X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/fbceacc5b80254eb4381102d44e78aad7490876f..fff6d2a3ba4bd387517df9c3aaef14ec823e552e:/client/ui.c?ds=sidebyside diff --git a/client/ui.c b/client/ui.c index 094b8e56..6645a99e 100644 --- a/client/ui.c +++ b/client/ui.c @@ -18,14 +18,16 @@ #include <pthread.h> #include "loclass/cipherutils.h" #include "ui.h" - +#include "cmdmain.h" +#include "cmddata.h" +#include "graph.h" //#include <liquid/liquid.h> #define M_PI 3.14159265358979323846264338327 double CursorScaleFactor; int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64; int offline; -int flushAfterWrite = 0; //buzzy +int flushAfterWrite = 0; extern pthread_mutex_t print_lock; static char *logfilename = "proxmark3.log"; @@ -36,13 +38,13 @@ void PrintAndLog(char *fmt, ...) int saved_point; va_list argptr, argptr2; static FILE *logfile = NULL; - static int logging=1; + static int logging = 1; // lock this section to avoid interlacing prints from different threats pthread_mutex_lock(&print_lock); if (logging && !logfile) { - logfile=fopen(logfilename, "a"); + logfile = fopen(logfilename, "a"); if (!logfile) { fprintf(stderr, "Can't open logfile, logging disabled!\n"); logging=0; @@ -81,8 +83,7 @@ void PrintAndLog(char *fmt, ...) } va_end(argptr2); - if (flushAfterWrite == 1) //buzzy - { + if (flushAfterWrite == 1) { fflush(NULL); } //release lock @@ -94,95 +95,38 @@ void SetLogFilename(char *fn) logfilename = fn; } -int manchester_decode( int * data, const size_t len, uint8_t * dataout){ +int manchester_decode( int * data, const size_t len, uint8_t * dataout, size_t dataoutlen){ int bitlength = 0; - int i, clock, high, low, startindex; + int clock, high, low, startindex; low = startindex = 0; high = 1; - uint8_t bitStream[len]; - - memset(bitStream, 0x00, len); + uint8_t * bitStream = (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen); + memset(bitStream, 0x00, dataoutlen); /* Detect high and lows */ - for (i = 0; i < len; i++) { - if (data[i] > high) - high = data[i]; - else if (data[i] < low) - low = data[i]; - } - + DetectHighLowInGraph(&high, &low, TRUE); + /* get clock */ - clock = GetT55x7Clock( data, len, high ); + clock = GetAskClock("",false, false); + startindex = DetectFirstTransition(data, len, high); - // PrintAndLog(" Clock : %d", clock); - // PrintAndLog(" startindex : %d", startindex); - if (high != 1) - bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex); + // decode "raw" + bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex); else - bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex); + // decode manchester + bitlength = ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex); memcpy(dataout, bitStream, bitlength); + free(bitStream); return bitlength; } - - int GetT55x7Clock( const int * data, const size_t len, int peak ){ - - int i,lastpeak,clock; - clock = 0xFFFF; - lastpeak = 0; - - /* Detect peak if we don't have one */ - if (!peak) { - for (i = 0; i < len; ++i) { - if (data[i] > peak) { - peak = data[i]; - } - } - } - - for (i = 1; i < len; ++i) { - /* if this is the beginning of a peak */ - if ( data[i-1] != data[i] && data[i] == peak) { - /* find lowest difference between peaks */ - if (lastpeak && i - lastpeak < clock) - clock = i - lastpeak; - lastpeak = i; - } - } - //return clock; - //defaults clock to precise values. - switch(clock){ - case 8: - case 16: - case 32: - case 40: - case 50: - case 64: - case 100: - case 128: - return clock; - break; - default: break; - } - - //PrintAndLog(" Found Clock : %d - trying to adjust", clock); - - // When detected clock is 31 or 33 then then return - int clockmod = clock%8; - if ( clockmod == 7 ) - clock += 1; - else if ( clockmod == 1 ) - clock -= 1; - - return clock; - } int DetectFirstTransition(const int * data, const size_t len, int threshold){ - int i =0; + int i = 0; /* now look for the first threshold */ for (; i < len; ++i) { if (data[i] == threshold) { @@ -192,7 +136,7 @@ int manchester_decode( int * data, const size_t len, uint8_t * dataout){ return i; } - int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){ + int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){ int i, j, z, hithigh, hitlow, bitIndex, startType; i = 0; @@ -205,7 +149,7 @@ int manchester_decode( int * data, const size_t len, uint8_t * dataout){ int firstST = 0; // i = clock frame of data - for (; i < (int)(len / clock); i++) + for (; i < (int)(len/clock); i++) { hithigh = 0; hitlow = 0; @@ -235,8 +179,7 @@ int manchester_decode( int * data, const size_t len, uint8_t * dataout){ // No high value found, are we in a dampening field? if ( !hithigh ) { //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j); - for (j = 0; j < clock; j++) - { + for (j = 0; j < clock; j++) { if ( (data[z+j] <= dampHi && data[z+j] >= dampLow) ){ @@ -262,14 +205,14 @@ int manchester_decode( int * data, const size_t len, uint8_t * dataout){ if ( firstST == 4) break; + if ( bitIndex >= dataoutlen-1 ) + break; } return bitIndex; } - int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){ + int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){ - PrintAndLog(" Path B"); - int i,j, bitindex, lc, tolerance, warnings; warnings = 0; int upperlimit = len*2/clock+8; @@ -392,91 +335,15 @@ void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){ PrintAndLog(" %s", sprint_bin(bitStream+i, mod) ); } -void iceFsk(int * data, const size_t len){ - - //34359738 == 125khz (2^32 / 125) = - - // parameters - float phase_offset = 0.00f; // carrier phase offset - float frequency_offset = 0.30f; // carrier frequency offset - float wn = 0.01f; // pll bandwidth - float zeta = 0.707f; // pll damping factor - float K = 1000; // pll loop gain - size_t n = len; // number of samples - - // generate loop filter parameters (active PI design) - float t1 = K/(wn*wn); // tau_1 - float t2 = 2*zeta/wn; // tau_2 - - // feed-forward coefficients (numerator) - float b0 = (4*K/t1)*(1.+t2/2.0f); - float b1 = (8*K/t1); - float b2 = (4*K/t1)*(1.-t2/2.0f); - - // feed-back coefficients (denominator) - // a0 = 1.0 is implied - float a1 = -2.0f; - float a2 = 1.0f; - - // filter buffer - float v0=0.0f, v1=0.0f, v2=0.0f; - - // initialize states - float phi = phase_offset; // input signal's initial phase - float phi_hat = 0.0f; // PLL's initial phase - - unsigned int i; - float complex x,y; - float complex output[n]; - - for (i=0; i<n; i++) { - // INPUT SIGNAL - x = data[i]; - phi += frequency_offset; - - // generate complex sinusoid - y = cosf(phi_hat) + _Complex_I*sinf(phi_hat); - - output[i] = y; - - // compute error estimate - float delta_phi = cargf( x * conjf(y) ); - - - // print results to standard output - printf(" %6u %12.8f %12.8f %12.8f %12.8f %12.8f\n", - i, - crealf(x), cimagf(x), - crealf(y), cimagf(y), - delta_phi); - - // push result through loop filter, updating phase estimate - - // advance buffer - v2 = v1; // shift center register to upper register - v1 = v0; // shift lower register to center register - - // compute new lower register - v0 = delta_phi - v1*a1 - v2*a2; - - // compute new output - phi_hat = v0*b0 + v1*b1 + v2*b2; - - } - - for (i=0; i<len; ++i){ - data[i] = (int)crealf(output[i]); - } -} - /* Sliding DFT Smooths out */ void iceFsk2(int * data, const size_t len){ int i, j; - int output[len]; - + int * output = (int* ) malloc(sizeof(int) * len); + memset(output, 0x00, len); + // for (i=0; i<len-5; ++i){ // for ( j=1; j <=5; ++j) { // output[i] += data[i*j]; @@ -496,27 +363,31 @@ void iceFsk2(int * data, const size_t len){ for (j=0; j<len; ++j) data[j] = output[j]; + + free(output); } void iceFsk3(int * data, const size_t len){ int i,j; - int output[len]; - float fc = 0.1125f; // center frequency - + + int * output = (int* ) malloc(sizeof(int) * len); + memset(output, 0x00, len); + float fc = 0.1125f; // center frequency + size_t adjustedLen = len; + // create very simple low-pass filter to remove images (2nd-order Butterworth) float complex iir_buf[3] = {0,0,0}; float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929}; float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023}; - // process entire input file one sample at a time - float sample = 0; // input sample read from file - float complex x_prime = 1.0f; // save sample for estimating frequency + float sample = 0; // input sample read from file + float complex x_prime = 1.0f; // save sample for estimating frequency float complex x; - for (i=0; i<len; ++i) { + for (i=0; i<adjustedLen; ++i) { - sample = data[i]; + sample = data[i]+128; // remove DC offset and mix to complex baseband x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i ); @@ -538,18 +409,19 @@ void iceFsk3(int * data, const size_t len){ } // show data - for (j=0; j<len; ++j) + for (j=0; j<adjustedLen; ++j) data[j] = output[j]; CmdLtrim("30"); + adjustedLen -= 30; // zero crossings. - for (j=0; j<len; ++j){ + for (j=0; j<adjustedLen; ++j){ if ( data[j] == 10) break; } int startOne =j; - for (;j<len; ++j){ + for (;j<adjustedLen; ++j){ if ( data[j] == -10 ) break; } int stopOne = j-1; @@ -560,13 +432,13 @@ void iceFsk3(int * data, const size_t len){ fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen; if ( fieldlen != 40 && fieldlen != 50){ printf("Detected field Length: %d \n", fieldlen); - printf("Can only handle len 40 or 50. Aborting..."); + printf("Can only handle 40 or 50. Aborting...\n"); return; } // FSK sequence start == 000111 int startPos = 0; - for (i =0; i<len; ++i){ + for (i =0; i<adjustedLen; ++i){ int dec = 0; for ( j = 0; j < 6*fieldlen; ++j){ dec += data[i + j]; @@ -579,27 +451,24 @@ void iceFsk3(int * data, const size_t len){ printf("000111 position: %d \n", startPos); - startPos += 6*fieldlen+1; + startPos += 6*fieldlen+5; + int bit =0; printf("BINARY\n"); printf("R/40 : "); - for (i =startPos ; i < len; i += 40){ - if ( data[i] > 0 ) - printf("1"); - else - printf("0"); + for (i =startPos ; i < adjustedLen; i += 40){ + bit = data[i]>0 ? 1:0; + printf("%d", bit ); } printf("\n"); printf("R/50 : "); - for (i =startPos ; i < len; i += 50){ - if ( data[i] > 0 ) - printf("1"); - else - printf("0"); - } + for (i =startPos ; i < adjustedLen; i += 50){ + bit = data[i]>0 ? 1:0; + printf("%d", bit ); } printf("\n"); + free(output); } float complex cexpf (float complex Z)