return (1); // new nonce added } +static void init_nonce_memory(void) +{ + for (uint16_t i = 0; i < 256; i++) { + nonces[i].num = 0; + nonces[i].Sum = 0; + nonces[i].Sum8_guess = 0; + nonces[i].Sum8_prob = 0.0; + nonces[i].updated = true; + nonces[i].first = NULL; + } + first_byte_num = 0; + first_byte_Sum = 0; + num_good_first_bytes = 0; +} + +static void free_nonce_list(noncelistentry_t *p) +{ + if (p == NULL) { + return; + } else { + free_nonce_list(p->next); + free(p); + } +} + +static void free_nonces_memory(void) +{ + for (uint16_t i = 0; i < 256; i++) { + free_nonce_list(nonces[i].first); + } +} static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) { @@ -198,14 +241,12 @@ static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) return sum; } - -static uint16_t SumProperty(struct Crypto1State *s) -{ - uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); - uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); - return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); -} - +// static uint16_t SumProperty(struct Crypto1State *s) +// { + // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); + // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); + // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); +// } static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) { @@ -244,37 +285,58 @@ static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) } } } - - + static float sum_probability(uint16_t K, uint16_t n, uint16_t k) { const uint16_t N = 256; - - - if (k > K || p_K[K] == 0.0) return 0.0; + if (k > K || p_K[K] == 0.0) return 0.0; - double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k); - double p_S_is_K = p_K[K]; - double p_T_is_k = 0; - for (uint16_t i = 0; i <= 256; i++) { - if (p_K[i] != 0.0) { - p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k); - } + double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k); + double p_S_is_K = p_K[K]; + double p_T_is_k = 0; + for (uint16_t i = 0; i <= 256; i++) { + if (p_K[i] != 0.0) { + p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k); } - return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); + } + return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); +} + + +static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff) +{ + static const uint_fast8_t common_bits_LUT[256] = { + 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, + 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 + }; + + return common_bits_LUT[bytes_diff]; } - static void Tests() { - printf("Tests: Partial Statelist sizes\n"); - for (uint16_t i = 0; i <= 16; i+=2) { - printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]); - } - for (uint16_t i = 0; i <= 16; i+=2) { - printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]); - } + // printf("Tests: Partial Statelist sizes\n"); + // for (uint16_t i = 0; i <= 16; i+=2) { + // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]); + // } + // for (uint16_t i = 0; i <= 16; i+=2) { + // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]); + // } // #define NUM_STATISTICS 100000 // uint32_t statistics_odd[17]; @@ -347,62 +409,67 @@ static void Tests() // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1)); // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0)); - struct Crypto1State *pcs; - pcs = crypto1_create(0xffffffffffff); - printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", - SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); - crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); - printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", - best_first_bytes[0], - SumProperty(pcs), - pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); - //test_state_odd = pcs->odd & 0x00ffffff; - //test_state_even = pcs->even & 0x00ffffff; - crypto1_destroy(pcs); - pcs = crypto1_create(0xa0a1a2a3a4a5); - printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", - SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); - crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); - printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", - best_first_bytes[0], - SumProperty(pcs), - pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); - // test_state_odd = pcs->odd & 0x00ffffff; - // test_state_even = pcs->even & 0x00ffffff; - crypto1_destroy(pcs); - pcs = crypto1_create(0xa6b9aa97b955); - printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", - SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); - crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); - printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", - best_first_bytes[0], - SumProperty(pcs), - pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // struct Crypto1State *pcs; + // pcs = crypto1_create(0xffffffffffff); + // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); + // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + // best_first_bytes[0], + // SumProperty(pcs), + // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // //test_state_odd = pcs->odd & 0x00ffffff; + // //test_state_even = pcs->even & 0x00ffffff; + // crypto1_destroy(pcs); + // pcs = crypto1_create(0xa0a1a2a3a4a5); + // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); + // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + // best_first_bytes[0], + // SumProperty(pcs), + // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // //test_state_odd = pcs->odd & 0x00ffffff; + // //test_state_even = pcs->even & 0x00ffffff; + // crypto1_destroy(pcs); + // pcs = crypto1_create(0xa6b9aa97b955); + // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); + // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + // best_first_bytes[0], + // SumProperty(pcs), + // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); //test_state_odd = pcs->odd & 0x00ffffff; //test_state_even = pcs->even & 0x00ffffff; - crypto1_destroy(pcs); - + // crypto1_destroy(pcs); - printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20)); + // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20)); - printf("\nTests: Actual BitFlipProperties odd/even:\n"); - for (uint16_t i = 0; i < 256; i++) { - printf("[%02x]:%c%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':' ', nonces[i].BitFlip[EVEN_STATE]?'e':' '); - if (i % 8 == 7) { - printf("\n"); - } - } + // printf("\nTests: Actual BitFlipProperties odd/even:\n"); + // for (uint16_t i = 0; i < 256; i++) { + // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' '); + // if (i % 8 == 7) { + // printf("\n"); + // } + // } - printf("\nTests: Best %d first bytes:\n", MAX_BEST_BYTES); - for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) { - uint8_t best_byte = best_first_bytes[i]; - uint16_t best_num = nonces[best_byte].num; - uint16_t best_sum = nonces[best_byte].Sum; - uint16_t best_sum8 = nonces[best_byte].Sum8_guess; - float confidence = nonces[best_byte].Sum8_prob; - printf("#%03d Byte: %02x, n = %2d, k = %2d, Sum(a8): %3d, Confidence: %2.1f%%\n", i, best_byte, best_num, best_sum, best_sum8, confidence*100); - } + // printf("\nTests: Sorted First Bytes:\n"); + // for (uint16_t i = 0; i < 256; i++) { + // uint8_t best_byte = best_first_bytes[i]; + // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n", + // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n", + // i, best_byte, + // nonces[best_byte].num, + // nonces[best_byte].Sum, + // nonces[best_byte].Sum8_guess, + // nonces[best_byte].Sum8_prob * 100, + // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' ' + // //nonces[best_byte].score1, + // //nonces[best_byte].score2 + // ); + // } // printf("\nTests: parity performance\n"); // time_t time1p = clock(); @@ -419,43 +486,31 @@ static void Tests() // } // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC); -} - -static int common_bits(uint8_t byte1, uint8_t byte2) -{ - uint8_t common_bits = byte1 ^ byte2; - uint8_t j = 0; - while ((common_bits & 0x01) == 0 && j < 8) { - j++; - common_bits >>= 1; - } - return j; } - static void sort_best_first_bytes(void) { - // first, sort based on probability for correct guess + // sort based on probability for correct guess for (uint16_t i = 0; i < 256; i++ ) { uint16_t j = 0; float prob1 = nonces[i].Sum8_prob; float prob2 = nonces[best_first_bytes[0]].Sum8_prob; - while (prob1 < prob2 && j < MAX_BEST_BYTES-1) { + while (prob1 < prob2 && j < i) { prob2 = nonces[best_first_bytes[++j]].Sum8_prob; } - if (prob1 >= prob2) { - for (uint16_t k = MAX_BEST_BYTES-1; k > j; k--) { + if (j < i) { + for (uint16_t k = i; k > j; k--) { best_first_bytes[k] = best_first_bytes[k-1]; } + } best_first_bytes[j] = i; } - } - // determine, how many are above the CONFIDENCE_THRESHOLD + // determine how many are above the CONFIDENCE_THRESHOLD uint16_t num_good_nonces = 0; - for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) { - if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) { + for (uint16_t i = 0; i < 256; i++) { + if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) { ++num_good_nonces; } } @@ -485,12 +540,13 @@ static void sort_best_first_bytes(void) if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) { bitflip_prob = 0.09375; } + nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob; if (p_K[sum8] * bitflip_prob <= min_p_K) { min_p_K = p_K[sum8] * bitflip_prob; - best_first_byte = i; } } + // use number of commmon bits as a tie breaker uint16_t max_common_bits = 0; for (uint16_t i = 0; i < num_good_nonces; i++) { @@ -501,8 +557,9 @@ static void sort_best_first_bytes(void) if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) { uint16_t sum_common_bits = 0; for (uint16_t j = 0; j < num_good_nonces; j++) { - sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]); + sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]); } + nonces[best_first_bytes[i]].score2 = sum_common_bits; if (sum_common_bits > max_common_bits) { max_common_bits = sum_common_bits; best_first_byte = i; @@ -510,19 +567,15 @@ static void sort_best_first_bytes(void) } } - // swap best possible first bytes to the pole position + // swap best possible first byte to the pole position uint16_t temp = best_first_bytes[0]; best_first_bytes[0] = best_first_bytes[best_first_byte]; best_first_bytes[best_first_byte] = temp; } - static uint16_t estimate_second_byte_sum(void) { - for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) { - best_first_bytes[i] = 0; - } for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { float Sum8_prob = 0.0; @@ -544,8 +597,8 @@ static uint16_t estimate_second_byte_sum(void) sort_best_first_bytes(); uint16_t num_good_nonces = 0; - for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) { - if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) { + for (uint16_t i = 0; i < 256; i++) { + if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) { ++num_good_nonces; } } @@ -553,15 +606,14 @@ static uint16_t estimate_second_byte_sum(void) return num_good_nonces; } - static int read_nonce_file(void) { FILE *fnonces = NULL; - uint8_t trgBlockNo; - uint8_t trgKeyType; + uint8_t trgBlockNo = 0; + uint8_t trgKeyType = 0; uint8_t read_buf[9]; - uint32_t nt_enc1, nt_enc2; - uint8_t par_enc; + uint32_t nt_enc1 = 0, nt_enc2 = 0; + uint8_t par_enc = 0; int total_num_nonces = 0; if ((fnonces = fopen("nonces.bin","rb")) == NULL) { @@ -570,7 +622,8 @@ static int read_nonce_file(void) } PrintAndLog("Reading nonces from file nonces.bin..."); - if (fread(read_buf, 1, 6, fnonces) == 0) { + size_t bytes_read = fread(read_buf, 1, 6, fnonces); + if ( bytes_read == 0) { PrintAndLog("File reading error."); fclose(fnonces); return 1; @@ -591,10 +644,113 @@ static int read_nonce_file(void) } fclose(fnonces); PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B'); - return 0; } +static void Check_for_FilterFlipProperties(void) +{ + printf("Checking for Filter Flip Properties...\n"); + + uint16_t num_bitflips = 0; + + for (uint16_t i = 0; i < 256; i++) { + nonces[i].BitFlip[ODD_STATE] = false; + nonces[i].BitFlip[EVEN_STATE] = false; + } + + for (uint16_t i = 0; i < 256; i++) { + uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte + uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped + uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped + + if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits + nonces[i].BitFlip[ODD_STATE] = true; + num_bitflips++; + } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits + nonces[i].BitFlip[EVEN_STATE] = true; + num_bitflips++; + } + } + + if (write_stats) { + fprintf(fstats, "%d;", num_bitflips); + } +} + +static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc) +{ + struct Crypto1State sim_cs = {0, 0}; + // init cryptostate with key: + for(int8_t i = 47; i > 0; i -= 2) { + sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7); + sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7); + } + + *par_enc = 0; + uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); + for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) { + uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff; + uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte + *nt_enc = (*nt_enc << 8) | nt_byte_enc; + uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit + uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it + *par_enc = (*par_enc << 1) | nt_byte_par_enc; + } + +} + +static void simulate_acquire_nonces() +{ + clock_t time1 = clock(); + bool filter_flip_checked = false; + uint32_t total_num_nonces = 0; + uint32_t next_fivehundred = 500; + uint32_t total_added_nonces = 0; + + cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); + known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff); + + printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid); + fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid); + + do { + uint32_t nt_enc = 0; + uint8_t par_enc = 0; + + simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc); + //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc); + total_added_nonces += add_nonce(nt_enc, par_enc); + total_num_nonces++; + + if (first_byte_num == 256 ) { + // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); + if (!filter_flip_checked) { + Check_for_FilterFlipProperties(); + filter_flip_checked = true; + } + num_good_first_bytes = estimate_second_byte_sum(); + if (total_num_nonces > next_fivehundred) { + next_fivehundred = (total_num_nonces/500+1) * 500; + printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", + total_num_nonces, + total_added_nonces, + CONFIDENCE_THRESHOLD * 100.0, + num_good_first_bytes); + } + } + + } while (num_good_first_bytes < GOOD_BYTES_REQUIRED); + + time1 = clock() - time1; + if ( time1 > 0 ) { + PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", + total_num_nonces, + ((float)time1)/CLOCKS_PER_SEC, + total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1); + } + fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD); + +} static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow) { @@ -602,6 +758,7 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ bool initialize = true; bool field_off = false; bool finished = false; + bool filter_flip_checked = false; uint32_t flags = 0; uint8_t write_buf[9]; uint32_t total_num_nonces = 0; @@ -660,7 +817,6 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f); - if (nonce_file_write) { fwrite(bufp, 1, 9, fnonces); } @@ -673,6 +829,10 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ if (first_byte_num == 256 ) { // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); + if (!filter_flip_checked) { + Check_for_FilterFlipProperties(); + filter_flip_checked = true; + } num_good_first_bytes = estimate_second_byte_sum(); if (total_num_nonces > next_fivehundred) { next_fivehundred = (total_num_nonces/500+1) * 500; @@ -688,8 +848,14 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ } if (!initialize) { - if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; - if (resp.arg[0]) return resp.arg[0]; // error during nested_hard + if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { + fclose(fnonces); + return 1; + } + if (resp.arg[0]) { + fclose(fnonces); + return resp.arg[0]; // error during nested_hard + } } initialize = false; @@ -701,15 +867,17 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ fclose(fnonces); } - PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", - total_num_nonces, - ((float)clock()-time1)/CLOCKS_PER_SEC, - total_num_nonces*60.0*CLOCKS_PER_SEC/((float)clock()-time1)); - + time1 = clock() - time1; + if ( time1 > 0 ) { + PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", + total_num_nonces, + ((float)time1)/CLOCKS_PER_SEC, + total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1 + ); + } return 0; } - static int init_partial_statelists(void) { const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 }; @@ -753,13 +921,12 @@ static int init_partial_statelists(void) for (uint16_t i = 0; i <= 16; i += 2) { uint32_t *p = partial_statelist[i].states[odd_even]; p += partial_statelist[i].len[odd_even]; - *p = 0xffffffff; + *p = END_OF_LIST_MARKER; } } return 0; } - static void init_BitFlip_statelist(void) { @@ -780,105 +947,83 @@ static void init_BitFlip_statelist(void) } // set len and add End Of List marker statelist_bitflip.len[0] = p - statelist_bitflip.states[0]; - *p = 0xffffffff; + *p = END_OF_LIST_MARKER; statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1)); } - -static void add_state(statelist_t *sl, uint32_t state, odd_even_t odd_even) -{ - uint32_t *p; - - p = sl->states[odd_even]; - p += sl->len[odd_even]; - *p = state; - sl->len[odd_even]++; -} - - -static uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even) +static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even) { uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index if (p == NULL) return NULL; - while ((*p & mask) < (state & mask)) p++; - if (*p == 0xffffffff) return NULL; // reached end of list, no match + while (*p < (state & mask)) p++; + if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match if ((*p & mask) == (state & mask)) return p; // found a match. return NULL; // no match } +static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) +{ + uint_fast8_t j_1_bit_mask = 0x01 << (bit-1); + uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit + uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function + uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit; + uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 + uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits + return !all_diff; +} -static bool remaining_bits_match(uint8_t num_common_bits, uint8_t byte1, uint8_t byte2, uint32_t state1, uint32_t state2, odd_even_t odd_even) +static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) { - uint8_t j = num_common_bits; - if (odd_even == ODD_STATE) { - j |= 0x01; // consider the next odd bit - } else { - j = (j+1) & 0xfe; // consider the next even bit - } - - while (j <= 7) { - if (j != num_common_bits) { // this is not the first differing bit, we need first to check if the invariant still holds - uint32_t bit_diff = ((byte1 ^ byte2) << (17-j)) & 0x00010000; // difference of (j-1)th bit -> bit 16 - uint32_t filter_diff = filter(state1 >> (4-j/2)) ^ filter(state2 >> (4-j/2)); // difference in filter function -> bit 0 - uint32_t mask_y12_y13 = 0x000000c0 >> (j/2); - uint32_t state_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 -> bits 6/7 ... 3/4 - uint32_t all_diff = parity(bit_diff | state_diff | filter_diff); // use parity function to XOR all 4 bits - if (all_diff) { // invariant doesn't hold any more. Accept this state. - // if ((odd_even == ODD_STATE && state1 == test_state_odd) - // || (odd_even == EVEN_STATE && state1 == test_state_even)) { - // printf("remaining_bits_match(): %s test state: Invariant doesn't hold. Bytes = %02x, %02x, Common Bits=%d, Testing Bit %d, State1=0x%08x, State2=0x%08x\n", - // odd_even==ODD_STATE?"odd":"even", byte1, byte2, num_common_bits, j, state1, state2); - // } - return true; - } + uint_fast8_t j_bit_mask = 0x01 << bit; + uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit + uint_fast8_t mask_y13_y16 = 0x48 >> state_bit; + uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 + uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits + return all_diff; +} + +static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even) +{ + if (odd_even) { + // odd bits + switch (num_common_bits) { + case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true; + case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false; + case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true; + case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false; + case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true; + case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false; + case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true; + case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false; } - // check for validity of state candidate - uint32_t bit_diff = ((byte1 ^ byte2) << (16-j)) & 0x00010000; // difference of jth bit -> bit 16 - uint32_t mask_y13_y16 = 0x00000048 >> (j/2); - uint32_t state_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 -> bits 3/6 ... 0/3 - uint32_t all_diff = parity(bit_diff | state_diff); // use parity function to XOR all 3 bits - if (all_diff) { // not a valid state - // if ((odd_even == ODD_STATE && state1 == test_state_odd) - // || (odd_even == EVEN_STATE && state1 == test_state_even)) { - // printf("remaining_bits_match(): %s test state: Invalid state. Bytes = %02x, %02x, Common Bits=%d, Testing Bit %d, State1=0x%08x, State2=0x%08x\n", - // odd_even==ODD_STATE?"odd":"even", byte1, byte2, num_common_bits, j, state1, state2); - // printf(" byte1^byte2: 0x%02x, bit_diff: 0x%08x, state_diff: 0x%08x, all_diff: 0x%08x\n", - // byte1^byte2, bit_diff, state_diff, all_diff); - // } - return false; + } else { + // even bits + switch (num_common_bits) { + case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false; + case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true; + case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false; + case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true; + case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false; + case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true; + case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false; } - // continue checking for the next bit - j += 2; } return true; // valid state } - static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even) { for (uint16_t i = 1; i < num_good_first_bytes; i++) { uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess; - uint8_t j = 0; // number of common bits - uint8_t common_bits = best_first_bytes[0] ^ best_first_bytes[i]; + uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i]; + uint_fast8_t j = common_bits(bytes_diff); uint32_t mask = 0xfffffff0; if (odd_even == ODD_STATE) { - while ((common_bits & 0x01) == 0 && j < 8) { - j++; - common_bits >>= 1; - if (j % 2 == 0) { // the odd bits - mask >>= 1; - } - } + mask >>= j/2; } else { - while ((common_bits & 0x01) == 0 && j < 8) { - j++; - common_bits >>= 1; - if (j % 2 == 1) { // the even bits - mask >>= 1; - } - } + mask >>= (j+1)/2; } mask &= 0x000fffff; //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8); @@ -890,8 +1035,8 @@ static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even) uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s; uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even); if (p != NULL) { - while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) { - if (remaining_bits_match(j, best_first_bytes[0], best_first_bytes[i], state, (state&0x00fffff0) | *p, odd_even)) { + while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) { + if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) { found_match = true; // if ((odd_even == ODD_STATE && state == test_state_odd) // || (odd_even == EVEN_STATE && state == test_state_even)) { @@ -931,38 +1076,25 @@ static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even) return true; } - static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even) { for (uint16_t i = 0; i < 256; i++) { if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) { - uint8_t j = 0; // number of common bits - uint8_t common_bits = best_first_bytes[0] ^ i; + uint_fast8_t bytes_diff = best_first_bytes[0] ^ i; + uint_fast8_t j = common_bits(bytes_diff); uint32_t mask = 0xfffffff0; if (odd_even == ODD_STATE) { - while ((common_bits & 0x01) == 0 && j < 8) { - j++; - common_bits >>= 1; - if (j % 2 == 0) { // the odd bits - mask >>= 1; - } - } + mask >>= j/2; } else { - while ((common_bits & 0x01) == 0 && j < 8) { - j++; - common_bits >>= 1; - if (j % 2 == 1) { // the even bits - mask >>= 1; - } - } + mask >>= (j+1)/2; } mask &= 0x000fffff; //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8); bool found_match = false; uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0); if (p != NULL) { - while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) { - if (remaining_bits_match(j, best_first_bytes[0], i, state, (state&0x00fffff0) | *p, odd_even)) { + while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) { + if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) { found_match = true; // if ((odd_even == ODD_STATE && state == test_state_odd) // || (odd_even == EVEN_STATE && state == test_state_even)) { @@ -1000,28 +1132,51 @@ static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even) return true; } +static struct sl_cache_entry { + uint32_t *sl; + uint32_t len; + } sl_cache[17][17][2]; -#define INVALID_BIT (1<<30) -#define SET_INVALID(pstate) (*(pstate) |= INVALID_BIT) -#define IS_INVALID(state) (state & INVALID_BIT) +static void init_statelist_cache(void) +{ + for (uint16_t i = 0; i < 17; i+=2) { + for (uint16_t j = 0; j < 17; j+=2) { + for (uint16_t k = 0; k < 2; k++) { + sl_cache[i][j][k].sl = NULL; + sl_cache[i][j][k].len = 0; + } + } + } +} static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) { uint32_t worstcase_size = 1<<20; + // check cache for existing results + if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) { + candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl; + candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len; + return 0; + } + candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); if (candidates->states[odd_even] == NULL) { PrintAndLog("Out of memory error.\n"); return 4; } - for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != 0xffffffff; p1++) { + uint32_t *add_p = candidates->states[odd_even]; + for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) { uint32_t search_mask = 0x000ffff0; uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even); if (p2 != NULL) { - while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != 0xffffffff) { + while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) { + if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0)) + || !nonces[best_first_bytes[0]].BitFlip[odd_even]) { if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) { if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) { - add_state(candidates, (*p1 << 4) | *p2, odd_even); + *add_p++ = (*p1 << 4) | *p2; + } } } p2++; @@ -1029,17 +1184,18 @@ static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, ui } } - // set end of list marker - uint32_t *p = candidates->states[odd_even]; - p += candidates->len[odd_even]; - *p = 0xffffffff; + // set end of list marker and len + *add_p = END_OF_LIST_MARKER; + candidates->len[odd_even] = add_p - candidates->states[odd_even]; candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); + sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even]; + sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even]; + return 0; } - static statelist_t *add_more_candidates(statelist_t *current_candidates) { statelist_t *new_candidates = NULL; @@ -1059,7 +1215,6 @@ static statelist_t *add_more_candidates(statelist_t *current_candidates) return new_candidates; } - static void TestIfKeyExists(uint64_t key) { struct Crypto1State *pcs; @@ -1076,14 +1231,14 @@ static void TestIfKeyExists(uint64_t key) bool found_even = false; uint32_t *p_odd = p->states[ODD_STATE]; uint32_t *p_even = p->states[EVEN_STATE]; - while (*p_odd != 0xffffffff) { + while (*p_odd != END_OF_LIST_MARKER) { if ((*p_odd & 0x00ffffff) == state_odd) { found_odd = true; break; } p_odd++; } - while (*p_even != 0xffffffff) { + while (*p_even != END_OF_LIST_MARKER) { if ((*p_even & 0x00ffffff) == state_even) { found_even = true; } @@ -1091,20 +1246,27 @@ static void TestIfKeyExists(uint64_t key) } count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]); if (found_odd && found_even) { - PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.", - count, log(count)/log(2), - maximum_states, log(maximum_states)/log(2), - (count>>22)/60); + PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ", + count, + log(count)/log(2), + maximum_states, + log(maximum_states)/log(2) + ); + if (write_stats) { + fprintf(fstats, "1\n"); + } crypto1_destroy(pcs); return; } } printf("Key NOT found!\n"); + if (write_stats) { + fprintf(fstats, "0\n"); + } crypto1_destroy(pcs); } - static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) { printf("Generating crypto1 state candidates... \n"); @@ -1119,7 +1281,9 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) } } } - printf("Number of possible keys with Sum(a0) = %d: %lld (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); + printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); + + init_statelist_cache(); for (uint16_t p = 0; p <= 16; p += 2) { for (uint16_t q = 0; q <= 16; q += 2) { @@ -1130,10 +1294,30 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) for (uint16_t s = 0; s <= 16; s += 2) { if (r*(16-s) + (16-r)*s == sum_a8) { current_candidates = add_more_candidates(current_candidates); + // check for the smallest partial statelist. Try this first - it might give 0 candidates + // and eliminate the need to calculate the other part + if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE]) + < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) { add_matching_states(current_candidates, p, r, ODD_STATE); - printf("Odd state candidates: %d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2)); + if(current_candidates->len[ODD_STATE]) { add_matching_states(current_candidates, q, s, EVEN_STATE); - printf("Even state candidates: %d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2)); + } else { + current_candidates->len[EVEN_STATE] = 0; + uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t)); + *p = END_OF_LIST_MARKER; + } + } else { + add_matching_states(current_candidates, q, s, EVEN_STATE); + if(current_candidates->len[EVEN_STATE]) { + add_matching_states(current_candidates, p, r, ODD_STATE); + } else { + current_candidates->len[ODD_STATE] = 0; + uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t)); + *p = END_OF_LIST_MARKER; + } + } + //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2)); + //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2)); } } } @@ -1146,108 +1330,458 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; } - printf("Number of remaining possible keys: %lld (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); - + printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); + if (write_stats) { + if (maximum_states != 0) { + fprintf(fstats, "%1.1f;", log(maximum_states)/log(2.0)); + } else { + fprintf(fstats, "%1.1f;", 0.0); + } + } } +static void free_candidates_memory(statelist_t *sl) +{ + if (sl == NULL) { + return; + } else { + free_candidates_memory(sl->next); + free(sl); + } +} -static void Check_for_FilterFlipProperties(void) +static void free_statelist_cache(void) { - printf("Checking for Filter Flip Properties...\n"); + for (uint16_t i = 0; i < 17; i+=2) { + for (uint16_t j = 0; j < 17; j+=2) { + for (uint16_t k = 0; k < 2; k++) { + free(sl_cache[i][j][k].sl); + } + } + } +} - for (uint16_t i = 0; i < 256; i++) { - nonces[i].BitFlip[ODD_STATE] = false; - nonces[i].BitFlip[EVEN_STATE] = false; - } +uint64_t foundkey = 0; +size_t keys_found = 0; +size_t bucket_count = 0; +statelist_t* buckets[128]; +size_t total_states_tested = 0; +size_t thread_count = 4; + +// these bitsliced states will hold identical states in all slices +bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE]; + +// arrays of bitsliced states with identical values in all slices +bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE]; +bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE]; + +#define EXACT_COUNT + +static const uint64_t crack_states_bitsliced(statelist_t *p){ + // the idea to roll back the half-states before combining them was suggested/explained to me by bla + // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop + uint64_t key = -1; + uint8_t bSize = sizeof(bitslice_t); + +#ifdef EXACT_COUNT + size_t bucket_states_tested = 0; + size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES]; +#else + const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]); +#endif + + bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES]; + size_t bitsliced_blocks = 0; + uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE]; - for (uint16_t i = 0; i < 256; i++) { - uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte - uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped - uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped - - if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits - nonces[i].BitFlip[ODD_STATE] = true; - } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits - nonces[i].BitFlip[EVEN_STATE] = true; + // bitslice all the even states + for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){ + +#ifdef __WIN32 + #ifdef __MINGW32__ + bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize); + #else + bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize); + #endif +#else + #ifdef __APPLE__ + bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize); + #else + bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize); + #endif +#endif + + if ( !lstate_p ) { + __sync_fetch_and_add(&total_states_tested, bucket_states_tested); + return key; } - } + + memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits + + // bitslice even half-states + const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES; +#ifdef EXACT_COUNT + bucket_size[bitsliced_blocks] = max_slices; +#endif + for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){ + uint32_t e = *(p_even+slice_idx); + for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){ + // set even bits + if(e&1){ + lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63); + } + } + } + // compute the rollback bits + for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){ + // inlined crypto1_bs_lfsr_rollback + const bitslice_value_t feedout = lstate_p[0].value; + ++lstate_p; + const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p); + const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^ + lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^ + lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^ + lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^ + lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^ + lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value); + lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value; + } + bitsliced_even_states[bitsliced_blocks++] = lstate_p; + } + + // bitslice every odd state to every block of even half-states with half-finished rollback + for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){ + // early abort + if(keys_found){ + goto out; + } + + // set the odd bits and compute rollback + uint64_t o = (uint64_t) *p_odd; + lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1); + // pre-compute part of the odd feedback bits (minus rollback) + bool odd_feedback_bit = parity(o&0x9ce5c); + + crypto1_bs_rewind_a0(); + // set odd bits + for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){ + if(o & 1){ + state_p[state_idx] = bs_ones; + } else { + state_p[state_idx] = bs_zeroes; + } + } + const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value; + + for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){ + const bitslice_t const * restrict bitsliced_even_state = bitsliced_even_states[block_idx]; + size_t state_idx; + // set even bits + for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){ + state_p[1+state_idx] = bitsliced_even_state[1+state_idx]; + } + // set rollback bits + uint64_t lo = o; + for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){ + // set the odd bits and take in the odd rollback bits from the even states + if(lo & 1){ + state_p[state_idx].value = ~bitsliced_even_state[state_idx].value; + } else { + state_p[state_idx] = bitsliced_even_state[state_idx]; + } + + // set the even bits and take in the even rollback bits from the odd states + if((lo >> 32) & 1){ + state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value; + } else { + state_p[1+state_idx] = bitsliced_even_state[1+state_idx]; + } + } + +#ifdef EXACT_COUNT + bucket_states_tested += bucket_size[block_idx]; +#endif + // pre-compute first keystream and feedback bit vectors + const bitslice_value_t ksb = crypto1_bs_f20(state_p); + const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits + state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^ + state_p[47-24].value ^ state_p[47-42].value); + + // vector to contain test results (1 = passed, 0 = failed) + bitslice_t results = bs_ones; + + for(size_t tests = 0; tests < NONCE_TESTS; ++tests){ + size_t parity_bit_idx = 0; + bitslice_value_t fb_bits = fbb; + bitslice_value_t ks_bits = ksb; + state_p = &states[KEYSTREAM_SIZE-1]; + bitslice_value_t parity_bit_vector = bs_zeroes.value; + + // highest bit is transmitted/received first + for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){ + // decrypt nonce bits + const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value; + const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits); + + // compute real parity bits on the fly + parity_bit_vector ^= decrypted_nonce_bit_vector; + + // update state + state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector); + + // compute next keystream bit + ks_bits = crypto1_bs_f20(state_p); + + // for each byte: + if((ks_idx&7) == 0){ + // get encrypted parity bits + const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value; + + // decrypt parity bits + const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits); + + // compare actual parity bits with decrypted parity bits and take count in results vector + results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector); + + // make sure we still have a match in our set + // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){ + + // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ??? + // the short-circuiting also helps + if(results.bytes64[0] == 0 +#if MAX_BITSLICES > 64 + && results.bytes64[1] == 0 +#endif +#if MAX_BITSLICES > 128 + && results.bytes64[2] == 0 + && results.bytes64[3] == 0 +#endif + ){ + goto stop_tests; + } + // this is about as fast but less portable (requires -std=gnu99) + // asm goto ("ptest %1, %0\n\t" + // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests); + parity_bit_vector = bs_zeroes.value; + } + // compute next feedback bit vector + fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^ + state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^ + state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^ + state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^ + state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^ + state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value); + } + } + // all nonce tests were successful: we've found the key in this block! + state_t keys[MAX_BITSLICES]; + crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys); + for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){ + if(get_vector_bit(results_idx, results)){ + key = keys[results_idx].value; + goto out; + } + } +stop_tests: + // prepare to set new states + crypto1_bs_rewind_a0(); + continue; + } + } + +out: + for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){ + +#ifdef __WIN32 + #ifdef __MINGW32__ + __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); + #else + _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); + #endif +#else + free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); +#endif + + } + __sync_fetch_and_add(&total_states_tested, bucket_states_tested); + return key; } +static void* crack_states_thread(void* x){ + const size_t thread_id = (size_t)x; + size_t current_bucket = thread_id; + while(current_bucket < bucket_count){ + statelist_t * bucket = buckets[current_bucket]; + if(bucket){ + const uint64_t key = crack_states_bitsliced(bucket); + if(key != -1){ + __sync_fetch_and_add(&keys_found, 1); + __sync_fetch_and_add(&foundkey, key); + break; + } else if(keys_found){ + break; + } else { + printf("."); + fflush(stdout); + } + } + current_bucket += thread_count; + } + return NULL; +} static void brute_force(void) { if (known_target_key != -1) { PrintAndLog("Looking for known target key in remaining key space..."); TestIfKeyExists(known_target_key); - return; } else { - PrintAndLog("Brute Force phase is not implemented."); - return; + PrintAndLog("Brute force phase starting."); + time_t start, end; + time(&start); + keys_found = 0; + foundkey = 0; + + crypto1_bs_init(); + + PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES); + PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24)); + // convert to 32 bit little-endian + crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8); + + PrintAndLog("Bitslicing nonces..."); + for(size_t tests = 0; tests < NONCE_TESTS; tests++){ + uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc; + uint8_t test_parity = brute_force_nonces[tests]->par_enc; + // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine + crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32); + // convert to 32 bit little-endian + crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4); + } + total_states_tested = 0; + + // count number of states to go + bucket_count = 0; + for (statelist_t *p = candidates; p != NULL; p = p->next) { + buckets[bucket_count] = p; + bucket_count++; + } + +#ifndef __WIN32 + thread_count = sysconf(_SC_NPROCESSORS_CONF); + if ( thread_count < 1) + thread_count = 1; +#endif /* _WIN32 */ + + pthread_t threads[thread_count]; + + // enumerate states using all hardware threads, each thread handles one bucket + PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states); + + for(size_t i = 0; i < thread_count; i++){ + pthread_create(&threads[i], NULL, crack_states_thread, (void*) i); + } + for(size_t i = 0; i < thread_count; i++){ + pthread_join(threads[i], 0); + } + + time(&end); + double elapsed_time = difftime(end, start); + + if(keys_found){ + PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %.f seconds", total_states_tested, keys_found, elapsed_time); + PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey); + } else { + PrintAndLog("Fail! Tested %"PRIu32" states, in %.f seconds", total_states_tested, elapsed_time); + } + // reset this counter for the next call + nonces_to_bruteforce = 0; } - - } - -int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow) +int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) { + // initialize Random number generator + time_t t; + srand((unsigned) time(&t)); + if (trgkey != NULL) { known_target_key = bytes_to_num(trgkey, 6); } else { known_target_key = -1; } - // initialize the list of nonces - for (uint16_t i = 0; i < 256; i++) { - nonces[i].num = 0; - nonces[i].Sum = 0; - nonces[i].Sum8_guess = 0; - nonces[i].Sum8_prob = 0.0; - nonces[i].updated = true; - nonces[i].first = NULL; - } - first_byte_num = 0; - first_byte_Sum = 0; - num_good_first_bytes = 0; - init_partial_statelists(); init_BitFlip_statelist(); + write_stats = false; - if (nonce_file_read) { // use pre-acquired data from file nonces.bin - if (read_nonce_file() != 0) { + if (tests) { + // set the correct locale for the stats printing + setlocale(LC_ALL, ""); + write_stats = true; + if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) { + PrintAndLog("Could not create/open file hardnested_stats.txt"); return 3; } - num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED); - } else { // acquire nonces. - uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); - if (is_OK != 0) { - return is_OK; + for (uint32_t i = 0; i < tests; i++) { + init_nonce_memory(); + simulate_acquire_nonces(); + Tests(); + printf("Sum(a0) = %d\n", first_byte_Sum); + fprintf(fstats, "%d;", first_byte_Sum); + generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); + brute_force(); + free_nonces_memory(); + free_statelist_cache(); + free_candidates_memory(candidates); + candidates = NULL; + } + fclose(fstats); + } else { + init_nonce_memory(); + if (nonce_file_read) { // use pre-acquired data from file nonces.bin + if (read_nonce_file() != 0) { + return 3; + } + Check_for_FilterFlipProperties(); + num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED); + } else { // acquire nonces. + uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); + if (is_OK != 0) { + return is_OK; + } } - } - - Check_for_FilterFlipProperties(); - - Tests(); - PrintAndLog(""); - PrintAndLog("Sum(a0) = %d", first_byte_Sum); - // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x", - // best_first_bytes[0], - // best_first_bytes[1], - // best_first_bytes[2], - // best_first_bytes[3], - // best_first_bytes[4], - // best_first_bytes[5], - // best_first_bytes[6], - // best_first_bytes[7], - // best_first_bytes[8], - // best_first_bytes[9] ); - PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); - - generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); - - brute_force(); + //Tests(); + + //PrintAndLog(""); + //PrintAndLog("Sum(a0) = %d", first_byte_Sum); + // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x", + // best_first_bytes[0], + // best_first_bytes[1], + // best_first_bytes[2], + // best_first_bytes[3], + // best_first_bytes[4], + // best_first_bytes[5], + // best_first_bytes[6], + // best_first_bytes[7], + // best_first_bytes[8], + // best_first_bytes[9] ); + PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); + + clock_t time1 = clock(); + generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); + time1 = clock() - time1; + if ( time1 > 0 ) + PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC); + brute_force(); + + free_nonces_memory(); + free_statelist_cache(); + free_candidates_memory(candidates); + candidates = NULL; + } return 0; }