From: pwpiwi Date: Wed, 21 Aug 2019 20:10:24 +0000 (+0200) Subject: cleaning up iclass.c and optimized_cipher.c X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/commitdiff_plain/17505ce2a74468c89747c996a72139aa9f3ca225?ds=sidebyside cleaning up iclass.c and optimized_cipher.c * add iclass.h * reformatting * whitespace fixes * (no functional changes) --- diff --git a/armsrc/appmain.c b/armsrc/appmain.c index 9b9acb6f..34d1747b 100644 --- a/armsrc/appmain.c +++ b/armsrc/appmain.c @@ -24,6 +24,7 @@ #include "legicrfsim.h" #include "hitag2.h" #include "hitagS.h" +#include "iclass.h" #include "iso14443b.h" #include "iso15693.h" #include "lfsampling.h" diff --git a/armsrc/apps.h b/armsrc/apps.h index 4d9a1482..0302a9f6 100644 --- a/armsrc/apps.h +++ b/armsrc/apps.h @@ -26,10 +26,6 @@ extern const uint8_t OddByteParity[256]; extern int rsamples; // = 0; extern uint8_t trigger; -// This may be used (sparingly) to declare a function to be copied to -// and executed from RAM -#define RAMFUNC __attribute((long_call, section(".ramfunc"))) - /// appmain.h void ReadMem(int addr); void __attribute__((noreturn)) AppMain(void); @@ -144,21 +140,6 @@ void ReaderMifareDES(uint32_t param, uint32_t param2, uint8_t * datain); int DesfireAPDU(uint8_t *cmd, size_t cmd_len, uint8_t *dataout); size_t CreateAPDU( uint8_t *datain, size_t len, uint8_t *dataout); - -/// iclass.h -void RAMFUNC SnoopIClass(void); -void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain); -void ReaderIClass(uint8_t arg0); -void ReaderIClass_Replay(uint8_t arg0,uint8_t *MAC); -void IClass_iso14443A_GetPublic(uint8_t arg0); -void iClass_Authentication(uint8_t *MAC); -void iClass_WriteBlock(uint8_t blockNo, uint8_t *data); -void iClass_ReadBlk(uint8_t blockNo); -bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata); -void iClass_Dump(uint8_t blockno, uint8_t numblks); -void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data); -void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType); - // cmd.h bool cmd_receive(UsbCommand* cmd); bool cmd_send(uint32_t cmd, uint32_t arg0, uint32_t arg1, uint32_t arg2, void* data, size_t len); diff --git a/armsrc/iclass.c b/armsrc/iclass.c index 7ffac62d..ee305a26 100644 --- a/armsrc/iclass.c +++ b/armsrc/iclass.c @@ -12,7 +12,7 @@ //----------------------------------------------------------------------------- // Based on ISO14443a implementation. Still in experimental phase. // Contribution made during a security research at Radboud University Nijmegen -// +// // Please feel free to contribute and extend iClass support!! //----------------------------------------------------------------------------- // @@ -21,7 +21,7 @@ // We still have sometimes a demodulation error when snooping iClass communication. // The resulting trace of a read-block-03 command may look something like this: // -// + 22279: : 0c 03 e8 01 +// + 22279: : 0c 03 e8 01 // // ...with an incorrect answer... // @@ -31,11 +31,13 @@ // // A correct trace should look like this: // -// + 21112: : 0c 03 e8 01 -// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 +// + 21112: : 0c 03 e8 01 +// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 // //----------------------------------------------------------------------------- +#include "iclass.h" + #include "proxmark3.h" #include "apps.h" #include "util.h" @@ -55,173 +57,159 @@ static int timeout = 4096; - -static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); - //----------------------------------------------------------------------------- // The software UART that receives commands from the reader, and its state // variables. //----------------------------------------------------------------------------- static struct { - enum { - STATE_UNSYNCD, - STATE_START_OF_COMMUNICATION, - STATE_RECEIVING - } state; - uint16_t shiftReg; - int bitCnt; - int byteCnt; - int byteCntMax; - int posCnt; - int nOutOfCnt; - int OutOfCnt; - int syncBit; - int samples; - int highCnt; - int swapper; - int counter; - int bitBuffer; - int dropPosition; - uint8_t *output; + enum { + STATE_UNSYNCD, + STATE_START_OF_COMMUNICATION, + STATE_RECEIVING + } state; + uint16_t shiftReg; + int bitCnt; + int byteCnt; + int byteCntMax; + int posCnt; + int nOutOfCnt; + int OutOfCnt; + int syncBit; + int samples; + int highCnt; + int swapper; + int counter; + int bitBuffer; + int dropPosition; + uint8_t *output; } Uart; -static RAMFUNC int OutOfNDecoding(int bit) -{ +static RAMFUNC int OutOfNDecoding(int bit) { //int error = 0; int bitright; - if(!Uart.bitBuffer) { + if (!Uart.bitBuffer) { Uart.bitBuffer = bit ^ 0xFF0; return false; - } - else { + } else { Uart.bitBuffer <<= 4; Uart.bitBuffer ^= bit; } - - /*if(Uart.swapper) { + + /*if (Uart.swapper) { Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; Uart.byteCnt++; Uart.swapper = 0; - if(Uart.byteCnt > 15) { return true; } + if (Uart.byteCnt > 15) { return true; } } else { Uart.swapper = 1; }*/ - if(Uart.state != STATE_UNSYNCD) { + if (Uart.state != STATE_UNSYNCD) { Uart.posCnt++; - if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { + if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { bit = 0x00; - } - else { + } else { bit = 0x01; } - if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { + if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { bitright = 0x00; - } - else { + } else { bitright = 0x01; } - if(bit != bitright) { bit = bitright; } + if (bit != bitright) { + bit = bitright; + } + - // So, now we only have to deal with *bit*, lets see... - if(Uart.posCnt == 1) { + if (Uart.posCnt == 1) { // measurement first half bitperiod - if(!bit) { + if (!bit) { // Drop in first half means that we are either seeing // an SOF or an EOF. - if(Uart.nOutOfCnt == 1) { + if (Uart.nOutOfCnt == 1) { // End of Communication Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; - if(Uart.byteCnt == 0) { + if (Uart.byteCnt == 0) { // Its not straightforward to show single EOFs // So just leave it and do not return true Uart.output[0] = 0xf0; Uart.byteCnt++; - } - else { + } else { return true; } - } - else if(Uart.state != STATE_START_OF_COMMUNICATION) { + } else if (Uart.state != STATE_START_OF_COMMUNICATION) { // When not part of SOF or EOF, it is an error Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 4; } } - } - else { + } else { // measurement second half bitperiod // Count the bitslot we are in... (ISO 15693) Uart.nOutOfCnt++; - - if(!bit) { - if(Uart.dropPosition) { - if(Uart.state == STATE_START_OF_COMMUNICATION) { + + if (!bit) { + if (Uart.dropPosition) { + if (Uart.state == STATE_START_OF_COMMUNICATION) { //error = 1; - } - else { + } else { //error = 7; } // It is an error if we already have seen a drop in current frame Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; - } - else { + } else { Uart.dropPosition = Uart.nOutOfCnt; } } Uart.posCnt = 0; - - if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { + + if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { Uart.nOutOfCnt = 0; - - if(Uart.state == STATE_START_OF_COMMUNICATION) { - if(Uart.dropPosition == 4) { + + if (Uart.state == STATE_START_OF_COMMUNICATION) { + if (Uart.dropPosition == 4) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 256; - } - else if(Uart.dropPosition == 3) { + } else if (Uart.dropPosition == 3) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 4; //Uart.output[Uart.byteCnt] = 0xdd; //Uart.byteCnt++; - } - else { + } else { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; } Uart.dropPosition = 0; - } - else { + } else { // RECEIVING DATA // 1 out of 4 - if(!Uart.dropPosition) { + if (!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 9; - } - else { + } else { Uart.shiftReg >>= 2; - + // Swap bit order Uart.dropPosition--; - //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } - //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } - + //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; } + //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; } + Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); Uart.bitCnt += 2; Uart.dropPosition = 0; - if(Uart.bitCnt == 8) { + if (Uart.bitCnt == 8) { Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); Uart.byteCnt++; Uart.bitCnt = 0; @@ -229,16 +217,14 @@ static RAMFUNC int OutOfNDecoding(int bit) } } } - } - else if(Uart.nOutOfCnt == Uart.OutOfCnt) { + } else if (Uart.nOutOfCnt == Uart.OutOfCnt) { // RECEIVING DATA // 1 out of 256 - if(!Uart.dropPosition) { + if (!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 3; - } - else { + } else { Uart.dropPosition--; Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); Uart.byteCnt++; @@ -249,7 +235,7 @@ static RAMFUNC int OutOfNDecoding(int bit) } } - /*if(error) { + /*if (error) { Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = error & 0xFF; @@ -268,35 +254,33 @@ static RAMFUNC int OutOfNDecoding(int bit) }*/ } - } - else { + } else { bit = Uart.bitBuffer & 0xf0; bit >>= 4; bit ^= 0x0F; // drops become 1s ;-) - if(bit) { + if (bit) { // should have been high or at least (4 * 128) / fc // according to ISO this should be at least (9 * 128 + 20) / fc - if(Uart.highCnt == 8) { + if (Uart.highCnt == 8) { // we went low, so this could be start of communication // it turns out to be safer to choose a less significant // syncbit... so we check whether the neighbour also represents the drop Uart.posCnt = 1; // apparently we are busy with our first half bit period Uart.syncBit = bit & 8; Uart.samples = 3; - if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } - else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } - if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } - else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } - if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; - if(Uart.syncBit && (Uart.bitBuffer & 8)) { + if (!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } + else if (bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } + if (!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } + else if (bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } + if (!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; + if (Uart.syncBit && (Uart.bitBuffer & 8)) { Uart.syncBit = 8; // the first half bit period is expected in next sample Uart.posCnt = 0; Uart.samples = 3; } - } - else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } + } else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } Uart.syncBit <<= 4; Uart.state = STATE_START_OF_COMMUNICATION; @@ -307,28 +291,25 @@ static RAMFUNC int OutOfNDecoding(int bit) Uart.dropPosition = 0; Uart.shiftReg = 0; //error = 0; - } - else { + } else { Uart.highCnt = 0; } - } - else { - if(Uart.highCnt < 8) { - Uart.highCnt++; - } + } else if (Uart.highCnt < 8) { + Uart.highCnt++; } } - return false; + return false; } + //============================================================================= // Manchester //============================================================================= static struct { - enum { - DEMOD_UNSYNCD, + enum { + DEMOD_UNSYNCD, DEMOD_START_OF_COMMUNICATION, DEMOD_START_OF_COMMUNICATION2, DEMOD_START_OF_COMMUNICATION3, @@ -338,29 +319,28 @@ static struct { DEMOD_END_OF_COMMUNICATION, DEMOD_END_OF_COMMUNICATION2, DEMOD_MANCHESTER_F, - DEMOD_ERROR_WAIT - } state; - int bitCount; - int posCount; - int syncBit; - uint16_t shiftReg; - int buffer; - int buffer2; - int buffer3; - int buff; - int samples; - int len; + DEMOD_ERROR_WAIT + } state; + int bitCount; + int posCount; + int syncBit; + uint16_t shiftReg; + int buffer; + int buffer2; + int buffer3; + int buff; + int samples; + int len; enum { SUB_NONE, SUB_FIRST_HALF, SUB_SECOND_HALF, SUB_BOTH - } sub; - uint8_t *output; + } sub; + uint8_t *output; } Demod; -static RAMFUNC int ManchesterDecoding(int v) -{ +static RAMFUNC int ManchesterDecoding(int v) { int bit; int modulation; int error = 0; @@ -370,48 +350,48 @@ static RAMFUNC int ManchesterDecoding(int v) Demod.buffer2 = Demod.buffer3; Demod.buffer3 = v; - if(Demod.buff < 3) { + if (Demod.buff < 3) { Demod.buff++; return false; } - if(Demod.state==DEMOD_UNSYNCD) { + if (Demod.state==DEMOD_UNSYNCD) { Demod.output[Demod.len] = 0xfa; Demod.syncBit = 0; //Demod.samples = 0; - Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part + Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part - if(bit & 0x08) { + if (bit & 0x08) { Demod.syncBit = 0x08; } - if(bit & 0x04) { - if(Demod.syncBit) { + if (bit & 0x04) { + if (Demod.syncBit) { bit <<= 4; } Demod.syncBit = 0x04; } - if(bit & 0x02) { - if(Demod.syncBit) { + if (bit & 0x02) { + if (Demod.syncBit) { bit <<= 2; } Demod.syncBit = 0x02; } - if(bit & 0x01 && Demod.syncBit) { + if (bit & 0x01 && Demod.syncBit) { Demod.syncBit = 0x01; } - - if(Demod.syncBit) { + + if (Demod.syncBit) { Demod.len = 0; Demod.state = DEMOD_START_OF_COMMUNICATION; Demod.sub = SUB_FIRST_HALF; Demod.bitCount = 0; Demod.shiftReg = 0; Demod.samples = 0; - if(Demod.posCount) { - //if(trigger) LED_A_OFF(); // Not useful in this case... + if (Demod.posCount) { + //if (trigger) LED_A_OFF(); // Not useful in this case... switch(Demod.syncBit) { case 0x08: Demod.samples = 3; break; case 0x04: Demod.samples = 2; break; @@ -419,13 +399,12 @@ static RAMFUNC int ManchesterDecoding(int v) case 0x01: Demod.samples = 0; break; } // SOF must be long burst... otherwise stay unsynced!!! - if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { + if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { Demod.state = DEMOD_UNSYNCD; } - } - else { + } else { // SOF must be long burst... otherwise stay unsynced!!! - if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { + if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { Demod.state = DEMOD_UNSYNCD; error = 0x88; } @@ -434,53 +413,47 @@ static RAMFUNC int ManchesterDecoding(int v) error = 0; } - } - else { + } else { modulation = bit & Demod.syncBit; modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; Demod.samples += 4; - if(Demod.posCount==0) { + if (Demod.posCount==0) { Demod.posCount = 1; - if(modulation) { + if (modulation) { Demod.sub = SUB_FIRST_HALF; - } - else { + } else { Demod.sub = SUB_NONE; } - } - else { + } else { Demod.posCount = 0; /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { - if(Demod.state!=DEMOD_ERROR_WAIT) { + if (Demod.state!=DEMOD_ERROR_WAIT) { Demod.state = DEMOD_ERROR_WAIT; Demod.output[Demod.len] = 0xaa; error = 0x01; } }*/ - //else if(modulation) { - if(modulation) { - if(Demod.sub == SUB_FIRST_HALF) { + //else if (modulation) { + if (modulation) { + if (Demod.sub == SUB_FIRST_HALF) { Demod.sub = SUB_BOTH; - } - else { + } else { Demod.sub = SUB_SECOND_HALF; } - } - else if(Demod.sub == SUB_NONE) { - if(Demod.state == DEMOD_SOF_COMPLETE) { + } else if (Demod.sub == SUB_NONE) { + if (Demod.state == DEMOD_SOF_COMPLETE) { Demod.output[Demod.len] = 0x0f; Demod.len++; Demod.state = DEMOD_UNSYNCD; -// error = 0x0f; +// error = 0x0f; return true; - } - else { + } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x33; } - /*if(Demod.state!=DEMOD_ERROR_WAIT) { + /*if (Demod.state!=DEMOD_ERROR_WAIT) { Demod.state = DEMOD_ERROR_WAIT; Demod.output[Demod.len] = 0xaa; error = 0x01; @@ -489,36 +462,33 @@ static RAMFUNC int ManchesterDecoding(int v) switch(Demod.state) { case DEMOD_START_OF_COMMUNICATION: - if(Demod.sub == SUB_BOTH) { + if (Demod.sub == SUB_BOTH) { //Demod.state = DEMOD_MANCHESTER_D; Demod.state = DEMOD_START_OF_COMMUNICATION2; Demod.posCount = 1; Demod.sub = SUB_NONE; - } - else { + } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd2; } break; case DEMOD_START_OF_COMMUNICATION2: - if(Demod.sub == SUB_SECOND_HALF) { + if (Demod.sub == SUB_SECOND_HALF) { Demod.state = DEMOD_START_OF_COMMUNICATION3; - } - else { + } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd3; } break; case DEMOD_START_OF_COMMUNICATION3: - if(Demod.sub == SUB_SECOND_HALF) { -// Demod.state = DEMOD_MANCHESTER_D; + if (Demod.sub == SUB_SECOND_HALF) { +// Demod.state = DEMOD_MANCHESTER_D; Demod.state = DEMOD_SOF_COMPLETE; //Demod.output[Demod.len] = Demod.syncBit & 0xFF; //Demod.len++; - } - else { + } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd4; @@ -529,20 +499,17 @@ static RAMFUNC int ManchesterDecoding(int v) case DEMOD_MANCHESTER_E: // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) // 00001111 = 1 (0 in 14443) - if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF + if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF Demod.bitCount++; Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; Demod.state = DEMOD_MANCHESTER_D; - } - else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF + } else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF Demod.bitCount++; Demod.shiftReg >>= 1; Demod.state = DEMOD_MANCHESTER_E; - } - else if(Demod.sub == SUB_BOTH) { + } else if (Demod.sub == SUB_BOTH) { Demod.state = DEMOD_MANCHESTER_F; - } - else { + } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x55; } @@ -550,17 +517,16 @@ static RAMFUNC int ManchesterDecoding(int v) case DEMOD_MANCHESTER_F: // Tag response does not need to be a complete byte! - if(Demod.len > 0 || Demod.bitCount > 0) { - if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF - Demod.shiftReg >>= (9 - Demod.bitCount); // right align data + if (Demod.len > 0 || Demod.bitCount > 0) { + if (Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF + Demod.shiftReg >>= (9 - Demod.bitCount); // right align data Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; } Demod.state = DEMOD_UNSYNCD; return true; - } - else { + } else { Demod.output[Demod.len] = 0xad; Demod.state = DEMOD_ERROR_WAIT; error = 0x03; @@ -577,7 +543,7 @@ static RAMFUNC int ManchesterDecoding(int v) break; } - /*if(Demod.bitCount>=9) { + /*if (Demod.bitCount>=9) { Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; @@ -587,7 +553,7 @@ static RAMFUNC int ManchesterDecoding(int v) Demod.bitCount = 0; Demod.shiftReg = 0; }*/ - if(Demod.bitCount>=8) { + if (Demod.bitCount >= 8) { Demod.shiftReg >>= 1; Demod.output[Demod.len] = (Demod.shiftReg & 0xff); Demod.len++; @@ -595,7 +561,7 @@ static RAMFUNC int ManchesterDecoding(int v) Demod.shiftReg = 0; } - if(error) { + if (error) { Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = error & 0xFF; @@ -620,7 +586,7 @@ static RAMFUNC int ManchesterDecoding(int v) } // end (state != UNSYNCED) - return false; + return false; } //============================================================================= @@ -633,189 +599,185 @@ static RAMFUNC int ManchesterDecoding(int v) // triggering so that we start recording at the point that the tag is moved // near the reader. //----------------------------------------------------------------------------- -void RAMFUNC SnoopIClass(void) -{ - +void RAMFUNC SnoopIClass(void) { - // We won't start recording the frames that we acquire until we trigger; - // a good trigger condition to get started is probably when we see a - // response from the tag. - //int triggered = false; // false to wait first for card + // We won't start recording the frames that we acquire until we trigger; + // a good trigger condition to get started is probably when we see a + // response from the tag. + //int triggered = false; // false to wait first for card - // The command (reader -> tag) that we're receiving. + // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! #define ICLASS_BUFFER_SIZE 32 uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE]; - // The response (tag -> reader) that we're receiving. + // The response (tag -> reader) that we're receiving. uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE]; - - FpgaDownloadAndGo(FPGA_BITSTREAM_HF); - - // free all BigBuf memory + + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + + // free all BigBuf memory BigBuf_free(); - // The DMA buffer, used to stream samples from the FPGA - uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); - + // The DMA buffer, used to stream samples from the FPGA + uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); + set_tracing(true); clear_trace(); - iso14a_set_trigger(false); + iso14a_set_trigger(false); int lastRxCounter; - uint8_t *upTo; - int smpl; - int maxBehindBy = 0; + uint8_t *upTo; + int smpl; + int maxBehindBy = 0; - // Count of samples received so far, so that we can include timing - // information in the trace buffer. - int samples = 0; - rsamples = 0; + // Count of samples received so far, so that we can include timing + // information in the trace buffer. + int samples = 0; + rsamples = 0; - // Set up the demodulator for tag -> reader responses. + // Set up the demodulator for tag -> reader responses. Demod.output = tagToReaderResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; + Demod.len = 0; + Demod.state = DEMOD_UNSYNCD; - // Setup for the DMA. - FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); - upTo = dmaBuf; - lastRxCounter = DMA_BUFFER_SIZE; - FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); + // Setup for the DMA. + FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); + upTo = dmaBuf; + lastRxCounter = DMA_BUFFER_SIZE; + FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); - // And the reader -> tag commands - memset(&Uart, 0, sizeof(Uart)); + // And the reader -> tag commands + memset(&Uart, 0, sizeof(Uart)); Uart.output = readerToTagCmd; - Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// - Uart.state = STATE_UNSYNCD; + Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// + Uart.state = STATE_UNSYNCD; - // And put the FPGA in the appropriate mode - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + // And put the FPGA in the appropriate mode + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); uint32_t time_0 = GetCountSspClk(); uint32_t time_start = 0; uint32_t time_stop = 0; - int div = 0; - //int div2 = 0; - int decbyte = 0; - int decbyter = 0; - - // And now we loop, receiving samples. - for(;;) { - LED_A_ON(); - WDT_HIT(); - int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & - (DMA_BUFFER_SIZE-1); - if(behindBy > maxBehindBy) { - maxBehindBy = behindBy; - if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) { - Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); - goto done; - } - } - if(behindBy < 1) continue; + int div = 0; + //int div2 = 0; + int decbyte = 0; + int decbyter = 0; - LED_A_OFF(); - smpl = upTo[0]; - upTo++; - lastRxCounter -= 1; - if(upTo - dmaBuf > DMA_BUFFER_SIZE) { - upTo -= DMA_BUFFER_SIZE; - lastRxCounter += DMA_BUFFER_SIZE; - AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; - AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; - } - - //samples += 4; - samples += 1; - - if(smpl & 0xF) { - decbyte ^= (1 << (3 - div)); - } - - // FOR READER SIDE COMMUMICATION... - - decbyter <<= 2; - decbyter ^= (smpl & 0x30); - - div++; - - if((div + 1) % 2 == 0) { - smpl = decbyter; - if(OutOfNDecoding((smpl & 0xF0) >> 4)) { - rsamples = samples - Uart.samples; - time_stop = (GetCountSspClk()-time_0) << 4; - LED_C_ON(); - - //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,true)) break; - //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break; - uint8_t parity[MAX_PARITY_SIZE]; - GetParity(Uart.output, Uart.byteCnt, parity); - LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, true); - - /* And ready to receive another command. */ - Uart.state = STATE_UNSYNCD; - /* And also reset the demod code, which might have been */ - /* false-triggered by the commands from the reader. */ - Demod.state = DEMOD_UNSYNCD; - LED_B_OFF(); - Uart.byteCnt = 0; - }else{ - time_start = (GetCountSspClk()-time_0) << 4; + // And now we loop, receiving samples. + for (;;) { + LED_A_ON(); + WDT_HIT(); + int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1); + if (behindBy > maxBehindBy) { + maxBehindBy = behindBy; + if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) { + Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); + goto done; + } } - decbyter = 0; - } + if (behindBy < 1) continue; - if(div > 3) { - smpl = decbyte; - if(ManchesterDecoding(smpl & 0x0F)) { - time_stop = (GetCountSspClk()-time_0) << 4; - - rsamples = samples - Demod.samples; - LED_B_ON(); - - uint8_t parity[MAX_PARITY_SIZE]; - GetParity(Demod.output, Demod.len, parity); - LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false); - - // And ready to receive another response. - memset(&Demod, 0, sizeof(Demod)); - Demod.output = tagToReaderResponse; - Demod.state = DEMOD_UNSYNCD; - LED_C_OFF(); - }else{ - time_start = (GetCountSspClk()-time_0) << 4; + LED_A_OFF(); + smpl = upTo[0]; + upTo++; + lastRxCounter -= 1; + if (upTo - dmaBuf > DMA_BUFFER_SIZE) { + upTo -= DMA_BUFFER_SIZE; + lastRxCounter += DMA_BUFFER_SIZE; + AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; + AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; + } + + //samples += 4; + samples += 1; + + if (smpl & 0xF) { + decbyte ^= (1 << (3 - div)); + } + + // FOR READER SIDE COMMUMICATION... + + decbyter <<= 2; + decbyter ^= (smpl & 0x30); + + div++; + + if ((div + 1) % 2 == 0) { + smpl = decbyter; + if (OutOfNDecoding((smpl & 0xF0) >> 4)) { + rsamples = samples - Uart.samples; + time_stop = (GetCountSspClk()-time_0) << 4; + LED_C_ON(); + + //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break; + //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break; + uint8_t parity[MAX_PARITY_SIZE]; + GetParity(Uart.output, Uart.byteCnt, parity); + LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, parity, true); + + /* And ready to receive another command. */ + Uart.state = STATE_UNSYNCD; + /* And also reset the demod code, which might have been */ + /* false-triggered by the commands from the reader. */ + Demod.state = DEMOD_UNSYNCD; + LED_B_OFF(); + Uart.byteCnt = 0; + } else { + time_start = (GetCountSspClk()-time_0) << 4; + } + decbyter = 0; + } + + if (div > 3) { + smpl = decbyte; + if (ManchesterDecoding(smpl & 0x0F)) { + time_stop = (GetCountSspClk()-time_0) << 4; + + rsamples = samples - Demod.samples; + LED_B_ON(); + + uint8_t parity[MAX_PARITY_SIZE]; + GetParity(Demod.output, Demod.len, parity); + LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false); + + // And ready to receive another response. + memset(&Demod, 0, sizeof(Demod)); + Demod.output = tagToReaderResponse; + Demod.state = DEMOD_UNSYNCD; + LED_C_OFF(); + } else { + time_start = (GetCountSspClk()-time_0) << 4; + } + + div = 0; + decbyte = 0x00; } - - div = 0; - decbyte = 0x00; - } - //} - if(BUTTON_PRESS()) { - DbpString("cancelled_a"); - goto done; - } - } + if (BUTTON_PRESS()) { + DbpString("cancelled_a"); + goto done; + } + } - DbpString("COMMAND FINISHED"); + DbpString("COMMAND FINISHED"); - Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); + Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); done: - AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; - Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); + AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; + Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); - LEDsoff(); + LEDsoff(); } void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { - int i; - for(i = 0; i < 8; i++) { + int i; + for (i = 0; i < 8; i++) { rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); } } @@ -827,38 +789,37 @@ void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { //----------------------------------------------------------------------------- static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) { - // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen - // only, since we are receiving, not transmitting). - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); + // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen + // only, since we are receiving, not transmitting). + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - // Now run a `software UART' on the stream of incoming samples. - Uart.output = received; - Uart.byteCntMax = maxLen; - Uart.state = STATE_UNSYNCD; + // Now run a `software UART' on the stream of incoming samples. + Uart.output = received; + Uart.byteCntMax = maxLen; + Uart.state = STATE_UNSYNCD; - for(;;) { - WDT_HIT(); + for (;;) { + WDT_HIT(); - if(BUTTON_PRESS()) return false; + if (BUTTON_PRESS()) return false; - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; + } + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - if(OutOfNDecoding(b & 0x0f)) { + if (OutOfNDecoding(b & 0x0f)) { *len = Uart.byteCnt; return true; } - } - } + } + } } -static uint8_t encode4Bits(const uint8_t b) -{ +static uint8_t encode4Bits(const uint8_t b) { uint8_t c = b & 0xF; // OTA, the least significant bits first // The columns are @@ -892,13 +853,12 @@ static uint8_t encode4Bits(const uint8_t b) //----------------------------------------------------------------------------- // Prepare tag messages //----------------------------------------------------------------------------- -static void CodeIClassTagAnswer(const uint8_t *cmd, int len) -{ +static void CodeIClassTagAnswer(const uint8_t *cmd, int len) { /* * SOF comprises 3 parts; * * An unmodulated time of 56.64 us - * * 24 pulses of 423.75 KHz (fc/32) + * * 24 pulses of 423.75 kHz (fc/32) * * A logic 1, which starts with an unmodulated time of 18.88us * followed by 8 pulses of 423.75kHz (fc/32) * @@ -919,7 +879,7 @@ static void CodeIClassTagAnswer(const uint8_t *cmd, int len) * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag, * works like this. * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us). - * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us + * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us * * In this mode the SOF can be written as 00011101 = 0x1D * The EOF can be written as 10111000 = 0xb8 @@ -935,10 +895,10 @@ static void CodeIClassTagAnswer(const uint8_t *cmd, int len) // Send SOF ToSend[++ToSendMax] = 0x1D; - for(i = 0; i < len; i++) { + for (i = 0; i < len; i++) { uint8_t b = cmd[i]; - ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half - ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half + ToSend[++ToSendMax] = encode4Bits(b & 0xF); // Least significant half + ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF); // Most significant half } // Send EOF @@ -948,123 +908,87 @@ static void CodeIClassTagAnswer(const uint8_t *cmd, int len) ToSendMax++; } -// Only SOF -static void CodeIClassTagSOF() -{ +// Only SOF +static void CodeIClassTagSOF() { //So far a dummy implementation, not used //int lastProxToAirDuration =0; ToSendReset(); // Send SOF ToSend[++ToSendMax] = 0x1D; -// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning +// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning // Convert from last byte pos to length ToSendMax++; } -#define MODE_SIM_CSN 0 -#define MODE_EXIT_AFTER_MAC 1 -#define MODE_FULLSIM 2 - -int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf); -/** - * @brief SimulateIClass simulates an iClass card. - * @param arg0 type of simulation - * - 0 uses the first 8 bytes in usb data as CSN - * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified - * in the usb data. This mode collects MAC from the reader, in order to do an offline - * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. - * - Other : Uses the default CSN (031fec8af7ff12e0) - * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) - * @param arg2 - * @param datain - */ -void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) -{ - uint32_t simType = arg0; - uint32_t numberOfCSNS = arg1; - FpgaDownloadAndGo(FPGA_BITSTREAM_HF); - // Enable and clear the trace - set_tracing(true); - clear_trace(); - //Use the emulator memory for SIM - uint8_t *emulator = BigBuf_get_EM_addr(); +static void AppendCrc(uint8_t *data, int len) { + ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1); +} - if(simType == 0) { - // Use the CSN from commandline - memcpy(emulator, datain, 8); - doIClassSimulation(MODE_SIM_CSN,NULL); - }else if(simType == 1) - { - //Default CSN - uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; - // Use the CSN from commandline - memcpy(emulator, csn_crc, 8); - doIClassSimulation(MODE_SIM_CSN,NULL); - } - else if(simType == 2) - { +static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) { + int i = 0, d = 0;//, u = 0, d = 0; + uint8_t b = 0; - uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; - Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); - // In this mode, a number of csns are within datain. We'll simulate each one, one at a time - // in order to collect MAC's from the reader. This can later be used in an offlne-attack - // in order to obtain the keys, as in the "dismantling iclass"-paper. - int i = 0; - for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) - { - // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. + //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K_8BIT); - memcpy(emulator, datain+(i*8), 8); - if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8)) - { - cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); - return; // Button pressed + AT91C_BASE_SSC->SSC_THR = 0x00; + FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); + while (!BUTTON_PRESS()) { + if ((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ + b = AT91C_BASE_SSC->SSC_RHR; (void) b; + } + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ + b = 0x00; + if (d < delay) { + d++; } + else { + if (i < respLen) { + b = resp[i]; + //Hack + //b = 0xAC; + } + i++; + } + AT91C_BASE_SSC->SSC_THR = b; } - cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); - }else if(simType == 3){ - //This is 'full sim' mode, where we use the emulator storage for data. - doIClassSimulation(MODE_FULLSIM, NULL); +// if (i > respLen +4) break; + if (i > respLen + 1) break; } - else{ - // We may want a mode here where we hardcode the csns to use (from proxclone). - // That will speed things up a little, but not required just yet. - Dbprintf("The mode is not implemented, reserved for future use"); - } - Dbprintf("Done..."); + return 0; } -void AppendCrc(uint8_t* data, int len) -{ - ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1); -} + + +#define MODE_SIM_CSN 0 +#define MODE_EXIT_AFTER_MAC 1 +#define MODE_FULLSIM 2 /** * @brief Does the actual simulation * @param csn - csn to use * @param breakAfterMacReceived if true, returns after reader MAC has been received. */ -int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) -{ +int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) { // free eventually allocated BigBuf memory BigBuf_free_keep_EM(); State cipher_state; -// State cipher_state_reserve; +// State cipher_state_reserve; uint8_t *csn = BigBuf_get_EM_addr(); uint8_t *emulator = csn; uint8_t sof_data[] = { 0x0F} ; // CSN followed by two CRC bytes uint8_t anticoll_data[10] = { 0 }; uint8_t csn_data[10] = { 0 }; - memcpy(csn_data,csn,sizeof(csn_data)); - Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); + memcpy(csn_data, csn, sizeof(csn_data)); + Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]); // Construct anticollision-CSN - rotateCSN(csn_data,anticoll_data); + rotateCSN(csn_data, anticoll_data); // Compute CRC on both CSNs ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]); @@ -1073,17 +997,14 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) uint8_t diversified_key[8] = { 0 }; // e-Purse uint8_t card_challenge_data[8] = { 0x00 }; - if(simulationMode == MODE_FULLSIM) - { + if (simulationMode == MODE_FULLSIM) { //The diversified key should be stored on block 3 //Get the diversified key from emulator memory - memcpy(diversified_key, emulator+(8*3),8); - + memcpy(diversified_key, emulator + (8*3), 8); //Card challenge, a.k.a e-purse is on block 2 - memcpy(card_challenge_data,emulator + (8 * 2) , 8); + memcpy(card_challenge_data, emulator + (8 * 2), 8); //Precalculate the cipher state, feeding it the CC - cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key); - + cipher_state = opt_doTagMAC_1(card_challenge_data, diversified_key); } int exitLoop = 0; @@ -1096,10 +1017,9 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) uint8_t *modulated_response; int modulated_response_size = 0; - uint8_t* trace_data = NULL; + uint8_t *trace_data = NULL; int trace_data_size = 0; - // Respond SOF -- takes 1 bytes uint8_t *resp_sof = BigBuf_malloc(2); int resp_sof_Len; @@ -1127,15 +1047,18 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) // First card answer: SOF CodeIClassTagSOF(); - memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax; + memcpy(resp_sof, ToSend, ToSendMax); + resp_sof_Len = ToSendMax; // Anticollision CSN CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data)); - memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax; + memcpy(resp_anticoll, ToSend, ToSendMax); + resp_anticoll_len = ToSendMax; // CSN CodeIClassTagAnswer(csn_data, sizeof(csn_data)); - memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax; + memcpy(resp_csn, ToSend, ToSendMax); + resp_csn_len = ToSendMax; // e-Purse CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data)); @@ -1167,14 +1090,14 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) LED_A_ON(); bool buttonPressed = false; uint8_t response_delay = 1; - while(!exitLoop) { + while (!exitLoop) { response_delay = 1; LED_B_OFF(); //Signal tracer // Can be used to get a trigger for an oscilloscope.. LED_C_OFF(); - if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { + if (!GetIClassCommandFromReader(receivedCmd, &len, 100)) { buttonPressed = true; break; } @@ -1183,52 +1106,55 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) LED_C_ON(); // Okay, look at the command now. - if(receivedCmd[0] == ICLASS_CMD_ACTALL ) { + if (receivedCmd[0] == ICLASS_CMD_ACTALL) { // Reader in anticollission phase - modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1; + modulated_response = resp_sof; + modulated_response_size = resp_sof_Len; //order = 1; trace_data = sof_data; trace_data_size = sizeof(sof_data); - } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { + } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // Reader asks for anticollission CSN - modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2; + modulated_response = resp_anticoll; + modulated_response_size = resp_anticoll_len; //order = 2; trace_data = anticoll_data; trace_data_size = sizeof(anticoll_data); //DbpString("Reader requests anticollission CSN:"); - } else if(receivedCmd[0] == ICLASS_CMD_SELECT) { + } else if (receivedCmd[0] == ICLASS_CMD_SELECT) { // Reader selects anticollission CSN. // Tag sends the corresponding real CSN - modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3; + modulated_response = resp_csn; + modulated_response_size = resp_csn_len; //order = 3; trace_data = csn_data; trace_data_size = sizeof(csn_data); //DbpString("Reader selects anticollission CSN:"); - } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) { + } else if (receivedCmd[0] == ICLASS_CMD_READCHECK_KD) { // Read e-purse (88 02) - modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4; + modulated_response = resp_cc; + modulated_response_size = resp_cc_len; //order = 4; trace_data = card_challenge_data; trace_data_size = sizeof(card_challenge_data); LED_B_ON(); - } else if(receivedCmd[0] == ICLASS_CMD_CHECK) { + } else if (receivedCmd[0] == ICLASS_CMD_CHECK) { // Reader random and reader MAC!!! - if(simulationMode == MODE_FULLSIM) - { + if (simulationMode == MODE_FULLSIM) { //NR, from reader, is in receivedCmd +1 - opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key); + opt_doTagMAC_2(cipher_state, receivedCmd+1, data_generic_trace, diversified_key); trace_data = data_generic_trace; trace_data_size = 4; - CodeIClassTagAnswer(trace_data , trace_data_size); + CodeIClassTagAnswer(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; response_delay = 0;//We need to hurry here... //exitLoop = true; - }else - { //Not fullsim, we don't respond + } else { //Not fullsim, we don't respond // We do not know what to answer, so lets keep quiet - modulated_response = resp_sof; modulated_response_size = 0; + modulated_response = resp_sof; + modulated_response_size = 0; trace_data = NULL; trace_data_size = 0; - if (simulationMode == MODE_EXIT_AFTER_MAC){ + if (simulationMode == MODE_EXIT_AFTER_MAC) { // dbprintf:ing ... Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x" ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); @@ -1236,57 +1162,55 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8]); - if (reader_mac_buf != NULL) - { - memcpy(reader_mac_buf,receivedCmd+1,8); + if (reader_mac_buf != NULL) { + memcpy(reader_mac_buf, receivedCmd+1, 8); } exitLoop = true; } } - } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { + } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { // Reader ends the session - modulated_response = resp_sof; modulated_response_size = 0; //order = 0; + modulated_response = resp_sof; + modulated_response_size = 0; //order = 0; trace_data = NULL; trace_data_size = 0; - } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){ + } else if (simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { //Read block uint16_t blk = receivedCmd[1]; //Take the data... - memcpy(data_generic_trace, emulator+(blk << 3),8); + memcpy(data_generic_trace, emulator + (blk << 3), 8); //Add crc AppendCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; - CodeIClassTagAnswer(trace_data , trace_data_size); + CodeIClassTagAnswer(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; - }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM) - {//Probably the reader wants to update the nonce. Let's just ignore that for now. + } else if (receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM) { + //Probably the reader wants to update the nonce. Let's just ignore that for now. // OBS! If this is implemented, don't forget to regenerate the cipher_state //We're expected to respond with the data+crc, exactly what's already in the receivedcmd //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b| //Take the data... - memcpy(data_generic_trace, receivedCmd+2,8); + memcpy(data_generic_trace, receivedCmd+2, 8); //Add crc AppendCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; - CodeIClassTagAnswer(trace_data , trace_data_size); + CodeIClassTagAnswer(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; - } - else if(receivedCmd[0] == ICLASS_CMD_PAGESEL) - {//Pagesel + } else if (receivedCmd[0] == ICLASS_CMD_PAGESEL) { + //Pagesel //Pagesel enables to select a page in the selected chip memory and return its configuration block //Chips with a single page will not answer to this command // It appears we're fine ignoring this. //Otherwise, we should answer 8bytes (block) + 2bytes CRC - } - else { + } else { //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 // Never seen this command before Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", @@ -1295,35 +1219,35 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) receivedCmd[3], receivedCmd[4], receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8]); // Do not respond - modulated_response = resp_sof; modulated_response_size = 0; //order = 0; + modulated_response = resp_sof; + modulated_response_size = 0; //order = 0; trace_data = NULL; trace_data_size = 0; } - if(cmdsRecvd > 100) { + if (cmdsRecvd > 100) { //DbpString("100 commands later..."); //break; - } - else { + } else { cmdsRecvd++; } /** A legit tag has about 380us delay between reader EOT and tag SOF. **/ - if(modulated_response_size > 0) { + if (modulated_response_size > 0) { SendIClassAnswer(modulated_response, modulated_response_size, response_delay); t2r_time = GetCountSspClk(); } uint8_t parity[MAX_PARITY_SIZE]; GetParity(receivedCmd, len, parity); - LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, true); + LogTrace(receivedCmd, len, (r2t_time-time_0) << 4, (r2t_time-time_0) << 4, parity, true); if (trace_data != NULL) { GetParity(trace_data, trace_data_size, parity); LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, false); } - if(!get_tracing()) { + if (!get_tracing()) { DbpString("Trace full"); //break; } @@ -1334,168 +1258,184 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) LED_B_OFF(); LED_C_OFF(); - if(buttonPressed) + if (buttonPressed) { DbpString("Button pressed"); } return buttonPressed; } -static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) -{ - int i = 0, d=0;//, u = 0, d = 0; - uint8_t b = 0; +/** + * @brief SimulateIClass simulates an iClass card. + * @param arg0 type of simulation + * - 0 uses the first 8 bytes in usb data as CSN + * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified + * in the usb data. This mode collects MAC from the reader, in order to do an offline + * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. + * - Other : Uses the default CSN (031fec8af7ff12e0) + * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) + * @param arg2 + * @param datain + */ +void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { + uint32_t simType = arg0; + uint32_t numberOfCSNS = arg1; + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); - //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT); + // Enable and clear the trace + set_tracing(true); + clear_trace(); + //Use the emulator memory for SIM + uint8_t *emulator = BigBuf_get_EM_addr(); - AT91C_BASE_SSC->SSC_THR = 0x00; - FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); - while(!BUTTON_PRESS()) { - if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ - b = AT91C_BASE_SSC->SSC_RHR; (void) b; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ - b = 0x00; - if(d < delay) { - d++; - } - else { - if( i < respLen){ - b = resp[i]; - //Hack - //b = 0xAC; - } - i++; + if (simType == 0) { + // Use the CSN from commandline + memcpy(emulator, datain, 8); + doIClassSimulation(MODE_SIM_CSN,NULL); + } else if (simType == 1) { + //Default CSN + uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; + // Use the CSN from commandline + memcpy(emulator, csn_crc, 8); + doIClassSimulation(MODE_SIM_CSN,NULL); + } else if (simType == 2) { + uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; + Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); + // In this mode, a number of csns are within datain. We'll simulate each one, one at a time + // in order to collect MAC's from the reader. This can later be used in an offlne-attack + // in order to obtain the keys, as in the "dismantling iclass"-paper. + int i = 0; + for ( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) { + // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. + memcpy(emulator, datain+(i*8), 8); + if (doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8)) { + cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*8); + return; // Button pressed } - AT91C_BASE_SSC->SSC_THR = b; } - -// if (i > respLen +4) break; - if (i > respLen +1) break; + cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*8); + } else if (simType == 3) { + //This is 'full sim' mode, where we use the emulator storage for data. + doIClassSimulation(MODE_FULLSIM, NULL); + } else { + // We may want a mode here where we hardcode the csns to use (from proxclone). + // That will speed things up a little, but not required just yet. + Dbprintf("The mode is not implemented, reserved for future use"); } + Dbprintf("Done..."); - return 0; } + /// THE READER CODE //----------------------------------------------------------------------------- // Transmit the command (to the tag) that was placed in ToSend[]. //----------------------------------------------------------------------------- -static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) -{ - int c; - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - AT91C_BASE_SSC->SSC_THR = 0x00; - FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); - - if (wait) - { - if(*wait < 10) *wait = 10; - - for(c = 0; c < *wait;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! - c++; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; - (void)r; - } - WDT_HIT(); - } - - } - - - uint8_t sendbyte; - bool firstpart = true; - c = 0; - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - - // DOUBLE THE SAMPLES! - if(firstpart) { - sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); - } - else { - sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); - c++; - } - if(sendbyte == 0xff) { - sendbyte = 0xfe; - } - AT91C_BASE_SSC->SSC_THR = sendbyte; - firstpart = !firstpart; - - if(c >= len) { - break; - } - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; - (void)r; - } - WDT_HIT(); - } - if (samples && wait) *samples = (c + *wait) << 3; +static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) { + int c; + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + AT91C_BASE_SSC->SSC_THR = 0x00; + FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); + + if (wait) { + if (*wait < 10) *wait = 10; + + for (c = 0; c < *wait;) { + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! + c++; + } + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; + (void)r; + } + WDT_HIT(); + } + } + + uint8_t sendbyte; + bool firstpart = true; + c = 0; + for (;;) { + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + + // DOUBLE THE SAMPLES! + if (firstpart) { + sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); + } else { + sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); + c++; + } + if (sendbyte == 0xff) { + sendbyte = 0xfe; + } + AT91C_BASE_SSC->SSC_THR = sendbyte; + firstpart = !firstpart; + + if (c >= len) { + break; + } + } + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; + (void)r; + } + WDT_HIT(); + } + if (samples && wait) *samples = (c + *wait) << 3; } //----------------------------------------------------------------------------- // Prepare iClass reader command to send to FPGA //----------------------------------------------------------------------------- -void CodeIClassCommand(const uint8_t * cmd, int len) -{ - int i, j, k; - uint8_t b; - - ToSendReset(); - - // Start of Communication: 1 out of 4 - ToSend[++ToSendMax] = 0xf0; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0x0f; - ToSend[++ToSendMax] = 0x00; - - // Modulate the bytes - for (i = 0; i < len; i++) { - b = cmd[i]; - for(j = 0; j < 4; j++) { - for(k = 0; k < 4; k++) { - if(k == (b & 3)) { - ToSend[++ToSendMax] = 0xf0; - } - else { - ToSend[++ToSendMax] = 0x00; +void CodeIClassCommand(const uint8_t *cmd, int len) { + int i, j, k; + + ToSendReset(); + + // Start of Communication: 1 out of 4 + ToSend[++ToSendMax] = 0xf0; + ToSend[++ToSendMax] = 0x00; + ToSend[++ToSendMax] = 0x0f; + ToSend[++ToSendMax] = 0x00; + + // Modulate the bytes + for (i = 0; i < len; i++) { + uint8_t b = cmd[i]; + for (j = 0; j < 4; j++) { + for (k = 0; k < 4; k++) { + if (k == (b & 3)) { + ToSend[++ToSendMax] = 0xf0; + } else { + ToSend[++ToSendMax] = 0x00; + } } - } - b >>= 2; - } - } - - // End of Communication - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0xf0; - ToSend[++ToSendMax] = 0x00; - - // Convert from last character reference to length - ToSendMax++; + b >>= 2; + } + } + + // End of Communication + ToSend[++ToSendMax] = 0x00; + ToSend[++ToSendMax] = 0x00; + ToSend[++ToSendMax] = 0xf0; + ToSend[++ToSendMax] = 0x00; + + // Convert from last character reference to length + ToSendMax++; } -void ReaderTransmitIClass(uint8_t* frame, int len) -{ +static void ReaderTransmitIClass(uint8_t *frame, int len) { int wait = 0; int samples = 0; // This is tied to other size changes - CodeIClassCommand(frame,len); + CodeIClassCommand(frame, len); // Select the card TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); - if(trigger) + if (trigger) LED_A_ON(); // Store reader command in buffer @@ -1509,8 +1449,8 @@ void ReaderTransmitIClass(uint8_t* frame, int len) // If a response is captured return true // If it takes too long return false //----------------------------------------------------------------------------- -static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer -{ +static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) { + //uint8_t *buffer // buffer needs to be 512 bytes int c; @@ -1529,22 +1469,26 @@ static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, bool skip = false; c = 0; - for(;;) { + for (;;) { WDT_HIT(); - if(BUTTON_PRESS()) return false; + if (BUTTON_PRESS()) return false; - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! if (elapsed) (*elapsed)++; } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - if(c < timeout) { c++; } else { return false; } + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + if (c < timeout) { + c++; + } else { + return false; + } b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; skip = !skip; - if(skip) continue; - - if(ManchesterDecoding(b & 0x0f)) { + if (skip) continue; + + if (ManchesterDecoding(b & 0x0f)) { *samples = c << 3; return true; } @@ -1552,49 +1496,47 @@ static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, } } -int ReaderReceiveIClass(uint8_t* receivedAnswer) -{ - int samples = 0; - if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return false; - rsamples += samples; - uint8_t parity[MAX_PARITY_SIZE]; - GetParity(receivedAnswer, Demod.len, parity); - LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,false); - if(samples == 0) return false; - return Demod.len; +static int ReaderReceiveIClass(uint8_t *receivedAnswer) { + int samples = 0; + if (!GetIClassAnswer(receivedAnswer, 160, &samples, 0)) { + return false; + } + rsamples += samples; + uint8_t parity[MAX_PARITY_SIZE]; + GetParity(receivedAnswer, Demod.len, parity); + LogTrace(receivedAnswer, Demod.len, rsamples, rsamples, parity, false); + if (samples == 0) return false; + return Demod.len; } -void setupIclassReader() -{ - FpgaDownloadAndGo(FPGA_BITSTREAM_HF); - // Reset trace buffer - set_tracing(true); - clear_trace(); - - // Setup SSC - FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); - // Start from off (no field generated) - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelay(200); - - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - - // Now give it time to spin up. - // Signal field is on with the appropriate LED - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - SpinDelay(200); - LED_A_ON(); +static void setupIclassReader() { + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + // Reset trace buffer + set_tracing(true); + clear_trace(); + + // Setup SSC + FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); + // Start from off (no field generated) + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelay(200); + + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + + // Now give it time to spin up. + // Signal field is on with the appropriate LED + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + SpinDelay(200); + LED_A_ON(); } -bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) -{ - while(retries-- > 0) - { +static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) { + while (retries-- > 0) { ReaderTransmitIClass(command, cmdsize); - if(expected_size == ReaderReceiveIClass(resp)){ + if (expected_size == ReaderReceiveIClass(resp)) { return true; } } @@ -1608,8 +1550,7 @@ bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* re * 1 = Got CSN * 2 = Got CSN and CC */ -uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) -{ +static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) { static uint8_t act_all[] = { 0x0a }; //static uint8_t identify[] = { 0x0c }; static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 }; @@ -1627,39 +1568,40 @@ uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) // Send act_all ReaderTransmitIClass(act_all, 1); // Card present? - if(!ReaderReceiveIClass(resp)) return read_status;//Fail + if (!ReaderReceiveIClass(resp)) return read_status;//Fail //Send Identify ReaderTransmitIClass(identify, 1); //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC - uint8_t len = ReaderReceiveIClass(resp); - if(len != 10) return read_status;//Fail + uint8_t len = ReaderReceiveIClass(resp); + if (len != 10) return read_status;//Fail //Copy the Anti-collision CSN to our select-packet - memcpy(&select[1],resp,8); + memcpy(&select[1], resp, 8); //Select the card ReaderTransmitIClass(select, sizeof(select)); //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC - len = ReaderReceiveIClass(resp); - if(len != 10) return read_status;//Fail + len = ReaderReceiveIClass(resp); + if (len != 10) return read_status;//Fail //Success - level 1, we got CSN //Save CSN in response data - memcpy(card_data,resp,8); + memcpy(card_data, resp, 8); //Flag that we got to at least stage 1, read CSN read_status = 1; // Card selected, now read e-purse (cc) (only 8 bytes no CRC) ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); - if(ReaderReceiveIClass(resp) == 8) { + if (ReaderReceiveIClass(resp) == 8) { //Save CC (e-purse) in response data - memcpy(card_data+8,resp,8); + memcpy(card_data+8, resp, 8); read_status++; } return read_status; } -uint8_t handshakeIclassTag(uint8_t *card_data) { + +static uint8_t handshakeIclassTag(uint8_t *card_data) { return handshakeIclassTag_ext(card_data, false); } @@ -1667,15 +1609,15 @@ uint8_t handshakeIclassTag(uint8_t *card_data) { // Reader iClass Anticollission void ReaderIClass(uint8_t arg0) { - uint8_t card_data[6 * 8]={0}; + uint8_t card_data[6 * 8] = {0}; memset(card_data, 0xFF, sizeof(card_data)); - uint8_t last_csn[8]={0,0,0,0,0,0,0,0}; + uint8_t last_csn[8] = {0,0,0,0,0,0,0,0}; uint8_t resp[ICLASS_BUFFER_SIZE]; memset(resp, 0xFF, sizeof(resp)); //Read conf block CRC(0x01) => 0xfa 0x22 - uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22}; + uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22}; //Read App Issuer Area block CRC(0x05) => 0xde 0x64 - uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64}; + uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64}; int read_status= 0; uint8_t result_status = 0; @@ -1694,14 +1636,15 @@ void ReaderIClass(uint8_t arg0) { set_tracing(true); setupIclassReader(); - uint16_t tryCnt=0; + uint16_t tryCnt = 0; bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); - while(!userCancelled) - { + while (!userCancelled) { // if only looking for one card try 2 times if we missed it the first time - if (try_once && tryCnt > 2) break; + if (try_once && tryCnt > 2) { + break; + } tryCnt++; - if(!get_tracing()) { + if (!get_tracing()) { DbpString("Trace full"); break; } @@ -1709,18 +1652,17 @@ void ReaderIClass(uint8_t arg0) { read_status = handshakeIclassTag_ext(card_data, use_credit_key); - if(read_status == 0) continue; - if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN; - if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC; + if (read_status == 0) continue; + if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN; + if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC; // handshakeIclass returns CSN|CC, but the actual block // layout is CSN|CONFIG|CC, so here we reorder the data, // moving CC forward 8 bytes - memcpy(card_data+16,card_data+8, 8); + memcpy(card_data+16, card_data+8, 8); //Read block 1, config - if(flagReadConfig) { - if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10)) - { + if (flagReadConfig) { + if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10)) { result_status |= FLAG_ICLASS_READER_CONF; memcpy(card_data+8, resp, 8); } else { @@ -1729,11 +1671,10 @@ void ReaderIClass(uint8_t arg0) { } //Read block 5, AA - if(flagReadAA) { - if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10)) - { + if (flagReadAA) { + if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10)) { result_status |= FLAG_ICLASS_READER_AA; - memcpy(card_data+(8*5), resp, 8); + memcpy(card_data + (8*5), resp, 8); } else { //Dbprintf("Failed to dump AA block"); } @@ -1749,14 +1690,13 @@ void ReaderIClass(uint8_t arg0) { // with 0xFF:s in block 3 and 4. LED_B_ON(); - //Send back to client, but don't bother if we already sent this - + //Send back to client, but don't bother if we already sent this - // only useful if looping in arm (not try_once && not abort_after_read) - if(memcmp(last_csn, card_data, 8) != 0) - { + if (memcmp(last_csn, card_data, 8) != 0) { // If caller requires that we get Conf, CC, AA, continue until we got it - if( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) { - cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data)); - if(abort_after_read) { + if ( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) { + cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data)); + if (abort_after_read) { LED_A_OFF(); LED_B_OFF(); return; @@ -1770,9 +1710,9 @@ void ReaderIClass(uint8_t arg0) { userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); } if (userCancelled) { - cmd_send(CMD_ACK,0xFF,0,0,card_data, 0); + cmd_send(CMD_ACK, 0xFF, 0, 0, card_data, 0); } else { - cmd_send(CMD_ACK,0,0,0,card_data, 0); + cmd_send(CMD_ACK, 0, 0, 0, card_data, 0); } LED_A_OFF(); } @@ -1782,100 +1722,95 @@ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { uint8_t card_data[USB_CMD_DATA_SIZE]={0}; uint16_t block_crc_LUT[255] = {0}; - {//Generate a lookup table for block crc - for(int block = 0; block < 255; block++){ - char bl = block; - block_crc_LUT[block] = iclass_crc16(&bl ,1); - } + //Generate a lookup table for block crc + for (int block = 0; block < 255; block++){ + char bl = block; + block_crc_LUT[block] = iclass_crc16(&bl ,1); } //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; - - uint16_t crc = 0; - uint8_t cardsize=0; - uint8_t mem=0; - - static struct memory_t{ - int k16; - int book; - int k2; - int lockauth; - int keyaccess; + + uint16_t crc = 0; + uint8_t cardsize = 0; + uint8_t mem = 0; + + static struct memory_t { + int k16; + int book; + int k2; + int lockauth; + int keyaccess; } memory; - + uint8_t resp[ICLASS_BUFFER_SIZE]; - - setupIclassReader(); + + setupIclassReader(); set_tracing(true); - while(!BUTTON_PRESS()) { - + while (!BUTTON_PRESS()) { + WDT_HIT(); - if(!get_tracing()) { + if (!get_tracing()) { DbpString("Trace full"); break; } - + uint8_t read_status = handshakeIclassTag(card_data); - if(read_status < 2) continue; + if (read_status < 2) continue; //for now replay captured auth (as cc not updated) - memcpy(check+5,MAC,4); + memcpy(check+5, MAC, 4); - if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5)) - { + if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 5)) { Dbprintf("Error: Authentication Fail!"); continue; } //first get configuration block (block 1) crc = block_crc_LUT[1]; - read[1]=1; + read[1] = 1; read[2] = crc >> 8; read[3] = crc & 0xff; - if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) - { + if (!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) { Dbprintf("Dump config (block 1) failed"); continue; } - mem=resp[5]; - memory.k16= (mem & 0x80); - memory.book= (mem & 0x20); - memory.k2= (mem & 0x8); - memory.lockauth= (mem & 0x2); - memory.keyaccess= (mem & 0x1); + mem = resp[5]; + memory.k16 = (mem & 0x80); + memory.book = (mem & 0x20); + memory.k2 = (mem & 0x8); + memory.lockauth = (mem & 0x2); + memory.keyaccess = (mem & 0x1); cardsize = memory.k16 ? 255 : 32; WDT_HIT(); //Set card_data to all zeroes, we'll fill it with data - memset(card_data,0x0,USB_CMD_DATA_SIZE); - uint8_t failedRead =0; - uint32_t stored_data_length =0; + memset(card_data, 0x0, USB_CMD_DATA_SIZE); + uint8_t failedRead = 0; + uint32_t stored_data_length = 0; //then loop around remaining blocks - for(int block=0; block < cardsize; block++){ - - read[1]= block; + for (int block = 0; block < cardsize; block++) { + read[1] = block; crc = block_crc_LUT[block]; read[2] = crc >> 8; read[3] = crc & 0xff; - if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) - { + if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) { Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", - block, resp[0], resp[1], resp[2], + block, resp[0], resp[1], resp[2], resp[3], resp[4], resp[5], resp[6], resp[7]); //Fill up the buffer - memcpy(card_data+stored_data_length,resp,8); + memcpy(card_data+stored_data_length, resp, 8); stored_data_length += 8; - if(stored_data_length +8 > USB_CMD_DATA_SIZE) - {//Time to send this off and start afresh + if (stored_data_length +8 > USB_CMD_DATA_SIZE) { + //Time to send this off and start afresh cmd_send(CMD_ACK, stored_data_length,//data length failedRead,//Failed blocks? @@ -1886,21 +1821,21 @@ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { failedRead = 0; } - }else{ + } else { failedRead = 1; - stored_data_length +=8;//Otherwise, data becomes misaligned + stored_data_length += 8;//Otherwise, data becomes misaligned Dbprintf("Failed to dump block %d", block); } } //Send off any remaining data - if(stored_data_length > 0) - { + if (stored_data_length > 0) { cmd_send(CMD_ACK, stored_data_length,//data length failedRead,//Failed blocks? 0,//Not used ATM - card_data, stored_data_length); + card_data, + stored_data_length); } //If we got here, let's break break; @@ -1910,27 +1845,29 @@ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { 0,//data length 0,//Failed blocks? 0,//Not used ATM - card_data, 0); + card_data, + 0); LED_A_OFF(); } -void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) { +void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) { uint8_t readcheck[] = { keyType, blockNo }; uint8_t resp[] = {0,0,0,0,0,0,0,0}; size_t isOK = 0; isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6); - cmd_send(CMD_ACK,isOK,0,0,0,0); + cmd_send(CMD_ACK,isOK, 0, 0, 0, 0); } void iClass_Authentication(uint8_t *MAC) { uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t resp[ICLASS_BUFFER_SIZE]; - memcpy(check+5,MAC,4); + memcpy(check+5, MAC, 4); bool isOK; isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6); - cmd_send(CMD_ACK,isOK,0,0,0,0); + cmd_send(CMD_ACK,isOK, 0, 0, 0, 0); } + bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) { uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C? char bl = blockNo; @@ -1961,17 +1898,17 @@ void iClass_Dump(uint8_t blockno, uint8_t numblks) { BigBuf_free(); uint8_t *dataout = BigBuf_malloc(255*8); - if (dataout == NULL){ + if (dataout == NULL) { Dbprintf("out of memory"); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); - cmd_send(CMD_ACK,0,1,0,0,0); + cmd_send(CMD_ACK, 0, 1, 0, 0, 0); LED_A_OFF(); return; } - memset(dataout,0xFF,255*8); + memset(dataout, 0xFF, 255*8); - for (;blkCnt < numblks; blkCnt++) { + for ( ; blkCnt < numblks; blkCnt++) { isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); @@ -1980,36 +1917,35 @@ void iClass_Dump(uint8_t blockno, uint8_t numblks) { break; } } - memcpy(dataout+(blkCnt*8),readblockdata,8); + memcpy(dataout + (blkCnt*8), readblockdata, 8); } //return pointer to dump memory in arg3 - cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0); + cmd_send(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); BigBuf_free(); } -bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { +static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //uint8_t readblockdata[10]; //write[1] = blockNo; memcpy(write+2, data, 12); // data + mac - char *wrCmd = (char *)(write+1); + char *wrCmd = (char *)(write+1); uint16_t wrCrc = iclass_crc16(wrCmd, 13); write[14] = wrCrc >> 8; write[15] = wrCrc & 0xff; uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; bool isOK = false; - isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10); + isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10); if (isOK) { //if reader responded correctly //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]); - if (memcmp(write+2,resp,8)) { //if response is not equal to write values + if (memcmp(write+2, resp, 8)) { //if response is not equal to write values if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data) //error try again - isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10); - } - + isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10); + } } } return isOK; @@ -2018,37 +1954,37 @@ bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) { bool isOK = iClass_WriteBlock_ext(blockNo, data); if (isOK){ - Dbprintf("Write block [%02x] successful",blockNo); + Dbprintf("Write block [%02x] successful", blockNo); } else { - Dbprintf("Write block [%02x] failed",blockNo); + Dbprintf("Write block [%02x] failed", blockNo); } - cmd_send(CMD_ACK,isOK,0,0,0,0); + cmd_send(CMD_ACK, isOK, 0, 0, 0, 0); } void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) { int i; int written = 0; int total_block = (endblock - startblock) + 1; - for (i = 0; i < total_block;i++){ + for (i = 0; i < total_block; i++) { // block number - if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){ - Dbprintf("Write block [%02x] successful",i + startblock); + if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){ + Dbprintf("Write block [%02x] successful", i + startblock); written++; } else { - if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){ - Dbprintf("Write block [%02x] successful",i + startblock); + if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){ + Dbprintf("Write block [%02x] successful", i + startblock); written++; } else { - Dbprintf("Write block [%02x] failed",i + startblock); + Dbprintf("Write block [%02x] failed", i + startblock); } } } if (written == total_block) Dbprintf("Clone complete"); else - Dbprintf("Clone incomplete"); + Dbprintf("Clone incomplete"); - cmd_send(CMD_ACK,1,0,0,0,0); + cmd_send(CMD_ACK, 1, 0, 0, 0, 0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } diff --git a/armsrc/optimized_cipher.c b/armsrc/optimized_cipher.c index b1f33737..ee9d5568 100644 --- a/armsrc/optimized_cipher.c +++ b/armsrc/optimized_cipher.c @@ -1,13 +1,13 @@ /***************************************************************************** * WARNING * - * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY. - * - * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL - * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL, - * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES. - * - * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS. + * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY. + * + * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL + * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL, + * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES. + * + * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS. * ***************************************************************************** * @@ -31,9 +31,9 @@ * * You should have received a copy of the GNU General Public License * along with loclass. If not, see . - * - * - * + * + * + * ****************************************************************************/ /** @@ -87,22 +87,20 @@ uint8_t xopt__select(bool x, bool y, uint8_t r) // z0 // z1 -// uint8_t z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4); // <-- original +// uint8_t z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4); // <-- original uint8_t z0 = (r_and_ls2 >> 5) ^ ((r & ~r_ls2) >> 4) ^ ( r_or_ls2 >> 3); -// uint8_t z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y; // <-- original +// uint8_t z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y; // <-- original uint8_t z1 = (r_or_ls2 >> 6) ^ ( r_or_ls2 >> 1) ^ (r >> 5) ^ r ^ ((x^y) << 1); -// uint8_t z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x; // <-- original +// uint8_t z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x; // <-- original uint8_t z2 = ((r & ~r_ls2) >> 4) ^ (r_and_ls2 >> 3) ^ r ^ x; return (z0 & 4) | (z1 & 2) | (z2 & 1); } */ -void opt_successor(const uint8_t* k, State *s, bool y, State* successor) -{ - +void opt_successor(const uint8_t *k, State *s, bool y, State *successor) { uint8_t Tt = 1 & opt_T(s); successor->t = (s->t >> 1); @@ -111,136 +109,124 @@ void opt_successor(const uint8_t* k, State *s, bool y, State* successor) successor->b = s->b >> 1; successor->b |= (opt_B(s) ^ (s->r & 0x1)) << 7; - successor->r = (k[opt__select(Tt,y,s->r)] ^ successor->b) + s->l ; - successor->l = successor->r+s->r; - + successor->r = (k[opt__select(Tt, y, s->r)] ^ successor->b) + s->l ; + successor->l = successor->r + s->r; } -void opt_suc(const uint8_t* k,State* s, uint8_t *in, uint8_t length, bool add32Zeroes) -{ +void opt_suc(const uint8_t *k, State *s, uint8_t *in, uint8_t length, bool add32Zeroes) { State x2; - int i; - uint8_t head = 0; - for(i =0 ; i < length ; i++) - { + for (int i = 0; i < length; i++) { + uint8_t head; head = 1 & (in[i] >> 7); - opt_successor(k,s,head,&x2); + opt_successor(k, s, head, &x2); head = 1 & (in[i] >> 6); - opt_successor(k,&x2,head,s); + opt_successor(k, &x2, head, s); head = 1 & (in[i] >> 5); - opt_successor(k,s,head,&x2); + opt_successor(k, s, head, &x2); head = 1 & (in[i] >> 4); - opt_successor(k,&x2,head,s); + opt_successor(k, &x2, head, s); head = 1 & (in[i] >> 3); - opt_successor(k,s,head,&x2); + opt_successor(k, s, head, &x2); head = 1 & (in[i] >> 2); - opt_successor(k,&x2,head,s); + opt_successor(k, &x2, head, s); head = 1 & (in[i] >> 1); - opt_successor(k,s,head,&x2); + opt_successor(k, s, head, &x2); head = 1 & in[i]; - opt_successor(k,&x2,head,s); - + opt_successor(k, &x2, head, s); } //For tag MAC, an additional 32 zeroes - if(add32Zeroes) - for(i =0 ; i < 16 ; i++) - { - opt_successor(k,s,0,&x2); - opt_successor(k,&x2,0,s); + if (add32Zeroes) { + for(int i = 0; i < 16; i++) { + opt_successor(k, s, 0, &x2); + opt_successor(k, &x2, 0, s); } + } } -void opt_output(const uint8_t* k,State* s, uint8_t *buffer) -{ - uint8_t times = 0; - uint8_t bout = 0; - State temp = {0,0,0,0}; - for( ; times < 4 ; times++) - { - bout =0; +void opt_output(const uint8_t *k, State *s, uint8_t *buffer) { + State temp = {0, 0, 0, 0}; + for (uint8_t times = 0; times < 4; times++) { + uint8_t bout = 0; bout |= (s->r & 0x4) << 5; - opt_successor(k,s,0,&temp); + opt_successor(k, s, 0, &temp); bout |= (temp.r & 0x4) << 4; - opt_successor(k,&temp,0,s); + opt_successor(k, &temp, 0, s); bout |= (s->r & 0x4) << 3; - opt_successor(k,s,0,&temp); + opt_successor(k, s, 0, &temp); bout |= (temp.r & 0x4) << 2; - opt_successor(k,&temp,0,s); + opt_successor(k, &temp, 0, s); bout |= (s->r & 0x4) << 1; - opt_successor(k,s,0,&temp); + opt_successor(k, s, 0, &temp); bout |= (temp.r & 0x4) ; - opt_successor(k,&temp,0,s); + opt_successor(k, &temp, 0, s); bout |= (s->r & 0x4) >> 1; - opt_successor(k,s,0,&temp); + opt_successor(k, s, 0, &temp); bout |= (temp.r & 0x4) >> 2; - opt_successor(k,&temp,0,s); + opt_successor(k, &temp, 0, s); buffer[times] = bout; } - } -void opt_MAC(uint8_t* k, uint8_t* input, uint8_t* out) -{ +void opt_MAC(uint8_t *k, uint8_t *input, uint8_t *out) { State _init = { - ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l - ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r - 0x4c, // b - 0xE012 // t - }; + ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l + ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r + 0x4c, // b + 0xE012 // t + }; - opt_suc(k,&_init,input,12, false); + opt_suc(k, &_init, input, 12, false); //printf("\noutp "); - opt_output(k,&_init, out); + opt_output(k, &_init, out); } + uint8_t rev_byte(uint8_t b) { b = (b & 0xF0) >> 4 | (b & 0x0F) << 4; b = (b & 0xCC) >> 2 | (b & 0x33) << 2; b = (b & 0xAA) >> 1 | (b & 0x55) << 1; - return b; + return b; } -void opt_reverse_arraybytecpy(uint8_t* dest, uint8_t *src, size_t len) -{ - uint8_t i; - for( i =0; i< len ; i++) + +void opt_reverse_arraybytecpy(uint8_t *dest, uint8_t *src, size_t len) { + for (size_t i = 0; i < len; i++) { dest[i] = rev_byte(src[i]); + } } -void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) -{ +void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) { static uint8_t cc_nr[12]; - - opt_reverse_arraybytecpy(cc_nr, cc_nr_p,12); - uint8_t dest []= {0,0,0,0,0,0,0,0}; - opt_MAC(div_key_p,cc_nr, dest); + opt_reverse_arraybytecpy(cc_nr, cc_nr_p, 12); + uint8_t dest[] = {0, 0, 0, 0, 0, 0, 0, 0}; + opt_MAC(div_key_p, cc_nr, dest); //The output MAC must also be reversed - opt_reverse_arraybytecpy(mac, dest,4); + opt_reverse_arraybytecpy(mac, dest, 4); return; } -void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]) -{ + +void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]) { static uint8_t cc_nr[8+4+4]; - opt_reverse_arraybytecpy(cc_nr, cc_p,12); - State _init = { - ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l - ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r - 0x4c, // b - 0xE012 // t - }; - opt_suc(div_key_p,&_init,cc_nr, 12,true); - uint8_t dest []= {0,0,0,0}; - opt_output(div_key_p,&_init, dest); + opt_reverse_arraybytecpy(cc_nr, cc_p, 12); + State _init = { + ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l + ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r + 0x4c, // b + 0xE012 // t + }; + opt_suc(div_key_p, &_init,cc_nr, 12, true); + uint8_t dest[] = {0, 0, 0, 0}; + opt_output(div_key_p, &_init, dest); //The output MAC must also be reversed - opt_reverse_arraybytecpy(mac, dest,4); + opt_reverse_arraybytecpy(mac, dest, 4); return; - } + /** * The tag MAC can be divided (both can, but no point in dividing the reader mac) into * two functions, since the first 8 bytes are known, we can pre-calculate the state @@ -249,19 +235,19 @@ void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]) * @param div_key_p * @return the cipher state */ -State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p) -{ +State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p) { static uint8_t cc_nr[8]; - opt_reverse_arraybytecpy(cc_nr, cc_p,8); - State _init = { - ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l - ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r - 0x4c, // b - 0xE012 // t - }; - opt_suc(div_key_p,&_init,cc_nr, 8,false); + opt_reverse_arraybytecpy(cc_nr, cc_p, 8); + State _init = { + ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l + ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r + 0x4c, // b + 0xE012 // t + }; + opt_suc(div_key_p, &_init, cc_nr, 8, false); return _init; } + /** * The second part of the tag MAC calculation, since the CC is already calculated into the state, * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag @@ -271,15 +257,14 @@ State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p) * @param mac - where to store the MAC * @param div_key_p - the key to use */ -void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p) -{ - static uint8_t _nr [4]; +void opt_doTagMAC_2(State _init, uint8_t *nr, uint8_t mac[4], const uint8_t *div_key_p) { + static uint8_t _nr[4]; opt_reverse_arraybytecpy(_nr, nr, 4); - opt_suc(div_key_p,&_init,_nr, 4, true); - //opt_suc(div_key_p,&_init,nr, 4, false); - uint8_t dest []= {0,0,0,0}; - opt_output(div_key_p,&_init, dest); + opt_suc(div_key_p, &_init, _nr, 4, true); + //opt_suc(div_key_p, &_init,nr, 4, false); + uint8_t dest[] = {0, 0, 0, 0}; + opt_output(div_key_p, &_init, dest); //The output MAC must also be reversed - opt_reverse_arraybytecpy(mac, dest,4); + opt_reverse_arraybytecpy(mac, dest, 4); return; } diff --git a/armsrc/optimized_cipher.h b/armsrc/optimized_cipher.h index 6a4e2641..be77a250 100644 --- a/armsrc/optimized_cipher.h +++ b/armsrc/optimized_cipher.h @@ -35,17 +35,18 @@ * ****************************************************************************/ - #ifndef OPTIMIZED_CIPHER_H -#define OPTIMIZED_CIPHER_H +#ifndef OPTIMIZED_CIPHER_H__ +#define OPTIMIZED_CIPHER_H__ + #include /** * Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2 * consisting of the following four components: -* 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ; -* 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ; -* 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 . -* 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 . +* 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ; +* 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ; +* 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 . +* 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 . **/ typedef struct { uint8_t l; @@ -57,6 +58,7 @@ typedef struct { /** The reader MAC is MAC(key, CC * NR ) **/ void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]); + /** * The tag MAC is MAC(key, CC * NR * 32x0)) */ @@ -71,6 +73,7 @@ void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]); * @return the cipher state */ State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p); + /** * The second part of the tag MAC calculation, since the CC is already calculated into the state, * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag @@ -80,6 +83,6 @@ State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p); * @param mac - where to store the MAC * @param div_key_p - the key to use */ -void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p); +void opt_doTagMAC_2(State _init, uint8_t *nr, uint8_t mac[4], const uint8_t *div_key_p); -#endif // OPTIMIZED_CIPHER_H +#endif // OPTIMIZED_CIPHER_H__