From: iceman1001 Date: Sun, 21 Jun 2015 19:56:44 +0000 (+0200) Subject: ADD: @pwpivi latest fixes. X-Git-Url: http://cvs.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/commitdiff_plain/36f84d474844a67f389239c0ec361f0dfe88983a ADD: @pwpivi latest fixes. ADD: @marshmellows fixes. --- diff --git a/armsrc/iso14443b.c b/armsrc/iso14443b.c index 53f7e74d..db2c5479 100644 --- a/armsrc/iso14443b.c +++ b/armsrc/iso14443b.c @@ -122,8 +122,7 @@ static struct { STATE_UNSYNCD, STATE_GOT_FALLING_EDGE_OF_SOF, STATE_AWAITING_START_BIT, - STATE_RECEIVING_DATA, - STATE_ERROR_WAIT + STATE_RECEIVING_DATA } state; uint16_t shiftReg; int bitCnt; @@ -145,7 +144,7 @@ static struct { * Returns: true if we received a EOF * false if we are still waiting for some more */ -static int Handle14443bUartBit(int bit) +static RAMFUNC int Handle14443bUartBit(uint8_t bit) { switch(Uart.state) { case STATE_UNSYNCD: @@ -172,7 +171,7 @@ static int Handle14443bUartBit(int bit) } else { // didn't stay down long enough // before going high, error - Uart.state = STATE_ERROR_WAIT; + Uart.state = STATE_UNSYNCD; } } else { // do nothing, keep waiting @@ -183,7 +182,8 @@ static int Handle14443bUartBit(int bit) if(Uart.bitCnt > 12) { // Give up if we see too many zeros without // a one, too. - Uart.state = STATE_ERROR_WAIT; + LED_A_OFF(); + Uart.state = STATE_UNSYNCD; } break; @@ -193,7 +193,7 @@ static int Handle14443bUartBit(int bit) if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs // stayed high for too long between // characters, error - Uart.state = STATE_ERROR_WAIT; + Uart.state = STATE_UNSYNCD; } } else { // falling edge, this starts the data byte @@ -227,8 +227,8 @@ static int Handle14443bUartBit(int bit) if(Uart.byteCnt >= Uart.byteCntMax) { // Buffer overflowed, give up - Uart.posCnt = 0; - Uart.state = STATE_ERROR_WAIT; + LED_A_OFF(); + Uart.state = STATE_UNSYNCD; } else { // so get the next byte now Uart.posCnt = 0; @@ -237,31 +237,20 @@ static int Handle14443bUartBit(int bit) } else if(Uart.shiftReg == 0x000) { // this is an EOF byte LED_A_OFF(); // Finished receiving + Uart.state = STATE_UNSYNCD; if (Uart.byteCnt != 0) { return TRUE; } - Uart.posCnt = 0; - Uart.state = STATE_ERROR_WAIT; } else { // this is an error - Uart.posCnt = 0; - Uart.state = STATE_ERROR_WAIT; - } - } - break; - - case STATE_ERROR_WAIT: - // We're all screwed up, so wait a little while - // for whatever went wrong to finish, and then - // start over. - Uart.posCnt++; - if(Uart.posCnt > 10) { + LED_A_OFF(); Uart.state = STATE_UNSYNCD; - LED_A_OFF(); + } } break; default: + LED_A_OFF(); Uart.state = STATE_UNSYNCD; break; } @@ -269,6 +258,23 @@ static int Handle14443bUartBit(int bit) return FALSE; } + +static void UartReset() +{ + Uart.byteCntMax = MAX_FRAME_SIZE; + Uart.state = STATE_UNSYNCD; + Uart.byteCnt = 0; + Uart.bitCnt = 0; +} + + +static void UartInit(uint8_t *data) +{ + Uart.output = data; + UartReset(); +} + + //----------------------------------------------------------------------------- // Receive a command (from the reader to us, where we are the simulated tag), // and store it in the given buffer, up to the given maximum length. Keeps @@ -278,44 +284,34 @@ static int Handle14443bUartBit(int bit) // Assume that we're called with the SSC (to the FPGA) and ADC path set // correctly. //----------------------------------------------------------------------------- -static int GetIso14443bCommandFromReader(uint8_t *received, int *len, int maxLen) +static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) { - uint8_t mask; - int i, bit; - // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen // only, since we are receiving, not transmitting). // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); - // Now run a `software UART' on the stream of incoming samples. - Uart.output = received; - Uart.byteCntMax = maxLen; - Uart.state = STATE_UNSYNCD; + UartInit(received); for(;;) { WDT_HIT(); if(BUTTON_PRESS()) return FALSE; - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; - } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - - mask = 0x80; - for(i = 0; i < 8; i++, mask >>= 1) { - bit = (b & mask); - if(Handle14443bUartBit(bit)) { + for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) { + if(Handle14443bUartBit(b & mask)) { *len = Uart.byteCnt; return TRUE; } } } } + + return FALSE; } //----------------------------------------------------------------------------- @@ -324,9 +320,12 @@ static int GetIso14443bCommandFromReader(uint8_t *received, int *len, int maxLen //----------------------------------------------------------------------------- void SimulateIso14443bTag(void) { - // the only command we understand is REQB, AFI=0, Select All, N=0: + // the only commands we understand is REQB, AFI=0, Select All, N=0: static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; - // ... and we respond with ATQB, PUPI = 820de174, Application Data = 0x20381922, + // ... and REQB, AFI=0, Normal Request, N=0: + static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; + + // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922, // supports only 106kBit/s in both directions, max frame size = 32Bytes, // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported: static const uint8_t response1[] = { @@ -334,25 +333,27 @@ void SimulateIso14443bTag(void) 0x00, 0x21, 0x85, 0x5e, 0xd7 }; - uint8_t *resp; - int respLen; + clear_trace(); + set_tracing(TRUE); + + const uint8_t *resp; + uint8_t *respCode; + uint16_t respLen, respCodeLen; // allocate command receive buffer BigBuf_free(); uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); - int len; - - int i; - int cmdsRecvd = 0; + uint16_t len; + uint16_t cmdsRecvd = 0; FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // prepare the (only one) tag answer: CodeIso14443bAsTag(response1, sizeof(response1)); - uint8_t *resp1 = BigBuf_malloc(ToSendMax); - memcpy(resp1, ToSend, ToSendMax); - uint16_t resp1Len = ToSendMax; + uint8_t *resp1Code = BigBuf_malloc(ToSendMax); + memcpy(resp1Code, ToSend, ToSendMax); + uint16_t resp1CodeLen = ToSendMax; // We need to listen to the high-frequency, peak-detected path. SetAdcMuxFor(GPIO_MUXSEL_HIPKD); @@ -361,20 +362,28 @@ void SimulateIso14443bTag(void) cmdsRecvd = 0; for(;;) { - uint8_t b1, b2; - if(!GetIso14443bCommandFromReader(receivedCmd, &len, 100)) { + if(!GetIso14443bCommandFromReader(receivedCmd, &len)) { Dbprintf("button pressed, received %d commands", cmdsRecvd); break; } - // Good, look at the command now. + if (tracing) { + uint8_t parity[MAX_PARITY_SIZE]; + LogTrace(receivedCmd, len, 0, 0, parity, TRUE); + } - if(len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len)==0) { - resp = resp1; respLen = resp1Len; + // Good, look at the command now. + if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0) + || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) { + resp = response1; + respLen = sizeof(response1); + respCode = resp1Code; + respCodeLen = resp1CodeLen; } else { Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd); // And print whether the CRC fails, just for good measure + uint8_t b1, b2; ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2); if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) { // Not so good, try again. @@ -392,7 +401,7 @@ void SimulateIso14443bTag(void) break; } - if(respLen <= 0) continue; + if(respCodeLen <= 0) continue; // Modulate BPSK // Signal field is off with the appropriate LED @@ -402,15 +411,15 @@ void SimulateIso14443bTag(void) FpgaSetupSsc(); // Transmit the response. - i = 0; + uint16_t i = 0; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - uint8_t b = resp[i]; + uint8_t b = respCode[i]; AT91C_BASE_SSC->SSC_THR = b; i++; - if(i > respLen) { + if(i > respCodeLen) { break; } } @@ -419,6 +428,13 @@ void SimulateIso14443bTag(void) (void)b; } } + + // trace the response: + if (tracing) { + uint8_t parity[MAX_PARITY_SIZE]; + LogTrace(resp, respLen, 0, 0, parity, FALSE); + } + } } @@ -436,8 +452,7 @@ static struct { DEMOD_AWAITING_FALLING_EDGE_OF_SOF, DEMOD_GOT_FALLING_EDGE_OF_SOF, DEMOD_AWAITING_START_BIT, - DEMOD_RECEIVING_DATA, - DEMOD_ERROR_WAIT + DEMOD_RECEIVING_DATA } state; int bitCount; int posCount; @@ -684,22 +699,6 @@ static void DemodInit(uint8_t *data) } -static void UartReset() -{ - Uart.byteCntMax = MAX_FRAME_SIZE; - Uart.state = STATE_UNSYNCD; - Uart.byteCnt = 0; - Uart.bitCnt = 0; -} - - -static void UartInit(uint8_t *data) -{ - Uart.output = data; - UartReset(); -} - - /* * Demodulate the samples we received from the tag, also log to tracebuffer * quiet: set to 'TRUE' to disable debug output @@ -1165,11 +1164,11 @@ void RAMFUNC SnoopIso14443b(void) /* false-triggered by the commands from the reader. */ DemodReset(); } - ReaderIsActive = (Uart.state != STATE_UNSYNCD); + ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF); } if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time - if(Handle14443bSamplesDemod(ci, cq)) { + if(Handle14443bSamplesDemod(ci | 0x01, cq | 0x01)) { //Use samples as a time measurement if(tracing) diff --git a/fpga/fpga_hf.bit b/fpga/fpga_hf.bit index 49bec224..a4d72e37 100644 Binary files a/fpga/fpga_hf.bit and b/fpga/fpga_hf.bit differ diff --git a/fpga/hi_read_rx_xcorr.v b/fpga/hi_read_rx_xcorr.v index bb151554..f816199e 100644 --- a/fpga/hi_read_rx_xcorr.v +++ b/fpga/hi_read_rx_xcorr.v @@ -28,22 +28,12 @@ assign pwr_oe1 = 1'b0; assign pwr_oe3 = 1'b0; assign pwr_oe4 = 1'b0; -(* clock_signal = "yes" *) reg fc_div_2; +wire adc_clk = ck_1356megb; + +reg fc_div_2; always @(negedge ck_1356megb) fc_div_2 <= fc_div_2 + 1; -(* clock_signal = "yes" *) reg adc_clk; -always @(xcorr_is_848, ck_1356megb, fc_div_2) - if(xcorr_is_848) - // The subcarrier frequency is fc/16; we will sample at fc, so that - // means the subcarrier is 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 ... - adc_clk <= ck_1356megb; - else - // The subcarrier frequency is fc/32; we will sample at fc/2, and - // the subcarrier will look identical. - adc_clk <= fc_div_2; - - // When we're a reader, we just need to do the BPSK demod; but when we're an // eavesdropper, we also need to pick out the commands sent by the reader, // using AM. Do this the same way that we do it for the simulated tag. @@ -85,12 +75,16 @@ reg ssp_clk; reg ssp_frame; +always @(negedge adc_clk) +begin + if (xcorr_is_848 | fc_div_2) + corr_i_cnt <= corr_i_cnt + 1; +end + // ADC data appears on the rising edge, so sample it on the falling edge always @(negedge adc_clk) begin - corr_i_cnt <= corr_i_cnt + 1; - // These are the correlators: we correlate against in-phase and quadrature // versions of our reference signal, and keep the (signed) result to // send out later over the SSP. @@ -98,7 +92,7 @@ begin begin if(snoop) begin - // 7 most significant bits of tag signal (signed), 1 bit reader signal: + // Send only 7 most significant bits of tag signal (signed), LSB is reader signal: corr_i_out <= {corr_i_accum[13:7], after_hysteresis_prev_prev}; corr_q_out <= {corr_q_accum[13:7], after_hysteresis_prev}; after_hysteresis_prev_prev <= after_hysteresis;