summary |
shortlog |
log |
commit | commitdiff |
tree
raw |
patch |
inline | side by side (from parent 1:
ae60cec)
* fix tag response timing. iClass differs from ISO15693 in this respect.
* speedup CodeIso15693AsTag()
* TransmitTo15693Tag(): don't send unmodulated start of SOF
* reduce modulation depth in hi_simulate.v
* calculate CRC for configuration block when simulating
* Show real response time instead of planned response time in 'hf list iclass'
static int timeout = 4096;
static int timeout = 4096;
+// iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after
+// the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period.
+// 330us = 140 ssp_clk cycles @ 423,75kHz when simulating.
+// 56,64us = 24 ssp_clk_cycles
+#define DELAY_ICLASS_VCD_TO_VICC_SIM 140
+#define TAG_SOF_UNMODULATED 24
+
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
State cipher_state_KC[8];
State cipher_state_KD[8];
State *cipher_state = &cipher_state_KD[0];
State cipher_state_KC[8];
State cipher_state_KD[8];
State *cipher_state = &cipher_state_KD[0];
uint8_t *emulator = BigBuf_get_EM_addr();
uint8_t *csn = emulator;
uint8_t *emulator = BigBuf_get_EM_addr();
uint8_t *csn = emulator;
AppendCrc(anticoll_data, 8);
AppendCrc(csn_data, 8);
AppendCrc(anticoll_data, 8);
AppendCrc(csn_data, 8);
- uint8_t diversified_key_d[8];
- uint8_t diversified_key_c[8];
+ uint8_t diversified_key_d[8] = { 0x00 };
+ uint8_t diversified_key_c[8] = { 0x00 };
uint8_t *diversified_key = diversified_key_d;
uint8_t *diversified_key = diversified_key_d;
// configuration block
uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
// configuration block
uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
- AppendCrc(conf_block, 8);
// e-Purse
uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
// e-Purse
uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc
}
memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc
}
+ AppendCrc(conf_block, 8);
+
// save card challenge for sim2,4 attack
if (reader_mac_buf != NULL) {
memcpy(reader_mac_buf, card_challenge_data, 8);
// save card challenge for sim2,4 attack
if (reader_mac_buf != NULL) {
memcpy(reader_mac_buf, card_challenge_data, 8);
// chip memory may be divided in 8 pages
uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7;
// chip memory may be divided in 8 pages
uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7;
// Precalculate the cipher states, feeding it the CC
cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
// Precalculate the cipher states, feeding it the CC
cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc);
}
}
cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc);
}
}
int exitLoop = 0;
// Reader 0a
// Tag 0f
int exitLoop = 0;
// Reader 0a
// Tag 0f
cipher_state = &cipher_state_KD[current_page];
diversified_key = diversified_key_d;
} else {
cipher_state = &cipher_state_KD[current_page];
diversified_key = diversified_key_d;
} else {
- cipher_state = &cipher_state_KC[current_page];
+ cipher_state = &cipher_state_KC[current_page];
diversified_key = diversified_key_c;
}
modulated_response = resp_cc;
diversified_key = diversified_key_c;
}
modulated_response = resp_cc;
trace_data_size = sizeof(card_challenge_data);
}
trace_data_size = sizeof(card_challenge_data);
}
- } else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC
+ } else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC
|| receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) {
// Reader random and reader MAC!!!
if (chip_state == SELECTED) {
|| receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) {
// Reader random and reader MAC!!!
if (chip_state == SELECTED) {
} else if (blockNo == 3) { // update Kd
for (int i = 0; i < 8; i++) {
if (personalization_mode) {
} else if (blockNo == 3) { // update Kd
for (int i = 0; i < 8; i++) {
if (personalization_mode) {
- diversified_key_d[i] = receivedCmd[2 + i];
+ diversified_key_d[i] = receivedCmd[2 + i];
} else {
diversified_key_d[i] ^= receivedCmd[2 + i];
} else {
diversified_key_d[i] ^= receivedCmd[2 + i];
- cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
+ cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8);
}
if (simulationMode == ICLASS_SIM_MODE_FULL) {
memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8);
}
- } else if (blockNo == 4) { // update Kc
+ } else if (blockNo == 4) { // update Kc
for (int i = 0; i < 8; i++) {
if (personalization_mode) {
for (int i = 0; i < 8; i++) {
if (personalization_mode) {
- diversified_key_c[i] = receivedCmd[2 + i];
+ diversified_key_c[i] = receivedCmd[2 + i];
} else {
diversified_key_c[i] ^= receivedCmd[2 + i];
} else {
diversified_key_c[i] ^= receivedCmd[2 + i];
}
cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
}
cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
}
} else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block
memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8);
}
} else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block
memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8);
memcpy(data_generic_trace, receivedCmd + 2, 8);
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
memcpy(data_generic_trace, receivedCmd + 2, 8);
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
} else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) {
// Pagesel
// Chips with a single page will not answer to this command
} else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) {
// Pagesel
// Chips with a single page will not answer to this command
- // Otherwise, we should answer 8bytes (block) + 2bytes CRC
+ // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC
if (chip_state == SELECTED) {
if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) {
current_page = receivedCmd[1];
memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8);
memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8);
if (chip_state == SELECTED) {
if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) {
current_page = receivedCmd[1];
memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8);
memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8);
- memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8);
+ memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8);
cipher_state = &cipher_state_KD[current_page];
personalization_mode = data_generic_trace[7] & 0x80;
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIso15693AsTag(trace_data, trace_data_size);
cipher_state = &cipher_state_KD[current_page];
personalization_mode = data_generic_trace[7] & 0x80;
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIso15693AsTag(trace_data, trace_data_size);
- memcpy(data_response, ToSend, ToSendMax);
+ memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
}
modulated_response = data_response;
modulated_response_size = ToSendMax;
}
- A legit tag has about 311,5us delay between reader EOT and tag SOF.
+ A legit tag has about 273,4us delay between reader EOT and tag SOF.
**/
if (modulated_response_size > 0) {
**/
if (modulated_response_size > 0) {
- uint32_t response_time = reader_eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
- TransmitTo15693Reader(modulated_response, modulated_response_size, response_time, false);
+ uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM - TAG_SOF_UNMODULATED - DELAY_ARM_TO_READER_SIM;
+ TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false);
LogTrace(trace_data, trace_data_size, response_time + DELAY_ARM_TO_READER_SIM, response_time + (modulated_response_size << 6) + DELAY_ARM_TO_READER_SIM, NULL, false);
}
LogTrace(trace_data, trace_data_size, response_time + DELAY_ARM_TO_READER_SIM, response_time + (modulated_response_size << 6) + DELAY_ARM_TO_READER_SIM, NULL, false);
}
* @param datain
*/
void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
* @param datain
*/
void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
uint32_t simType = arg0;
uint32_t numberOfCSNS = arg1;
uint32_t simType = arg0;
uint32_t numberOfCSNS = arg1;
ReaderTransmitIClass(act_all, 1);
// Card present?
if (!ReaderReceiveIClass(resp)) return read_status;//Fail
ReaderTransmitIClass(act_all, 1);
// Card present?
if (!ReaderReceiveIClass(resp)) return read_status;//Fail
//Send Identify
ReaderTransmitIClass(identify, 1);
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
//Send Identify
ReaderTransmitIClass(identify, 1);
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
+static const uint8_t encode_4bits[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
+
void CodeIso15693AsTag(uint8_t *cmd, size_t len) {
/*
* SOF comprises 3 parts;
void CodeIso15693AsTag(uint8_t *cmd, size_t len) {
/*
* SOF comprises 3 parts;
ToSend[++ToSendMax] = 0x1D; // 00011101
// data
ToSend[++ToSendMax] = 0x1D; // 00011101
// data
- for(int i = 0; i < len; i++) {
- for(int j = 0; j < 8; j++) {
- if ((cmd[i] >> j) & 0x01) {
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- } else {
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- }
- }
+ for (int i = 0; i < len; i++) {
+ ToSend[++ToSendMax] = encode_4bits[cmd[i] & 0xF];
+ ToSend[++ToSendMax] = encode_4bits[cmd[i] >> 4];
//-----------------------------------------------------------------------------
// Transmit the tag response (to the reader) that was placed in cmd[].
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Transmit the tag response (to the reader) that was placed in cmd[].
//-----------------------------------------------------------------------------
-void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t start_time, bool slow) {
+void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow) {
// don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
// don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
- uint8_t shift_delay = start_time & 0x00000007;
+ uint32_t modulation_start_time = *start_time + 3 * 8; // no need to transfer the unmodulated start of SOF
+
+ while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time
+ if (slot_time) {
+ modulation_start_time += slot_time; // use next available slot
+ } else {
+ modulation_start_time = (modulation_start_time & 0xfffffff8) + 8; // next possible time
+ }
+ }
+
+ while (GetCountSspClk() < (modulation_start_time & 0xfffffff8))
+ /* wait */ ;
- while (GetCountSspClk() < (start_time & 0xfffffff8)) ;
+ uint8_t shift_delay = modulation_start_time & 0x00000007;
+
+ *start_time = modulation_start_time - 3 * 8;
LED_C_ON();
uint8_t bits_to_shift = 0x00;
uint8_t bits_to_send = 0x00;
LED_C_ON();
uint8_t bits_to_shift = 0x00;
uint8_t bits_to_send = 0x00;
- for(size_t c = 0; c < len; c++) {
- for (int i = 7; i >= 0; i--) {
+ for (size_t c = 0; c < len; c++) {
+ for (int i = (c==0?4:7); i >= 0; i--) {
uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00;
for (int j = 0; j < (slow?4:1); ) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00;
for (int j = 0; j < (slow?4:1); ) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
- TransmitTo15693Reader(ToSend, ToSendMax, start_time, slow);
+ TransmitTo15693Reader(ToSend, ToSendMax, &start_time, 0, slow);
}
Dbprintf("%d bytes read from reader:", cmd_len);
}
Dbprintf("%d bytes read from reader:", cmd_len);
void CodeIso15693AsTag(uint8_t *cmd, size_t len);
int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time);
void CodeIso15693AsTag(uint8_t *cmd, size_t len);
int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time);
-void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t start_time, bool slow);
+void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow);
void SnoopIso15693(void);
void AcquireRawAdcSamplesIso15693(void);
void ReaderIso15693(uint32_t parameter);
void SnoopIso15693(void);
void AcquireRawAdcSamplesIso15693(void);
void ReaderIso15693(uint32_t parameter);
// modulation than a real tag would.
assign pwr_hi = 1'b0; // HF antenna connected to GND
assign pwr_oe3 = 1'b0; // 10k Load
// modulation than a real tag would.
assign pwr_hi = 1'b0; // HF antenna connected to GND
assign pwr_oe3 = 1'b0; // 10k Load
-assign pwr_oe1 = modulating_carrier; // 33 Ohms Load
+assign pwr_oe1 = 1'b0; // 33 Ohms Load
assign pwr_oe4 = modulating_carrier; // 33 Ohms Load
// This is all LF and doesn't matter
assign pwr_oe4 = modulating_carrier; // 33 Ohms Load
// This is all LF and doesn't matter