From 1c4b102cd55d96d6a870f7f2153199b9e721e077 Mon Sep 17 00:00:00 2001 From: marshmellow42 Date: Tue, 6 Jan 2015 10:58:35 -0500 Subject: [PATCH 1/1] sync with master lf files to resolve conflicts --- armsrc/lfops.c | 2994 +++++++++++++++++++++++----------------------- common/lfdemod.c | 1636 +++++++++---------------- common/lfdemod.h | 8 +- 3 files changed, 2088 insertions(+), 2550 deletions(-) diff --git a/armsrc/lfops.c b/armsrc/lfops.c index 79d59bf9..ab196325 100644 --- a/armsrc/lfops.c +++ b/armsrc/lfops.c @@ -25,40 +25,40 @@ */ void DoAcquisition125k_internal(int trigger_threshold,bool silent) { - uint8_t *dest = (uint8_t *)BigBuf; - int n = sizeof(BigBuf); - int i; - - memset(dest, 0, n); - i = 0; - for(;;) { - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { - AT91C_BASE_SSC->SSC_THR = 0x43; - LED_D_ON(); - } - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - LED_D_OFF(); - if (trigger_threshold != -1 && dest[i] < trigger_threshold) - continue; - else - trigger_threshold = -1; - if (++i >= n) break; - } - } - if(!silent) - { - Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", - dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); - - } + uint8_t *dest = (uint8_t *)BigBuf; + int n = sizeof(BigBuf); + int i; + + memset(dest, 0, n); + i = 0; + for(;;) { + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { + AT91C_BASE_SSC->SSC_THR = 0x43; + LED_D_ON(); + } + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + LED_D_OFF(); + if (trigger_threshold != -1 && dest[i] < trigger_threshold) + continue; + else + trigger_threshold = -1; + if (++i >= n) break; + } + } + if(!silent) + { + Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", + dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); + + } } /** * Perform sample aquisition. */ void DoAcquisition125k(int trigger_threshold) { - DoAcquisition125k_internal(trigger_threshold, false); + DoAcquisition125k_internal(trigger_threshold, false); } /** @@ -70,31 +70,31 @@ void DoAcquisition125k(int trigger_threshold) **/ void LFSetupFPGAForADC(int divisor, bool lf_field) { - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - if ( (divisor == 1) || (divisor < 0) || (divisor > 255) ) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else if (divisor == 0) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); - - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0)); - - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + if ( (divisor == 1) || (divisor < 0) || (divisor > 255) ) + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz + else if (divisor == 0) + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + else + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0)); + + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + // Give it a bit of time for the resonant antenna to settle. + SpinDelay(50); + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); } /** * Initializes the FPGA, and acquires the samples. **/ void AcquireRawAdcSamples125k(int divisor) { - LFSetupFPGAForADC(divisor, true); - // Now call the acquisition routine - DoAcquisition125k_internal(-1,false); + LFSetupFPGAForADC(divisor, true); + // Now call the acquisition routine + DoAcquisition125k_internal(-1,false); } /** * Initializes the FPGA for snoop-mode, and acquires the samples. @@ -102,60 +102,60 @@ void AcquireRawAdcSamples125k(int divisor) void SnoopLFRawAdcSamples(int divisor, int trigger_threshold) { - LFSetupFPGAForADC(divisor, false); - DoAcquisition125k(trigger_threshold); + LFSetupFPGAForADC(divisor, false); + DoAcquisition125k(trigger_threshold); } void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) { - /* Make sure the tag is reset */ - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelay(2500); + /* Make sure the tag is reset */ + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelay(2500); - int divisor_used = 95; // 125 KHz - // see if 'h' was specified + int divisor_used = 95; // 125 KHz + // see if 'h' was specified - if (command[strlen((char *) command) - 1] == 'h') - divisor_used = 88; // 134.8 KHz + if (command[strlen((char *) command) - 1] == 'h') + divisor_used = 88; // 134.8 KHz - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + // Give it a bit of time for the resonant antenna to settle. + SpinDelay(50); - // And a little more time for the tag to fully power up - SpinDelay(2000); + // And a little more time for the tag to fully power up + SpinDelay(2000); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); - // now modulate the reader field - while(*command != '\0' && *command != ' ') { - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LED_D_OFF(); - SpinDelayUs(delay_off); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); + // now modulate the reader field + while(*command != '\0' && *command != ' ') { + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_D_OFF(); + SpinDelayUs(delay_off); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - LED_D_ON(); - if(*(command++) == '0') - SpinDelayUs(period_0); - else - SpinDelayUs(period_1); - } - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LED_D_OFF(); - SpinDelayUs(delay_off); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + LED_D_ON(); + if(*(command++) == '0') + SpinDelayUs(period_0); + else + SpinDelayUs(period_1); + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_D_OFF(); + SpinDelayUs(delay_off); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - // now do the read - DoAcquisition125k(-1); + // now do the read + DoAcquisition125k(-1); } /* blank r/w tag data stream @@ -169,230 +169,230 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, */ void ReadTItag(void) { - // some hardcoded initial params - // when we read a TI tag we sample the zerocross line at 2Mhz - // TI tags modulate a 1 as 16 cycles of 123.2Khz - // TI tags modulate a 0 as 16 cycles of 134.2Khz - #define FSAMPLE 2000000 - #define FREQLO 123200 - #define FREQHI 134200 - - signed char *dest = (signed char *)BigBuf; - int n = sizeof(BigBuf); -// int *dest = GraphBuffer; -// int n = GraphTraceLen; - - // 128 bit shift register [shift3:shift2:shift1:shift0] - uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; - - int i, cycles=0, samples=0; - // how many sample points fit in 16 cycles of each frequency - uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; - // when to tell if we're close enough to one freq or another - uint32_t threshold = (sampleslo - sampleshi + 1)>>1; - - // TI tags charge at 134.2Khz - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - - // Place FPGA in passthrough mode, in this mode the CROSS_LO line - // connects to SSP_DIN and the SSP_DOUT logic level controls - // whether we're modulating the antenna (high) - // or listening to the antenna (low) - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); - - // get TI tag data into the buffer - AcquireTiType(); - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - - for (i=0; i0) ) { - cycles++; - // after 16 cycles, measure the frequency - if (cycles>15) { - cycles=0; - samples=i-samples; // number of samples in these 16 cycles - - // TI bits are coming to us lsb first so shift them - // right through our 128 bit right shift register - shift0 = (shift0>>1) | (shift1 << 31); - shift1 = (shift1>>1) | (shift2 << 31); - shift2 = (shift2>>1) | (shift3 << 31); - shift3 >>= 1; - - // check if the cycles fall close to the number - // expected for either the low or high frequency - if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { - // low frequency represents a 1 - shift3 |= (1<<31); - } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { - // high frequency represents a 0 - } else { - // probably detected a gay waveform or noise - // use this as gaydar or discard shift register and start again - shift3 = shift2 = shift1 = shift0 = 0; - } - samples = i; - - // for each bit we receive, test if we've detected a valid tag - - // if we see 17 zeroes followed by 6 ones, we might have a tag - // remember the bits are backwards - if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { - // if start and end bytes match, we have a tag so break out of the loop - if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { - cycles = 0xF0B; //use this as a flag (ugly but whatever) - break; - } - } - } - } - } - - // if flag is set we have a tag - if (cycles!=0xF0B) { - DbpString("Info: No valid tag detected."); - } else { - // put 64 bit data into shift1 and shift0 - shift0 = (shift0>>24) | (shift1 << 8); - shift1 = (shift1>>24) | (shift2 << 8); - - // align 16 bit crc into lower half of shift2 - shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; - - // if r/w tag, check ident match - if ( shift3&(1<<15) ) { - DbpString("Info: TI tag is rewriteable"); - // only 15 bits compare, last bit of ident is not valid - if ( ((shift3>>16)^shift0)&0x7fff ) { - DbpString("Error: Ident mismatch!"); - } else { - DbpString("Info: TI tag ident is valid"); - } - } else { - DbpString("Info: TI tag is readonly"); - } - - // WARNING the order of the bytes in which we calc crc below needs checking - // i'm 99% sure the crc algorithm is correct, but it may need to eat the - // bytes in reverse or something - // calculate CRC - uint32_t crc=0; - - crc = update_crc16(crc, (shift0)&0xff); - crc = update_crc16(crc, (shift0>>8)&0xff); - crc = update_crc16(crc, (shift0>>16)&0xff); - crc = update_crc16(crc, (shift0>>24)&0xff); - crc = update_crc16(crc, (shift1)&0xff); - crc = update_crc16(crc, (shift1>>8)&0xff); - crc = update_crc16(crc, (shift1>>16)&0xff); - crc = update_crc16(crc, (shift1>>24)&0xff); - - Dbprintf("Info: Tag data: %x%08x, crc=%x", - (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); - if (crc != (shift2&0xffff)) { - Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); - } else { - DbpString("Info: CRC is good"); - } - } + // some hardcoded initial params + // when we read a TI tag we sample the zerocross line at 2Mhz + // TI tags modulate a 1 as 16 cycles of 123.2Khz + // TI tags modulate a 0 as 16 cycles of 134.2Khz +#define FSAMPLE 2000000 +#define FREQLO 123200 +#define FREQHI 134200 + + signed char *dest = (signed char *)BigBuf; + int n = sizeof(BigBuf); + // int *dest = GraphBuffer; + // int n = GraphTraceLen; + + // 128 bit shift register [shift3:shift2:shift1:shift0] + uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; + + int i, cycles=0, samples=0; + // how many sample points fit in 16 cycles of each frequency + uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; + // when to tell if we're close enough to one freq or another + uint32_t threshold = (sampleslo - sampleshi + 1)>>1; + + // TI tags charge at 134.2Khz + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz + + // Place FPGA in passthrough mode, in this mode the CROSS_LO line + // connects to SSP_DIN and the SSP_DOUT logic level controls + // whether we're modulating the antenna (high) + // or listening to the antenna (low) + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); + + // get TI tag data into the buffer + AcquireTiType(); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + + for (i=0; i0) ) { + cycles++; + // after 16 cycles, measure the frequency + if (cycles>15) { + cycles=0; + samples=i-samples; // number of samples in these 16 cycles + + // TI bits are coming to us lsb first so shift them + // right through our 128 bit right shift register + shift0 = (shift0>>1) | (shift1 << 31); + shift1 = (shift1>>1) | (shift2 << 31); + shift2 = (shift2>>1) | (shift3 << 31); + shift3 >>= 1; + + // check if the cycles fall close to the number + // expected for either the low or high frequency + if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { + // low frequency represents a 1 + shift3 |= (1<<31); + } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { + // high frequency represents a 0 + } else { + // probably detected a gay waveform or noise + // use this as gaydar or discard shift register and start again + shift3 = shift2 = shift1 = shift0 = 0; + } + samples = i; + + // for each bit we receive, test if we've detected a valid tag + + // if we see 17 zeroes followed by 6 ones, we might have a tag + // remember the bits are backwards + if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { + // if start and end bytes match, we have a tag so break out of the loop + if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { + cycles = 0xF0B; //use this as a flag (ugly but whatever) + break; + } + } + } + } + } + + // if flag is set we have a tag + if (cycles!=0xF0B) { + DbpString("Info: No valid tag detected."); + } else { + // put 64 bit data into shift1 and shift0 + shift0 = (shift0>>24) | (shift1 << 8); + shift1 = (shift1>>24) | (shift2 << 8); + + // align 16 bit crc into lower half of shift2 + shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; + + // if r/w tag, check ident match + if ( shift3&(1<<15) ) { + DbpString("Info: TI tag is rewriteable"); + // only 15 bits compare, last bit of ident is not valid + if ( ((shift3>>16)^shift0)&0x7fff ) { + DbpString("Error: Ident mismatch!"); + } else { + DbpString("Info: TI tag ident is valid"); + } + } else { + DbpString("Info: TI tag is readonly"); + } + + // WARNING the order of the bytes in which we calc crc below needs checking + // i'm 99% sure the crc algorithm is correct, but it may need to eat the + // bytes in reverse or something + // calculate CRC + uint32_t crc=0; + + crc = update_crc16(crc, (shift0)&0xff); + crc = update_crc16(crc, (shift0>>8)&0xff); + crc = update_crc16(crc, (shift0>>16)&0xff); + crc = update_crc16(crc, (shift0>>24)&0xff); + crc = update_crc16(crc, (shift1)&0xff); + crc = update_crc16(crc, (shift1>>8)&0xff); + crc = update_crc16(crc, (shift1>>16)&0xff); + crc = update_crc16(crc, (shift1>>24)&0xff); + + Dbprintf("Info: Tag data: %x%08x, crc=%x", + (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); + if (crc != (shift2&0xffff)) { + Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); + } else { + DbpString("Info: CRC is good"); + } + } } void WriteTIbyte(uint8_t b) { - int i = 0; - - // modulate 8 bits out to the antenna - for (i=0; i<8; i++) - { - if (b&(1<PIO_PDR = GPIO_SSC_DIN; - AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; - - // steal this pin from the SSP and use it to control the modulation - AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; - - AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; - AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; - - // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long - // 48/2 = 24 MHz clock must be divided by 12 - AT91C_BASE_SSC->SSC_CMR = 12; - - AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); - AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; - AT91C_BASE_SSC->SSC_TCMR = 0; - AT91C_BASE_SSC->SSC_TFMR = 0; - - LED_D_ON(); - - // modulate antenna - HIGH(GPIO_SSC_DOUT); - - // Charge TI tag for 50ms. - SpinDelay(50); - - // stop modulating antenna and listen - LOW(GPIO_SSC_DOUT); - - LED_D_OFF(); - - i = 0; - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer - i++; if(i >= TIBUFLEN) break; - } - WDT_HIT(); - } - - // return stolen pin to SSP - AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; - - char *dest = (char *)BigBuf; - n = TIBUFLEN*32; - // unpack buffer - for (i=TIBUFLEN-1; i>=0; i--) { - for (j=0; j<32; j++) { - if(BigBuf[i] & (1 << j)) { - dest[--n] = 1; - } else { - dest[--n] = -1; - } - } - } + int i, j, n; + // tag transmission is <20ms, sampling at 2M gives us 40K samples max + // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t +#define TIBUFLEN 1250 + + // clear buffer + memset(BigBuf,0,sizeof(BigBuf)); + + // Set up the synchronous serial port + AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; + AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; + + // steal this pin from the SSP and use it to control the modulation + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; + + AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; + AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; + + // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long + // 48/2 = 24 MHz clock must be divided by 12 + AT91C_BASE_SSC->SSC_CMR = 12; + + AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); + AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; + AT91C_BASE_SSC->SSC_TCMR = 0; + AT91C_BASE_SSC->SSC_TFMR = 0; + + LED_D_ON(); + + // modulate antenna + HIGH(GPIO_SSC_DOUT); + + // Charge TI tag for 50ms. + SpinDelay(50); + + // stop modulating antenna and listen + LOW(GPIO_SSC_DOUT); + + LED_D_OFF(); + + i = 0; + for(;;) { + if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer + i++; if(i >= TIBUFLEN) break; + } + WDT_HIT(); + } + + // return stolen pin to SSP + AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; + + char *dest = (char *)BigBuf; + n = TIBUFLEN*32; + // unpack buffer + for (i=TIBUFLEN-1; i>=0; i--) { + for (j=0; j<32; j++) { + if(BigBuf[i] & (1 << j)) { + dest[--n] = 1; + } else { + dest[--n] = -1; + } + } + } } // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc @@ -400,127 +400,127 @@ void AcquireTiType(void) // if not provided a valid crc will be computed from the data and written. void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) { - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - if(crc == 0) { - crc = update_crc16(crc, (idlo)&0xff); - crc = update_crc16(crc, (idlo>>8)&0xff); - crc = update_crc16(crc, (idlo>>16)&0xff); - crc = update_crc16(crc, (idlo>>24)&0xff); - crc = update_crc16(crc, (idhi)&0xff); - crc = update_crc16(crc, (idhi>>8)&0xff); - crc = update_crc16(crc, (idhi>>16)&0xff); - crc = update_crc16(crc, (idhi>>24)&0xff); - } - Dbprintf("Writing to tag: %x%08x, crc=%x", - (unsigned int) idhi, (unsigned int) idlo, crc); - - // TI tags charge at 134.2Khz - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - // Place FPGA in passthrough mode, in this mode the CROSS_LO line - // connects to SSP_DIN and the SSP_DOUT logic level controls - // whether we're modulating the antenna (high) - // or listening to the antenna (low) - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); - LED_A_ON(); - - // steal this pin from the SSP and use it to control the modulation - AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; - - // writing algorithm: - // a high bit consists of a field off for 1ms and field on for 1ms - // a low bit consists of a field off for 0.3ms and field on for 1.7ms - // initiate a charge time of 50ms (field on) then immediately start writing bits - // start by writing 0xBB (keyword) and 0xEB (password) - // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) - // finally end with 0x0300 (write frame) - // all data is sent lsb firts - // finish with 15ms programming time - - // modulate antenna - HIGH(GPIO_SSC_DOUT); - SpinDelay(50); // charge time - - WriteTIbyte(0xbb); // keyword - WriteTIbyte(0xeb); // password - WriteTIbyte( (idlo )&0xff ); - WriteTIbyte( (idlo>>8 )&0xff ); - WriteTIbyte( (idlo>>16)&0xff ); - WriteTIbyte( (idlo>>24)&0xff ); - WriteTIbyte( (idhi )&0xff ); - WriteTIbyte( (idhi>>8 )&0xff ); - WriteTIbyte( (idhi>>16)&0xff ); - WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo - WriteTIbyte( (crc )&0xff ); // crc lo - WriteTIbyte( (crc>>8 )&0xff ); // crc hi - WriteTIbyte(0x00); // write frame lo - WriteTIbyte(0x03); // write frame hi - HIGH(GPIO_SSC_DOUT); - SpinDelay(50); // programming time - - LED_A_OFF(); - - // get TI tag data into the buffer - AcquireTiType(); - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - DbpString("Now use tiread to check"); + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + if(crc == 0) { + crc = update_crc16(crc, (idlo)&0xff); + crc = update_crc16(crc, (idlo>>8)&0xff); + crc = update_crc16(crc, (idlo>>16)&0xff); + crc = update_crc16(crc, (idlo>>24)&0xff); + crc = update_crc16(crc, (idhi)&0xff); + crc = update_crc16(crc, (idhi>>8)&0xff); + crc = update_crc16(crc, (idhi>>16)&0xff); + crc = update_crc16(crc, (idhi>>24)&0xff); + } + Dbprintf("Writing to tag: %x%08x, crc=%x", + (unsigned int) idhi, (unsigned int) idlo, crc); + + // TI tags charge at 134.2Khz + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz + // Place FPGA in passthrough mode, in this mode the CROSS_LO line + // connects to SSP_DIN and the SSP_DOUT logic level controls + // whether we're modulating the antenna (high) + // or listening to the antenna (low) + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); + LED_A_ON(); + + // steal this pin from the SSP and use it to control the modulation + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; + + // writing algorithm: + // a high bit consists of a field off for 1ms and field on for 1ms + // a low bit consists of a field off for 0.3ms and field on for 1.7ms + // initiate a charge time of 50ms (field on) then immediately start writing bits + // start by writing 0xBB (keyword) and 0xEB (password) + // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) + // finally end with 0x0300 (write frame) + // all data is sent lsb firts + // finish with 15ms programming time + + // modulate antenna + HIGH(GPIO_SSC_DOUT); + SpinDelay(50); // charge time + + WriteTIbyte(0xbb); // keyword + WriteTIbyte(0xeb); // password + WriteTIbyte( (idlo )&0xff ); + WriteTIbyte( (idlo>>8 )&0xff ); + WriteTIbyte( (idlo>>16)&0xff ); + WriteTIbyte( (idlo>>24)&0xff ); + WriteTIbyte( (idhi )&0xff ); + WriteTIbyte( (idhi>>8 )&0xff ); + WriteTIbyte( (idhi>>16)&0xff ); + WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo + WriteTIbyte( (crc )&0xff ); // crc lo + WriteTIbyte( (crc>>8 )&0xff ); // crc hi + WriteTIbyte(0x00); // write frame lo + WriteTIbyte(0x03); // write frame hi + HIGH(GPIO_SSC_DOUT); + SpinDelay(50); // programming time + + LED_A_OFF(); + + // get TI tag data into the buffer + AcquireTiType(); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Now use tiread to check"); } void SimulateTagLowFrequency(int period, int gap, int ledcontrol) { - int i; - uint8_t *tab = (uint8_t *)BigBuf; + int i; + uint8_t *tab = (uint8_t *)BigBuf; - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); - AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; - AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; + AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; #define SHORT_COIL() LOW(GPIO_SSC_DOUT) #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) - i = 0; - for(;;) { - while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { - if(BUTTON_PRESS()) { - DbpString("Stopped"); - return; - } - WDT_HIT(); - } + i = 0; + for(;;) { + while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { + if(BUTTON_PRESS()) { + DbpString("Stopped"); + return; + } + WDT_HIT(); + } - if (ledcontrol) - LED_D_ON(); + if (ledcontrol) + LED_D_ON(); - if(tab[i]) - OPEN_COIL(); - else - SHORT_COIL(); + if(tab[i]) + OPEN_COIL(); + else + SHORT_COIL(); - if (ledcontrol) - LED_D_OFF(); + if (ledcontrol) + LED_D_OFF(); - while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { - if(BUTTON_PRESS()) { - DbpString("Stopped"); - return; - } - WDT_HIT(); - } + while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { + if(BUTTON_PRESS()) { + DbpString("Stopped"); + return; + } + WDT_HIT(); + } - i++; - if(i == period) { - i = 0; - if (gap) { - SHORT_COIL(); - SpinDelayUs(gap); - } - } - } + i++; + if(i == period) { + i = 0; + if (gap) { + SHORT_COIL(); + SpinDelayUs(gap); + } + } + } } #define DEBUG_FRAME_CONTENTS 1 @@ -530,318 +530,314 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0) // compose fc/8 fc/10 waveform static void fc(int c, int *n) { - uint8_t *dest = (uint8_t *)BigBuf; - int idx; - - // for when we want an fc8 pattern every 4 logical bits - if(c==0) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples - if(c==8) { - for (idx=0; idx<6; idx++) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - } - - // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples - if(c==10) { - for (idx=0; idx<5; idx++) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - } + uint8_t *dest = (uint8_t *)BigBuf; + int idx; + + // for when we want an fc8 pattern every 4 logical bits + if(c==0) { + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + } + // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples + if(c==8) { + for (idx=0; idx<6; idx++) { + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + } + } + + // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples + if(c==10) { + for (idx=0; idx<5; idx++) { + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + } + } } // prepare a waveform pattern in the buffer based on the ID given then // simulate a HID tag until the button is pressed void CmdHIDsimTAG(int hi, int lo, int ledcontrol) { - int n=0, i=0; - /* - HID tag bitstream format - The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits - A 1 bit is represented as 6 fc8 and 5 fc10 patterns - A 0 bit is represented as 5 fc10 and 6 fc8 patterns - A fc8 is inserted before every 4 bits - A special start of frame pattern is used consisting a0b0 where a and b are neither 0 - nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) - */ - - if (hi>0xFFF) { - DbpString("Tags can only have 44 bits."); - return; - } - fc(0,&n); - // special start of frame marker containing invalid bit sequences - fc(8, &n); fc(8, &n); // invalid - fc(8, &n); fc(10, &n); // logical 0 - fc(10, &n); fc(10, &n); // invalid - fc(8, &n); fc(10, &n); // logical 0 - - WDT_HIT(); - // manchester encode bits 43 to 32 - for (i=11; i>=0; i--) { - if ((i%4)==3) fc(0,&n); - if ((hi>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition - } else { - fc(8, &n); fc(10, &n); // high-low transition - } - } - - WDT_HIT(); - // manchester encode bits 31 to 0 - for (i=31; i>=0; i--) { - if ((i%4)==3) fc(0,&n); - if ((lo>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition - } else { - fc(8, &n); fc(10, &n); // high-low transition - } - } - - if (ledcontrol) - LED_A_ON(); - SimulateTagLowFrequency(n, 0, ledcontrol); - - if (ledcontrol) - LED_A_OFF(); + int n=0, i=0; + /* + HID tag bitstream format + The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits + A 1 bit is represented as 6 fc8 and 5 fc10 patterns + A 0 bit is represented as 5 fc10 and 6 fc8 patterns + A fc8 is inserted before every 4 bits + A special start of frame pattern is used consisting a0b0 where a and b are neither 0 + nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) + */ + + if (hi>0xFFF) { + DbpString("Tags can only have 44 bits."); + return; + } + fc(0,&n); + // special start of frame marker containing invalid bit sequences + fc(8, &n); fc(8, &n); // invalid + fc(8, &n); fc(10, &n); // logical 0 + fc(10, &n); fc(10, &n); // invalid + fc(8, &n); fc(10, &n); // logical 0 + + WDT_HIT(); + // manchester encode bits 43 to 32 + for (i=11; i>=0; i--) { + if ((i%4)==3) fc(0,&n); + if ((hi>>i)&1) { + fc(10, &n); fc(8, &n); // low-high transition + } else { + fc(8, &n); fc(10, &n); // high-low transition + } + } + + WDT_HIT(); + // manchester encode bits 31 to 0 + for (i=31; i>=0; i--) { + if ((i%4)==3) fc(0,&n); + if ((lo>>i)&1) { + fc(10, &n); fc(8, &n); // low-high transition + } else { + fc(8, &n); fc(10, &n); // high-low transition + } + } + + if (ledcontrol) + LED_A_ON(); + SimulateTagLowFrequency(n, 0, ledcontrol); + + if (ledcontrol) + LED_A_OFF(); } // loop to get raw HID waveform then FSK demodulate the TAG ID from it void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) { - uint8_t *dest = (uint8_t *)BigBuf; - - size_t size=0; //, found=0; - uint32_t hi2=0, hi=0, lo=0; - - // Configure to go in 125Khz listen mode - LFSetupFPGAForADC(95, true); - - while(!BUTTON_PRESS()) { - - WDT_HIT(); - if (ledcontrol) LED_A_ON(); - - DoAcquisition125k_internal(-1,true); - size = sizeof(BigBuf); - if (size < 2000) continue; - // FSK demodulator - - int bitLen = HIDdemodFSK(dest,size,&hi2,&hi,&lo); - - WDT_HIT(); - - if (bitLen>0 && lo>0){ - // final loop, go over previously decoded manchester data and decode into usable tag ID - // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 - if (hi2 != 0){ //extra large HID tags - Dbprintf("TAG ID: %x%08x%08x (%d)", - (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - }else { //standard HID tags <38 bits - //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd - uint8_t bitlen = 0; - uint32_t fc = 0; - uint32_t cardnum = 0; - if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used - uint32_t lo2=0; - lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit - uint8_t idx3 = 1; - while(lo2>1){ //find last bit set to 1 (format len bit) - lo2=lo2>>1; - idx3++; - } - bitlen =idx3+19; - fc =0; - cardnum=0; - if(bitlen==26){ - cardnum = (lo>>1)&0xFFFF; - fc = (lo>>17)&0xFF; - } - if(bitlen==37){ - cardnum = (lo>>1)&0x7FFFF; - fc = ((hi&0xF)<<12)|(lo>>20); - } - if(bitlen==34){ - cardnum = (lo>>1)&0xFFFF; - fc= ((hi&1)<<15)|(lo>>17); - } - if(bitlen==35){ - cardnum = (lo>>1)&0xFFFFF; - fc = ((hi&1)<<11)|(lo>>21); - } - } - else { //if bit 38 is not set then 37 bit format is used - bitlen= 37; - fc =0; - cardnum=0; - if(bitlen==37){ - cardnum = (lo>>1)&0x7FFFF; - fc = ((hi&0xF)<<12)|(lo>>20); - } - } - //Dbprintf("TAG ID: %x%08x (%d)", - // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", - (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, - (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); - } - if (findone){ - if (ledcontrol) LED_A_OFF(); - return; - } - // reset - hi2 = hi = lo = 0; - } - WDT_HIT(); - //SpinDelay(50); - } - DbpString("Stopped"); - if (ledcontrol) LED_A_OFF(); + uint8_t *dest = (uint8_t *)BigBuf; + + size_t size=0; //, found=0; + uint32_t hi2=0, hi=0, lo=0; + + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS()) { + + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + + DoAcquisition125k_internal(-1,true); + size = sizeof(BigBuf); + if (size < 2000) continue; + // FSK demodulator + + int bitLen = HIDdemodFSK(dest,size,&hi2,&hi,&lo); + + WDT_HIT(); + + if (bitLen>0 && lo>0){ + // final loop, go over previously decoded manchester data and decode into usable tag ID + // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 + if (hi2 != 0){ //extra large HID tags + Dbprintf("TAG ID: %x%08x%08x (%d)", + (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + }else { //standard HID tags <38 bits + //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd + uint8_t bitlen = 0; + uint32_t fc = 0; + uint32_t cardnum = 0; + if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used + uint32_t lo2=0; + lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit + uint8_t idx3 = 1; + while(lo2>1){ //find last bit set to 1 (format len bit) + lo2=lo2>>1; + idx3++; + } + bitlen =idx3+19; + fc =0; + cardnum=0; + if(bitlen==26){ + cardnum = (lo>>1)&0xFFFF; + fc = (lo>>17)&0xFF; + } + if(bitlen==37){ + cardnum = (lo>>1)&0x7FFFF; + fc = ((hi&0xF)<<12)|(lo>>20); + } + if(bitlen==34){ + cardnum = (lo>>1)&0xFFFF; + fc= ((hi&1)<<15)|(lo>>17); + } + if(bitlen==35){ + cardnum = (lo>>1)&0xFFFFF; + fc = ((hi&1)<<11)|(lo>>21); + } + } + else { //if bit 38 is not set then 37 bit format is used + bitlen= 37; + fc =0; + cardnum=0; + if(bitlen==37){ + cardnum = (lo>>1)&0x7FFFF; + fc = ((hi&0xF)<<12)|(lo>>20); + } + } + //Dbprintf("TAG ID: %x%08x (%d)", + // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", + (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, + (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); + } + if (findone){ + if (ledcontrol) LED_A_OFF(); + return; + } + // reset + hi2 = hi = lo = 0; + } + WDT_HIT(); + //SpinDelay(50); + } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); } void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) { - uint8_t *dest = (uint8_t *)BigBuf; - - size_t size=0; //, found=0; - int bitLen=0; - int clk=0, invert=0, errCnt=0; - uint64_t lo=0; - // Configure to go in 125Khz listen mode - LFSetupFPGAForADC(95, true); - - while(!BUTTON_PRESS()) { - - WDT_HIT(); - if (ledcontrol) LED_A_ON(); - - DoAcquisition125k_internal(-1,true); - size = sizeof(BigBuf); - if (size < 2000) continue; - // FSK demodulator - //int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert); - bitLen=size; - //Dbprintf("DEBUG: Buffer got"); - errCnt = askmandemod(dest,&bitLen,&clk,&invert); //HIDdemodFSK(dest,size,&hi2,&hi,&lo); - //Dbprintf("DEBUG: ASK Got"); - WDT_HIT(); - - if (errCnt>=0){ - lo = Em410xDecode(dest,bitLen); - //Dbprintf("DEBUG: EM GOT"); - //printEM410x(lo); - if (lo>0){ - Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",(uint32_t)(lo>>32),(uint32_t)lo,(uint32_t)(lo&0xFFFF),(uint32_t)((lo>>16LL) & 0xFF),(uint32_t)(lo & 0xFFFFFF)); - } - if (findone){ - if (ledcontrol) LED_A_OFF(); - return; - } - } else{ - //Dbprintf("DEBUG: No Tag"); - } - WDT_HIT(); - lo = 0; - clk=0; - invert=0; - errCnt=0; - size=0; - //SpinDelay(50); - } - DbpString("Stopped"); - if (ledcontrol) LED_A_OFF(); + uint8_t *dest = (uint8_t *)BigBuf; + + size_t size=0; //, found=0; + uint32_t bitLen=0; + int clk=0, invert=0, errCnt=0; + uint64_t lo=0; + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS()) { + + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + + DoAcquisition125k_internal(-1,true); + size = sizeof(BigBuf); + if (size < 2000) continue; + // FSK demodulator + //int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert); + bitLen=size; + //Dbprintf("DEBUG: Buffer got"); + errCnt = askmandemod(dest,&bitLen,&clk,&invert); //HIDdemodFSK(dest,size,&hi2,&hi,&lo); + //Dbprintf("DEBUG: ASK Got"); + WDT_HIT(); + + if (errCnt>=0){ + lo = Em410xDecode(dest,bitLen); + //Dbprintf("DEBUG: EM GOT"); + //printEM410x(lo); + if (lo>0){ + Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",(uint32_t)(lo>>32),(uint32_t)lo,(uint32_t)(lo&0xFFFF),(uint32_t)((lo>>16LL) & 0xFF),(uint32_t)(lo & 0xFFFFFF)); + } + if (findone){ + if (ledcontrol) LED_A_OFF(); + return; + } + } else{ + //Dbprintf("DEBUG: No Tag"); + } + WDT_HIT(); + lo = 0; + clk=0; + invert=0; + errCnt=0; + size=0; + //SpinDelay(50); + } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); } void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) { - uint8_t *dest = (uint8_t *)BigBuf; - size_t size=0; - int idx=0; - uint32_t code=0, code2=0; - uint8_t version=0; - uint8_t facilitycode=0; - uint16_t number=0; - // Configure to go in 125Khz listen mode - LFSetupFPGAForADC(95, true); - - while(!BUTTON_PRESS()) { - WDT_HIT(); - if (ledcontrol) LED_A_ON(); - DoAcquisition125k_internal(-1,true); - size = sizeof(BigBuf); - //make sure buffer has data - if (size < 2000) continue; - //fskdemod and get start index - WDT_HIT(); - idx = IOdemodFSK(dest,size); - if (idx>0){ - //valid tag found - - //Index map - //0 10 20 30 40 50 60 - //| | | | | | | - //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 - //----------------------------------------------------------------------------- - //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 - // - //XSF(version)facility:codeone+codetwo - //Handle the data - if(findone){ //only print binary if we are doing one - Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); - Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); - Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); - Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); - Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); - Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); - Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); - } - code = bytebits_to_byte(dest+idx,32); - code2 = bytebits_to_byte(dest+idx+32,32); - version = bytebits_to_byte(dest+idx+27,8); //14,4 - facilitycode = bytebits_to_byte(dest+idx+18,8) ; - number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 - - Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); - // if we're only looking for one tag - if (findone){ - if (ledcontrol) LED_A_OFF(); - //LED_A_OFF(); - return; - } - code=code2=0; - version=facilitycode=0; - number=0; - idx=0; - } - WDT_HIT(); - } - DbpString("Stopped"); - if (ledcontrol) LED_A_OFF(); + uint8_t *dest = (uint8_t *)BigBuf; + int idx=0; + uint32_t code=0, code2=0; + uint8_t version=0; + uint8_t facilitycode=0; + uint16_t number=0; + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS()) { + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + DoAcquisition125k_internal(-1,true); + //fskdemod and get start index + WDT_HIT(); + idx = IOdemodFSK(dest,sizeof(BigBuf)); + if (idx>0){ + //valid tag found + + //Index map + //0 10 20 30 40 50 60 + //| | | | | | | + //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 + //----------------------------------------------------------------------------- + //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 + // + //XSF(version)facility:codeone+codetwo + //Handle the data + if(findone){ //only print binary if we are doing one + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); + Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); + } + code = bytebits_to_byte(dest+idx,32); + code2 = bytebits_to_byte(dest+idx+32,32); + version = bytebits_to_byte(dest+idx+27,8); //14,4 + facilitycode = bytebits_to_byte(dest+idx+18,8) ; + number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 + + Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); + // if we're only looking for one tag + if (findone){ + if (ledcontrol) LED_A_OFF(); + //LED_A_OFF(); + return; + } + code=code2=0; + version=facilitycode=0; + number=0; + idx=0; + } + WDT_HIT(); + } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); } /*------------------------------ @@ -911,307 +907,307 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) // Write one bit to card void T55xxWriteBit(int bit) { - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - if (bit == 0) - SpinDelayUs(WRITE_0); - else - SpinDelayUs(WRITE_1); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelayUs(WRITE_GAP); + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + if (bit == 0) + SpinDelayUs(WRITE_0); + else + SpinDelayUs(WRITE_1); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(WRITE_GAP); } // Write one card block in page 0, no lock void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) { - //unsigned int i; //enio adjustment 12/10/14 - uint32_t i; - - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); - - // Now start writting - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelayUs(START_GAP); - - // Opcode - T55xxWriteBit(1); - T55xxWriteBit(0); //Page 0 - if (PwdMode == 1){ - // Pwd + //unsigned int i; //enio adjustment 12/10/14 + uint32_t i; + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Give it a bit of time for the resonant antenna to settle. + // And for the tag to fully power up + SpinDelay(150); + + // Now start writting + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); + + // Opcode + T55xxWriteBit(1); + T55xxWriteBit(0); //Page 0 + if (PwdMode == 1){ + // Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); + } + // Lock bit + T55xxWriteBit(0); + + // Data for (i = 0x80000000; i != 0; i >>= 1) - T55xxWriteBit(Pwd & i); - } - // Lock bit - T55xxWriteBit(0); - - // Data - for (i = 0x80000000; i != 0; i >>= 1) - T55xxWriteBit(Data & i); - - // Block - for (i = 0x04; i != 0; i >>= 1) - T55xxWriteBit(Block & i); - - // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, - // so wait a little more) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - SpinDelay(20); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + T55xxWriteBit(Data & i); + + // Block + for (i = 0x04; i != 0; i >>= 1) + T55xxWriteBit(Block & i); + + // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, + // so wait a little more) + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + SpinDelay(20); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); } // Read one card block in page 0 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) { - uint8_t *dest = (uint8_t *)BigBuf; - //int m=0, i=0; //enio adjustment 12/10/14 - uint32_t m=0, i=0; - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - m = sizeof(BigBuf); - // Clear destination buffer before sending the command - memset(dest, 128, m); - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - LED_D_ON(); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); - - // Now start writting - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelayUs(START_GAP); - - // Opcode - T55xxWriteBit(1); - T55xxWriteBit(0); //Page 0 - if (PwdMode == 1){ - // Pwd - for (i = 0x80000000; i != 0; i >>= 1) - T55xxWriteBit(Pwd & i); - } - // Lock bit - T55xxWriteBit(0); - // Block - for (i = 0x04; i != 0; i >>= 1) - T55xxWriteBit(Block & i); - - // Turn field on to read the response - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - - // Now do the acquisition - i = 0; - for(;;) { - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { - AT91C_BASE_SSC->SSC_THR = 0x43; - } - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - // we don't care about actual value, only if it's more or less than a - // threshold essentially we capture zero crossings for later analysis - // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; - i++; - if (i >= m) break; - } - } - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - LED_D_OFF(); - DbpString("DONE!"); + uint8_t *dest = (uint8_t *)BigBuf; + //int m=0, i=0; //enio adjustment 12/10/14 + uint32_t m=0, i=0; + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + m = sizeof(BigBuf); + // Clear destination buffer before sending the command + memset(dest, 128, m); + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); + + LED_D_ON(); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Give it a bit of time for the resonant antenna to settle. + // And for the tag to fully power up + SpinDelay(150); + + // Now start writting + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); + + // Opcode + T55xxWriteBit(1); + T55xxWriteBit(0); //Page 0 + if (PwdMode == 1){ + // Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); + } + // Lock bit + T55xxWriteBit(0); + // Block + for (i = 0x04; i != 0; i >>= 1) + T55xxWriteBit(Block & i); + + // Turn field on to read the response + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Now do the acquisition + i = 0; + for(;;) { + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { + AT91C_BASE_SSC->SSC_THR = 0x43; + } + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + // we don't care about actual value, only if it's more or less than a + // threshold essentially we capture zero crossings for later analysis + // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; + i++; + if (i >= m) break; + } + } + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); + DbpString("DONE!"); } // Read card traceability data (page 1) void T55xxReadTrace(void){ - uint8_t *dest = (uint8_t *)BigBuf; - int m=0, i=0; - - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - m = sizeof(BigBuf); - // Clear destination buffer before sending the command - memset(dest, 128, m); - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - LED_D_ON(); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); - - // Now start writting - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelayUs(START_GAP); - - // Opcode - T55xxWriteBit(1); - T55xxWriteBit(1); //Page 1 - - // Turn field on to read the response - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - - // Now do the acquisition - i = 0; - for(;;) { - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { - AT91C_BASE_SSC->SSC_THR = 0x43; - } - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - i++; - if (i >= m) break; - } - } - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - LED_D_OFF(); - DbpString("DONE!"); + uint8_t *dest = (uint8_t *)BigBuf; + int m=0, i=0; + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + m = sizeof(BigBuf); + // Clear destination buffer before sending the command + memset(dest, 128, m); + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); + + LED_D_ON(); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Give it a bit of time for the resonant antenna to settle. + // And for the tag to fully power up + SpinDelay(150); + + // Now start writting + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); + + // Opcode + T55xxWriteBit(1); + T55xxWriteBit(1); //Page 1 + + // Turn field on to read the response + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Now do the acquisition + i = 0; + for(;;) { + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { + AT91C_BASE_SSC->SSC_THR = 0x43; + } + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + i++; + if (i >= m) break; + } + } + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); + DbpString("DONE!"); } /*-------------- Cloning routines -----------*/ // Copy HID id to card and setup block 0 config void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) { - int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format - int last_block = 0; - - if (longFMT){ - // Ensure no more than 84 bits supplied - if (hi2>0xFFFFF) { - DbpString("Tags can only have 84 bits."); - return; - } - // Build the 6 data blocks for supplied 84bit ID - last_block = 6; - data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) - for (int i=0;i<4;i++) { - if (hi2 & (1<<(19-i))) - data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 - else - data1 |= (1<<((3-i)*2)); // 0 -> 01 - } - - data2 = 0; - for (int i=0;i<16;i++) { - if (hi2 & (1<<(15-i))) - data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data2 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data3 = 0; - for (int i=0;i<16;i++) { - if (hi & (1<<(31-i))) - data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data3 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data4 = 0; - for (int i=0;i<16;i++) { - if (hi & (1<<(15-i))) - data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data4 |= (1<<((15-i)*2)); // 0 -> 01 + int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format + int last_block = 0; + + if (longFMT){ + // Ensure no more than 84 bits supplied + if (hi2>0xFFFFF) { + DbpString("Tags can only have 84 bits."); + return; + } + // Build the 6 data blocks for supplied 84bit ID + last_block = 6; + data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) + for (int i=0;i<4;i++) { + if (hi2 & (1<<(19-i))) + data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 + else + data1 |= (1<<((3-i)*2)); // 0 -> 01 + } + + data2 = 0; + for (int i=0;i<16;i++) { + if (hi2 & (1<<(15-i))) + data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data2 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data3 = 0; + for (int i=0;i<16;i++) { + if (hi & (1<<(31-i))) + data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data3 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data4 = 0; + for (int i=0;i<16;i++) { + if (hi & (1<<(15-i))) + data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data4 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data5 = 0; + for (int i=0;i<16;i++) { + if (lo & (1<<(31-i))) + data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data5 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data6 = 0; + for (int i=0;i<16;i++) { + if (lo & (1<<(15-i))) + data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data6 |= (1<<((15-i)*2)); // 0 -> 01 + } } - - data5 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(31-i))) - data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data5 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data6 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(15-i))) - data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data6 |= (1<<((15-i)*2)); // 0 -> 01 + else { + // Ensure no more than 44 bits supplied + if (hi>0xFFF) { + DbpString("Tags can only have 44 bits."); + return; + } + + // Build the 3 data blocks for supplied 44bit ID + last_block = 3; + + data1 = 0x1D000000; // load preamble + + for (int i=0;i<12;i++) { + if (hi & (1<<(11-i))) + data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 + else + data1 |= (1<<((11-i)*2)); // 0 -> 01 + } + + data2 = 0; + for (int i=0;i<16;i++) { + if (lo & (1<<(31-i))) + data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data2 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data3 = 0; + for (int i=0;i<16;i++) { + if (lo & (1<<(15-i))) + data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data3 |= (1<<((15-i)*2)); // 0 -> 01 + } } - } - else { - // Ensure no more than 44 bits supplied - if (hi>0xFFF) { - DbpString("Tags can only have 44 bits."); - return; - } - - // Build the 3 data blocks for supplied 44bit ID - last_block = 3; - - data1 = 0x1D000000; // load preamble - - for (int i=0;i<12;i++) { - if (hi & (1<<(11-i))) - data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 - else - data1 |= (1<<((11-i)*2)); // 0 -> 01 + + LED_D_ON(); + // Program the data blocks for supplied ID + // and the block 0 for HID format + T55xxWriteBlock(data1,1,0,0); + T55xxWriteBlock(data2,2,0,0); + T55xxWriteBlock(data3,3,0,0); + + if (longFMT) { // if long format there are 6 blocks + T55xxWriteBlock(data4,4,0,0); + T55xxWriteBlock(data5,5,0,0); + T55xxWriteBlock(data6,6,0,0); } - - data2 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(31-i))) - data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data2 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data3 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(15-i))) - data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data3 |= (1<<((15-i)*2)); // 0 -> 01 - } - } - - LED_D_ON(); - // Program the data blocks for supplied ID - // and the block 0 for HID format - T55xxWriteBlock(data1,1,0,0); - T55xxWriteBlock(data2,2,0,0); - T55xxWriteBlock(data3,3,0,0); - - if (longFMT) { // if long format there are 6 blocks - T55xxWriteBlock(data4,4,0,0); - T55xxWriteBlock(data5,5,0,0); - T55xxWriteBlock(data6,6,0,0); - } - - // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) - T55xxWriteBlock(T55x7_BITRATE_RF_50 | - T55x7_MODULATION_FSK2a | - last_block << T55x7_MAXBLOCK_SHIFT, - 0,0,0); - - LED_D_OFF(); - - DbpString("DONE!"); + + // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) + T55xxWriteBlock(T55x7_BITRATE_RF_50 | + T55x7_MODULATION_FSK2a | + last_block << T55x7_MAXBLOCK_SHIFT, + 0,0,0); + + LED_D_OFF(); + + DbpString("DONE!"); } void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) { - int data1=0, data2=0; //up to six blocks for long format - + int data1=0, data2=0; //up to six blocks for long format + data1 = hi; // load preamble data2 = lo; @@ -1220,11 +1216,11 @@ void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) // and the block 0 for HID format T55xxWriteBlock(data1,1,0,0); T55xxWriteBlock(data2,2,0,0); - + //Config Block T55xxWriteBlock(0x00147040,0,0,0); LED_D_OFF(); - + DbpString("DONE!"); } @@ -1234,151 +1230,151 @@ void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { - int i, id_bit; - uint64_t id = EM410X_HEADER; - uint64_t rev_id = 0; // reversed ID - int c_parity[4]; // column parity - int r_parity = 0; // row parity - uint32_t clock = 0; - - // Reverse ID bits given as parameter (for simpler operations) - for (i = 0; i < EM410X_ID_LENGTH; ++i) { - if (i < 32) { - rev_id = (rev_id << 1) | (id_lo & 1); - id_lo >>= 1; - } else { - rev_id = (rev_id << 1) | (id_hi & 1); - id_hi >>= 1; - } - } - - for (i = 0; i < EM410X_ID_LENGTH; ++i) { - id_bit = rev_id & 1; - - if (i % 4 == 0) { - // Don't write row parity bit at start of parsing - if (i) - id = (id << 1) | r_parity; - // Start counting parity for new row - r_parity = id_bit; - } else { - // Count row parity - r_parity ^= id_bit; - } - - // First elements in column? - if (i < 4) - // Fill out first elements - c_parity[i] = id_bit; - else - // Count column parity - c_parity[i % 4] ^= id_bit; - - // Insert ID bit - id = (id << 1) | id_bit; - rev_id >>= 1; - } - - // Insert parity bit of last row - id = (id << 1) | r_parity; - - // Fill out column parity at the end of tag - for (i = 0; i < 4; ++i) - id = (id << 1) | c_parity[i]; - - // Add stop bit - id <<= 1; - - Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); - LED_D_ON(); - - // Write EM410x ID - T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); - T55xxWriteBlock((uint32_t)id, 2, 0, 0); - - // Config for EM410x (RF/64, Manchester, Maxblock=2) - if (card) { - // Clock rate is stored in bits 8-15 of the card value - clock = (card & 0xFF00) >> 8; - Dbprintf("Clock rate: %d", clock); - switch (clock) - { - case 32: - clock = T55x7_BITRATE_RF_32; - break; - case 16: - clock = T55x7_BITRATE_RF_16; - break; - case 0: - // A value of 0 is assumed to be 64 for backwards-compatibility - // Fall through... - case 64: - clock = T55x7_BITRATE_RF_64; - break; - default: - Dbprintf("Invalid clock rate: %d", clock); - return; - } - - // Writing configuration for T55x7 tag - T55xxWriteBlock(clock | - T55x7_MODULATION_MANCHESTER | - 2 << T55x7_MAXBLOCK_SHIFT, - 0, 0, 0); - } - else - // Writing configuration for T5555(Q5) tag - T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | - T5555_MODULATION_MANCHESTER | - 2 << T5555_MAXBLOCK_SHIFT, - 0, 0, 0); - - LED_D_OFF(); - Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", - (uint32_t)(id >> 32), (uint32_t)id); + int i, id_bit; + uint64_t id = EM410X_HEADER; + uint64_t rev_id = 0; // reversed ID + int c_parity[4]; // column parity + int r_parity = 0; // row parity + uint32_t clock = 0; + + // Reverse ID bits given as parameter (for simpler operations) + for (i = 0; i < EM410X_ID_LENGTH; ++i) { + if (i < 32) { + rev_id = (rev_id << 1) | (id_lo & 1); + id_lo >>= 1; + } else { + rev_id = (rev_id << 1) | (id_hi & 1); + id_hi >>= 1; + } + } + + for (i = 0; i < EM410X_ID_LENGTH; ++i) { + id_bit = rev_id & 1; + + if (i % 4 == 0) { + // Don't write row parity bit at start of parsing + if (i) + id = (id << 1) | r_parity; + // Start counting parity for new row + r_parity = id_bit; + } else { + // Count row parity + r_parity ^= id_bit; + } + + // First elements in column? + if (i < 4) + // Fill out first elements + c_parity[i] = id_bit; + else + // Count column parity + c_parity[i % 4] ^= id_bit; + + // Insert ID bit + id = (id << 1) | id_bit; + rev_id >>= 1; + } + + // Insert parity bit of last row + id = (id << 1) | r_parity; + + // Fill out column parity at the end of tag + for (i = 0; i < 4; ++i) + id = (id << 1) | c_parity[i]; + + // Add stop bit + id <<= 1; + + Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); + LED_D_ON(); + + // Write EM410x ID + T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); + T55xxWriteBlock((uint32_t)id, 2, 0, 0); + + // Config for EM410x (RF/64, Manchester, Maxblock=2) + if (card) { + // Clock rate is stored in bits 8-15 of the card value + clock = (card & 0xFF00) >> 8; + Dbprintf("Clock rate: %d", clock); + switch (clock) + { + case 32: + clock = T55x7_BITRATE_RF_32; + break; + case 16: + clock = T55x7_BITRATE_RF_16; + break; + case 0: + // A value of 0 is assumed to be 64 for backwards-compatibility + // Fall through... + case 64: + clock = T55x7_BITRATE_RF_64; + break; + default: + Dbprintf("Invalid clock rate: %d", clock); + return; + } + + // Writing configuration for T55x7 tag + T55xxWriteBlock(clock | + T55x7_MODULATION_MANCHESTER | + 2 << T55x7_MAXBLOCK_SHIFT, + 0, 0, 0); + } + else + // Writing configuration for T5555(Q5) tag + T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | + T5555_MODULATION_MANCHESTER | + 2 << T5555_MAXBLOCK_SHIFT, + 0, 0, 0); + + LED_D_OFF(); + Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", + (uint32_t)(id >> 32), (uint32_t)id); } // Clone Indala 64-bit tag by UID to T55x7 void CopyIndala64toT55x7(int hi, int lo) { - //Program the 2 data blocks for supplied 64bit UID - // and the block 0 for Indala64 format - T55xxWriteBlock(hi,1,0,0); - T55xxWriteBlock(lo,2,0,0); - //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) - T55xxWriteBlock(T55x7_BITRATE_RF_32 | - T55x7_MODULATION_PSK1 | - 2 << T55x7_MAXBLOCK_SHIFT, - 0, 0, 0); - //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) -// T5567WriteBlock(0x603E1042,0); + //Program the 2 data blocks for supplied 64bit UID + // and the block 0 for Indala64 format + T55xxWriteBlock(hi,1,0,0); + T55xxWriteBlock(lo,2,0,0); + //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) + T55xxWriteBlock(T55x7_BITRATE_RF_32 | + T55x7_MODULATION_PSK1 | + 2 << T55x7_MAXBLOCK_SHIFT, + 0, 0, 0); + //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) + // T5567WriteBlock(0x603E1042,0); - DbpString("DONE!"); + DbpString("DONE!"); } void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) { - //Program the 7 data blocks for supplied 224bit UID - // and the block 0 for Indala224 format - T55xxWriteBlock(uid1,1,0,0); - T55xxWriteBlock(uid2,2,0,0); - T55xxWriteBlock(uid3,3,0,0); - T55xxWriteBlock(uid4,4,0,0); - T55xxWriteBlock(uid5,5,0,0); - T55xxWriteBlock(uid6,6,0,0); - T55xxWriteBlock(uid7,7,0,0); - //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) - T55xxWriteBlock(T55x7_BITRATE_RF_32 | - T55x7_MODULATION_PSK1 | - 7 << T55x7_MAXBLOCK_SHIFT, - 0,0,0); - //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) -// T5567WriteBlock(0x603E10E2,0); - - DbpString("DONE!"); + //Program the 7 data blocks for supplied 224bit UID + // and the block 0 for Indala224 format + T55xxWriteBlock(uid1,1,0,0); + T55xxWriteBlock(uid2,2,0,0); + T55xxWriteBlock(uid3,3,0,0); + T55xxWriteBlock(uid4,4,0,0); + T55xxWriteBlock(uid5,5,0,0); + T55xxWriteBlock(uid6,6,0,0); + T55xxWriteBlock(uid7,7,0,0); + //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) + T55xxWriteBlock(T55x7_BITRATE_RF_32 | + T55x7_MODULATION_PSK1 | + 7 << T55x7_MAXBLOCK_SHIFT, + 0,0,0); + //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) + // T5567WriteBlock(0x603E10E2,0); + + DbpString("DONE!"); } @@ -1387,261 +1383,261 @@ void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int #define max(x,y) ( x GraphBuffer[0]) { - while(i < GraphTraceLen) { - if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) - break; - i++; + uint8_t BitStream[256]; + uint8_t Blocks[8][16]; + uint8_t *GraphBuffer = (uint8_t *)BigBuf; + int GraphTraceLen = sizeof(BigBuf); + int i, j, lastval, bitidx, half_switch; + int clock = 64; + int tolerance = clock / 8; + int pmc, block_done; + int lc, warnings = 0; + int num_blocks = 0; + int lmin=128, lmax=128; + uint8_t dir; + + AcquireRawAdcSamples125k(0); + + lmin = 64; + lmax = 192; + + i = 2; + + /* Find first local max/min */ + if(GraphBuffer[1] > GraphBuffer[0]) { + while(i < GraphTraceLen) { + if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) + break; + i++; + } + dir = 0; } - dir = 0; - } - else { - while(i < GraphTraceLen) { - if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) - break; - i++; + else { + while(i < GraphTraceLen) { + if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) + break; + i++; + } + dir = 1; } - dir = 1; - } - - lastval = i++; - half_switch = 0; - pmc = 0; - block_done = 0; - - for (bitidx = 0; i < GraphTraceLen; i++) - { - if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) - { - lc = i - lastval; - lastval = i; - - // Switch depending on lc length: - // Tolerance is 1/8 of clock rate (arbitrary) - if (abs(lc-clock/4) < tolerance) { - // 16T0 - if((i - pmc) == lc) { /* 16T0 was previous one */ - /* It's a PMC ! */ - i += (128+127+16+32+33+16)-1; - lastval = i; - pmc = 0; - block_done = 1; - } - else { - pmc = i; - } - } else if (abs(lc-clock/2) < tolerance) { - // 32TO - if((i - pmc) == lc) { /* 16T0 was previous one */ - /* It's a PMC ! */ - i += (128+127+16+32+33)-1; - lastval = i; - pmc = 0; - block_done = 1; - } - else if(half_switch == 1) { - BitStream[bitidx++] = 0; - half_switch = 0; - } - else - half_switch++; - } else if (abs(lc-clock) < tolerance) { - // 64TO - BitStream[bitidx++] = 1; - } else { - // Error - warnings++; - if (warnings > 10) - { - Dbprintf("Error: too many detection errors, aborting."); - return 0; - } - } - - if(block_done == 1) { - if(bitidx == 128) { - for(j=0; j<16; j++) { - Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ - 64*BitStream[j*8+6]+ - 32*BitStream[j*8+5]+ - 16*BitStream[j*8+4]+ - 8*BitStream[j*8+3]+ - 4*BitStream[j*8+2]+ - 2*BitStream[j*8+1]+ - BitStream[j*8]; - } - num_blocks++; - } - bitidx = 0; - block_done = 0; - half_switch = 0; - } - if(i < GraphTraceLen) - { - if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; - else dir = 1; - } - } - if(bitidx==255) - bitidx=0; - warnings = 0; - if(num_blocks == 4) break; - } - memcpy(outBlocks, Blocks, 16*num_blocks); - return num_blocks; + + lastval = i++; + half_switch = 0; + pmc = 0; + block_done = 0; + + for (bitidx = 0; i < GraphTraceLen; i++) + { + if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) + { + lc = i - lastval; + lastval = i; + + // Switch depending on lc length: + // Tolerance is 1/8 of clock rate (arbitrary) + if (abs(lc-clock/4) < tolerance) { + // 16T0 + if((i - pmc) == lc) { /* 16T0 was previous one */ + /* It's a PMC ! */ + i += (128+127+16+32+33+16)-1; + lastval = i; + pmc = 0; + block_done = 1; + } + else { + pmc = i; + } + } else if (abs(lc-clock/2) < tolerance) { + // 32TO + if((i - pmc) == lc) { /* 16T0 was previous one */ + /* It's a PMC ! */ + i += (128+127+16+32+33)-1; + lastval = i; + pmc = 0; + block_done = 1; + } + else if(half_switch == 1) { + BitStream[bitidx++] = 0; + half_switch = 0; + } + else + half_switch++; + } else if (abs(lc-clock) < tolerance) { + // 64TO + BitStream[bitidx++] = 1; + } else { + // Error + warnings++; + if (warnings > 10) + { + Dbprintf("Error: too many detection errors, aborting."); + return 0; + } + } + + if(block_done == 1) { + if(bitidx == 128) { + for(j=0; j<16; j++) { + Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ + 64*BitStream[j*8+6]+ + 32*BitStream[j*8+5]+ + 16*BitStream[j*8+4]+ + 8*BitStream[j*8+3]+ + 4*BitStream[j*8+2]+ + 2*BitStream[j*8+1]+ + BitStream[j*8]; + } + num_blocks++; + } + bitidx = 0; + block_done = 0; + half_switch = 0; + } + if(i < GraphTraceLen) + { + if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; + else dir = 1; + } + } + if(bitidx==255) + bitidx=0; + warnings = 0; + if(num_blocks == 4) break; + } + memcpy(outBlocks, Blocks, 16*num_blocks); + return num_blocks; } int IsBlock0PCF7931(uint8_t *Block) { - // Assume RFU means 0 :) - if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled - return 1; - if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? - return 1; - return 0; + // Assume RFU means 0 :) + if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled + return 1; + if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? + return 1; + return 0; } int IsBlock1PCF7931(uint8_t *Block) { - // Assume RFU means 0 :) - if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) - if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) - return 1; - - return 0; + // Assume RFU means 0 :) + if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) + if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) + return 1; + + return 0; } #define ALLOC 16 void ReadPCF7931() { - uint8_t Blocks[8][17]; - uint8_t tmpBlocks[4][16]; - int i, j, ind, ind2, n; - int num_blocks = 0; - int max_blocks = 8; - int ident = 0; - int error = 0; - int tries = 0; - - memset(Blocks, 0, 8*17*sizeof(uint8_t)); - - do { - memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); - n = DemodPCF7931((uint8_t**)tmpBlocks); - if(!n) - error++; - if(error==10 && num_blocks == 0) { - Dbprintf("Error, no tag or bad tag"); - return; - } - else if (tries==20 || error==10) { - Dbprintf("Error reading the tag"); - Dbprintf("Here is the partial content"); - goto end; - } - - for(i=0; i= 0; ind--,ind2--) { - if(ind2 < 0) - ind2 = max_blocks; - if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found - // Dbprintf("Tmp %d -> Block %d", ind, ind2); - memcpy(Blocks[ind2], tmpBlocks[ind], 16); - Blocks[ind2][ALLOC] = 1; - num_blocks++; - if(num_blocks == max_blocks) goto end; + else if (tries==20 || error==10) { + Dbprintf("Error reading the tag"); + Dbprintf("Here is the partial content"); + goto end; + } + + for(i=0; i max_blocks) - ind2 = 0; - if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found - // Dbprintf("Tmp %d -> Block %d", ind, ind2); - memcpy(Blocks[ind2], tmpBlocks[ind], 16); - Blocks[ind2][ALLOC] = 1; - num_blocks++; - if(num_blocks == max_blocks) goto end; + } + } + else { + for(i=0; i= 0; ind--,ind2--) { + if(ind2 < 0) + ind2 = max_blocks; + if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found + // Dbprintf("Tmp %d -> Block %d", ind, ind2); + memcpy(Blocks[ind2], tmpBlocks[ind], 16); + Blocks[ind2][ALLOC] = 1; + num_blocks++; + if(num_blocks == max_blocks) goto end; + } + } + for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { + if(ind2 > max_blocks) + ind2 = 0; + if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found + // Dbprintf("Tmp %d -> Block %d", ind, ind2); + memcpy(Blocks[ind2], tmpBlocks[ind], 16); + Blocks[ind2][ALLOC] = 1; + num_blocks++; + if(num_blocks == max_blocks) goto end; + } + } + } + } } - } } - } } - } - } - tries++; - if (BUTTON_PRESS()) return; - } while (num_blocks != max_blocks); + tries++; + if (BUTTON_PRESS()) return; + } while (num_blocks != max_blocks); end: - Dbprintf("-----------------------------------------"); - Dbprintf("Memory content:"); - Dbprintf("-----------------------------------------"); - for(i=0; i", i); - } - Dbprintf("-----------------------------------------"); - - return ; + Dbprintf("-----------------------------------------"); + Dbprintf("Memory content:"); + Dbprintf("-----------------------------------------"); + for(i=0; i", i); + } + Dbprintf("-----------------------------------------"); + + return ; } @@ -1665,20 +1661,20 @@ uint8_t * fwd_write_ptr; //forwardlink bit pointer //==================================================================== //-------------------------------------------------------------------- uint8_t Prepare_Cmd( uint8_t cmd ) { - //-------------------------------------------------------------------- - - *forward_ptr++ = 0; //start bit - *forward_ptr++ = 0; //second pause for 4050 code - - *forward_ptr++ = cmd; - cmd >>= 1; - *forward_ptr++ = cmd; - cmd >>= 1; - *forward_ptr++ = cmd; - cmd >>= 1; - *forward_ptr++ = cmd; - - return 6; //return number of emited bits + //-------------------------------------------------------------------- + + *forward_ptr++ = 0; //start bit + *forward_ptr++ = 0; //second pause for 4050 code + + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + + return 6; //return number of emited bits } //==================================================================== @@ -1688,21 +1684,21 @@ uint8_t Prepare_Cmd( uint8_t cmd ) { //-------------------------------------------------------------------- uint8_t Prepare_Addr( uint8_t addr ) { - //-------------------------------------------------------------------- - - register uint8_t line_parity; - - uint8_t i; - line_parity = 0; - for(i=0;i<6;i++) { - *forward_ptr++ = addr; - line_parity ^= addr; - addr >>= 1; - } - - *forward_ptr++ = (line_parity & 1); - - return 7; //return number of emited bits + //-------------------------------------------------------------------- + + register uint8_t line_parity; + + uint8_t i; + line_parity = 0; + for(i=0;i<6;i++) { + *forward_ptr++ = addr; + line_parity ^= addr; + addr >>= 1; + } + + *forward_ptr++ = (line_parity & 1); + + return 7; //return number of emited bits } //==================================================================== @@ -1712,36 +1708,36 @@ uint8_t Prepare_Addr( uint8_t addr ) { //-------------------------------------------------------------------- uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { - //-------------------------------------------------------------------- - - register uint8_t line_parity; - register uint8_t column_parity; - register uint8_t i, j; - register uint16_t data; - - data = data_low; - column_parity = 0; - - for(i=0; i<4; i++) { - line_parity = 0; + //-------------------------------------------------------------------- + + register uint8_t line_parity; + register uint8_t column_parity; + register uint8_t i, j; + register uint16_t data; + + data = data_low; + column_parity = 0; + + for(i=0; i<4; i++) { + line_parity = 0; + for(j=0; j<8; j++) { + line_parity ^= data; + column_parity ^= (data & 1) << j; + *forward_ptr++ = data; + data >>= 1; + } + *forward_ptr++ = line_parity; + if(i == 1) + data = data_hi; + } + for(j=0; j<8; j++) { - line_parity ^= data; - column_parity ^= (data & 1) << j; - *forward_ptr++ = data; - data >>= 1; + *forward_ptr++ = column_parity; + column_parity >>= 1; } - *forward_ptr++ = line_parity; - if(i == 1) - data = data_hi; - } - - for(j=0; j<8; j++) { - *forward_ptr++ = column_parity; - column_parity >>= 1; - } - *forward_ptr = 0; - - return 45; //return number of emited bits + *forward_ptr = 0; + + return 45; //return number of emited bits } //==================================================================== @@ -1750,115 +1746,115 @@ uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { // fwd_bit_count set with number of bits to be sent //==================================================================== void SendForward(uint8_t fwd_bit_count) { - - fwd_write_ptr = forwardLink_data; - fwd_bit_sz = fwd_bit_count; - - LED_D_ON(); - - //Field on - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); - - // force 1st mod pulse (start gap must be longer for 4305) - fwd_bit_sz--; //prepare next bit modulation - fwd_write_ptr++; - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on - SpinDelayUs(16*8); //16 cycles on (8us each) - - // now start writting - while(fwd_bit_sz-- > 0) { //prepare next bit modulation - if(((*fwd_write_ptr++) & 1) == 1) - SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) - else { - //These timings work for 4469/4269/4305 (with the 55*8 above) - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - SpinDelayUs(23*8); //16-4 cycles off (8us each) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on - SpinDelayUs(9*8); //16 cycles on (8us each) + + fwd_write_ptr = forwardLink_data; + fwd_bit_sz = fwd_bit_count; + + LED_D_ON(); + + //Field on + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Give it a bit of time for the resonant antenna to settle. + // And for the tag to fully power up + SpinDelay(150); + + // force 1st mod pulse (start gap must be longer for 4305) + fwd_bit_sz--; //prepare next bit modulation + fwd_write_ptr++; + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on + SpinDelayUs(16*8); //16 cycles on (8us each) + + // now start writting + while(fwd_bit_sz-- > 0) { //prepare next bit modulation + if(((*fwd_write_ptr++) & 1) == 1) + SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) + else { + //These timings work for 4469/4269/4305 (with the 55*8 above) + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + SpinDelayUs(23*8); //16-4 cycles off (8us each) + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on + SpinDelayUs(9*8); //16 cycles on (8us each) + } } - } } void EM4xLogin(uint32_t Password) { - - uint8_t fwd_bit_count; - - forward_ptr = forwardLink_data; - fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); - fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); - - SendForward(fwd_bit_count); - - //Wait for command to complete - SpinDelay(20); - + + uint8_t fwd_bit_count; + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); + fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); + + SendForward(fwd_bit_count); + + //Wait for command to complete + SpinDelay(20); + } void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { - - uint8_t fwd_bit_count; - uint8_t *dest = (uint8_t *)BigBuf; - int m=0, i=0; - - //If password mode do login - if (PwdMode == 1) EM4xLogin(Pwd); - - forward_ptr = forwardLink_data; - fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); - fwd_bit_count += Prepare_Addr( Address ); - - m = sizeof(BigBuf); - // Clear destination buffer before sending the command - memset(dest, 128, m); - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - SendForward(fwd_bit_count); - - // Now do the acquisition - i = 0; - for(;;) { - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { - AT91C_BASE_SSC->SSC_THR = 0x43; - } - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - i++; - if (i >= m) break; + + uint8_t fwd_bit_count; + uint8_t *dest = (uint8_t *)BigBuf; + int m=0, i=0; + + //If password mode do login + if (PwdMode == 1) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); + fwd_bit_count += Prepare_Addr( Address ); + + m = sizeof(BigBuf); + // Clear destination buffer before sending the command + memset(dest, 128, m); + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); + + SendForward(fwd_bit_count); + + // Now do the acquisition + i = 0; + for(;;) { + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { + AT91C_BASE_SSC->SSC_THR = 0x43; + } + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + i++; + if (i >= m) break; + } } - } - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); } void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { - - uint8_t fwd_bit_count; - - //If password mode do login - if (PwdMode == 1) EM4xLogin(Pwd); - - forward_ptr = forwardLink_data; - fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); - fwd_bit_count += Prepare_Addr( Address ); - fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); - - SendForward(fwd_bit_count); - - //Wait for write to complete - SpinDelay(20); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - LED_D_OFF(); + + uint8_t fwd_bit_count; + + //If password mode do login + if (PwdMode == 1) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); + fwd_bit_count += Prepare_Addr( Address ); + fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); + + SendForward(fwd_bit_count); + + //Wait for write to complete + SpinDelay(20); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); } diff --git a/common/lfdemod.c b/common/lfdemod.c index ad4721f1..79c99f73 100644 --- a/common/lfdemod.c +++ b/common/lfdemod.c @@ -14,195 +14,195 @@ //by marshmellow //takes 1s and 0s and searches for EM410x format - output EM ID -uint64_t Em410xDecode(uint8_t *BitStream, int BitLen) +uint64_t Em410xDecode(uint8_t *BitStream,uint32_t BitLen) { - //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future - // otherwise could be a void with no arguments - //set defaults - int high=0, low=128; - uint64_t lo=0; //hi=0, - - uint32_t i = 0; - uint32_t initLoopMax = 65; - if (initLoopMax>BitLen) initLoopMax=BitLen; - - for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values - { - if (BitStream[i] > high) - high = BitStream[i]; - else if (BitStream[i] < low) - low = BitStream[i]; - } - if (((high !=1)||(low !=0))){ //allow only 1s and 0s - // PrintAndLog("no data found"); - return 0; - } - uint8_t parityTest=0; - // 111111111 bit pattern represent start of frame - uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1}; - uint32_t idx = 0; - uint32_t ii=0; - uint8_t resetCnt = 0; - while( (idx + 64) < BitLen) { - restart: - // search for a start of frame marker - if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { // frame marker found - idx+=9;//sizeof(frame_marker_mask); - for (i=0; i<10;i++){ - for(ii=0; ii<5; ++ii){ - parityTest += BitStream[(i*5)+ii+idx]; - } - if (parityTest== ((parityTest>>1)<<1)){ - parityTest=0; - for (ii=0; ii<4;++ii){ - //hi = (hi<<1)|(lo>>31); - lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]); - } - //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo); - }else {//parity failed - //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]); - parityTest=0; - idx-=8; - if (resetCnt>5)return 0; - resetCnt++; - goto restart;//continue; + //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future + // otherwise could be a void with no arguments + //set defaults + int high=0, low=128; + uint64_t lo=0; //hi=0, + + uint32_t i = 0; + uint32_t initLoopMax = 65; + if (initLoopMax>BitLen) initLoopMax=BitLen; + + for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values + { + if (BitStream[i] > high) + high = BitStream[i]; + else if (BitStream[i] < low) + low = BitStream[i]; + } + if (((high !=1)||(low !=0))){ //allow only 1s and 0s + // PrintAndLog("no data found"); + return 0; + } + uint8_t parityTest=0; + // 111111111 bit pattern represent start of frame + uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1}; + uint32_t idx = 0; + uint32_t ii=0; + uint8_t resetCnt = 0; + while( (idx + 64) < BitLen) { +restart: + // search for a start of frame marker + if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) + { // frame marker found + idx+=9;//sizeof(frame_marker_mask); + for (i=0; i<10;i++){ + for(ii=0; ii<5; ++ii){ + parityTest += BitStream[(i*5)+ii+idx]; + } + if (parityTest== ((parityTest>>1)<<1)){ + parityTest=0; + for (ii=0; ii<4;++ii){ + //hi = (hi<<1)|(lo>>31); + lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]); + } + //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo); + }else {//parity failed + //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]); + parityTest=0; + idx-=8; + if (resetCnt>5)return 0; + resetCnt++; + goto restart;//continue; + } + } + //skip last 5 bit parity test for simplicity. + return lo; + }else{ + idx++; } - } - //skip last 5 bit parity test for simplicity. - return lo; - }else{ - idx++; } - } - return 0; + return 0; } //by marshmellow //takes 2 arguments - clock and invert both as integers //attempts to demodulate ask while decoding manchester //prints binary found and saves in graphbuffer for further commands -int askmandemod(uint8_t * BinStream, int *BitLen,int *clk, int *invert) +int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert) { - int i; - int high = 0, low = 128; - *clk=DetectASKClock(BinStream,(size_t)*BitLen,*clk); //clock default - - if (*clk<8) *clk =64; - if (*clk<32) *clk=32; - if (*invert != 0 && *invert != 1) *invert=0; - uint32_t initLoopMax = 200; - if (initLoopMax>*BitLen) initLoopMax=*BitLen; - // Detect high and lows - for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values - { - if (BinStream[i] > high) - high = BinStream[i]; - else if (BinStream[i] < low) - low = BinStream[i]; - } - if ((high < 158) ){ //throw away static - //PrintAndLog("no data found"); - return -2; - } - //25% fuzz in case highs and lows aren't clipped [marshmellow] - high=(int)((high-128)*.75)+128; - low= (int)((low-128)*.75)+128; - - //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); - int lastBit = 0; //set first clock check - uint32_t bitnum = 0; //output counter - int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave - if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely - int iii = 0; - uint32_t gLen = *BitLen; - if (gLen > 3000) gLen=3000; - uint8_t errCnt =0; - uint32_t bestStart = *BitLen; - uint32_t bestErrCnt = (*BitLen/1000); - uint32_t maxErr = (*BitLen/1000); - //PrintAndLog("DEBUG - lastbit - %d",lastBit); - //loop to find first wave that works - for (iii=0; iii < gLen; ++iii){ - if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ - lastBit=iii-*clk; - errCnt=0; - //loop through to see if this start location works - for (i = iii; i < *BitLen; ++i) { - if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ - lastBit+=*clk; - } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ - //low found and we are expecting a bar - lastBit+=*clk; - } else { - //mid value found or no bar supposed to be here - if ((i-lastBit)>(*clk+tol)){ - //should have hit a high or low based on clock!! - - //debug - //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); - - errCnt++; - lastBit+=*clk;//skip over until hit too many errors - if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over - } - } - if ((i-iii) >(400 * *clk)) break; //got plenty of bits - } - //we got more than 64 good bits and not all errors - if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt*BitLen) initLoopMax=*BitLen; + // Detect high and lows + for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values + { + if (BinStream[i] > high) + high = BinStream[i]; + else if (BinStream[i] < low) + low = BinStream[i]; + } + if ((high < 158) ){ //throw away static + //PrintAndLog("no data found"); + return -2; + } + //25% fuzz in case highs and lows aren't clipped [marshmellow] + high=(int)((high-128)*.75)+128; + low= (int)((low-128)*.75)+128; + + //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); + int lastBit = 0; //set first clock check + uint32_t bitnum = 0; //output counter + int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave + if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely + int iii = 0; + uint32_t gLen = *BitLen; + if (gLen > 3000) gLen=3000; + uint8_t errCnt =0; + uint32_t bestStart = *BitLen; + uint32_t bestErrCnt = (*BitLen/1000); + uint32_t maxErr = (*BitLen/1000); + //PrintAndLog("DEBUG - lastbit - %d",lastBit); + //loop to find first wave that works + for (iii=0; iii < gLen; ++iii){ + if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ + lastBit=iii-*clk; + errCnt=0; + //loop through to see if this start location works + for (i = iii; i < *BitLen; ++i) { + if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ + lastBit+=*clk; + } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ + //low found and we are expecting a bar + lastBit+=*clk; + } else { + //mid value found or no bar supposed to be here + if ((i-lastBit)>(*clk+tol)){ + //should have hit a high or low based on clock!! + + //debug + //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); + + errCnt++; + lastBit+=*clk;//skip over until hit too many errors + if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over + } + } + if ((i-iii) >(400 * *clk)) break; //got plenty of bits + } + //we got more than 64 good bits and not all errors + if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt= high) && ((i-lastBit)>(*clk-tol))){ - lastBit+=*clk; - BinStream[bitnum] = *invert; - bitnum++; - } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ - //low found and we are expecting a bar - lastBit+=*clk; - BinStream[bitnum] = 1-*invert; - bitnum++; - } else { - //mid value found or no bar supposed to be here - if ((i-lastBit)>(*clk+tol)){ - //should have hit a high or low based on clock!! - - //debug - //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); - if (bitnum > 0){ - BinStream[bitnum]=77; - bitnum++; - } - - lastBit+=*clk;//skip over error + if (bestErrCnt= high) && ((i-lastBit)>(*clk-tol))){ + lastBit+=*clk; + BinStream[bitnum] = *invert; + bitnum++; + } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ + //low found and we are expecting a bar + lastBit+=*clk; + BinStream[bitnum] = 1-*invert; + bitnum++; + } else { + //mid value found or no bar supposed to be here + if ((i-lastBit)>(*clk+tol)){ + //should have hit a high or low based on clock!! + + //debug + //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); + if (bitnum > 0){ + BinStream[bitnum]=77; + bitnum++; + } + + lastBit+=*clk;//skip over error + } + } + if (bitnum >=400) break; } - } - if (bitnum >=400) break; + *BitLen=bitnum; + } else{ + *invert=bestStart; + *clk=iii; + return -1; } - *BitLen=bitnum; - } else{ - *invert=bestStart; - *clk=iii; - return -1; - } - return bestErrCnt; + return bestErrCnt; } //by marshmellow @@ -210,46 +210,46 @@ int askmandemod(uint8_t * BinStream, int *BitLen,int *clk, int *invert) //run through 2 times and take least errCnt int manrawdecode(uint8_t * BitStream, int *bitLen) { - int bitnum=0; - int errCnt =0; - int i=1; - int bestErr = 1000; - int bestRun = 0; - int ii=1; - for (ii=1;ii<3;++ii){ - i=1; - for (i=i+ii;i<*bitLen-2;i+=2){ - if(BitStream[i]==1 && (BitStream[i+1]==0)){ - } else if((BitStream[i]==0)&& BitStream[i+1]==1){ - } else { - errCnt++; - } - if(bitnum>300) break; - } - if (bestErr>errCnt){ - bestErr=errCnt; - bestRun=ii; - } - errCnt=0; - } - errCnt=bestErr; - if (errCnt<20){ - ii=bestRun; - i=1; - for (i=i+ii;i<*bitLen-2;i+=2){ - if(BitStream[i]==1 && (BitStream[i+1]==0)){ - BitStream[bitnum++]=0; - } else if((BitStream[i]==0)&& BitStream[i+1]==1){ - BitStream[bitnum++]=1; - } else { - BitStream[bitnum++]=77; - //errCnt++; - } - if(bitnum>300) break; - } - *bitLen=bitnum; - } - return errCnt; + int bitnum=0; + int errCnt =0; + int i=1; + int bestErr = 1000; + int bestRun = 0; + int ii=1; + for (ii=1;ii<3;++ii){ + i=1; + for (i=i+ii;i<*bitLen-2;i+=2){ + if(BitStream[i]==1 && (BitStream[i+1]==0)){ + } else if((BitStream[i]==0)&& BitStream[i+1]==1){ + } else { + errCnt++; + } + if(bitnum>300) break; + } + if (bestErr>errCnt){ + bestErr=errCnt; + bestRun=ii; + } + errCnt=0; + } + errCnt=bestErr; + if (errCnt<20){ + ii=bestRun; + i=1; + for (i=i+ii;i<*bitLen-2;i+=2){ + if(BitStream[i]==1 && (BitStream[i+1]==0)){ + BitStream[bitnum++]=0; + } else if((BitStream[i]==0)&& BitStream[i+1]==1){ + BitStream[bitnum++]=1; + } else { + BitStream[bitnum++]=77; + //errCnt++; + } + if(bitnum>300) break; + } + *bitLen=bitnum; + } + return errCnt; } @@ -257,23 +257,23 @@ int manrawdecode(uint8_t * BitStream, int *bitLen) //take 01 or 10 = 0 and 11 or 00 = 1 int BiphaseRawDecode(uint8_t * BitStream, int *bitLen, int offset) { - uint8_t bitnum=0; - uint32_t errCnt =0; - uint32_t i=1; - i=offset; - for (;i<*bitLen-2;i+=2){ - if((BitStream[i]==1 && BitStream[i+1]==0)||(BitStream[i]==0 && BitStream[i+1]==1)){ - BitStream[bitnum++]=1; - } else if((BitStream[i]==0 && BitStream[i+1]==0)||(BitStream[i]==1 && BitStream[i+1]==1)){ - BitStream[bitnum++]=0; - } else { - BitStream[bitnum++]=77; - errCnt++; + uint8_t bitnum=0; + uint32_t errCnt =0; + uint32_t i=1; + i=offset; + for (;i<*bitLen-2;i+=2){ + if((BitStream[i]==1 && BitStream[i+1]==0)||(BitStream[i]==0 && BitStream[i+1]==1)){ + BitStream[bitnum++]=1; + } else if((BitStream[i]==0 && BitStream[i+1]==0)||(BitStream[i]==1 && BitStream[i+1]==1)){ + BitStream[bitnum++]=0; + } else { + BitStream[bitnum++]=77; + errCnt++; + } + if(bitnum>250) break; } - if(bitnum>250) break; - } - *bitLen=bitnum; - return errCnt; + *bitLen=bitnum; + return errCnt; } //by marshmellow @@ -282,352 +282,352 @@ int BiphaseRawDecode(uint8_t * BitStream, int *bitLen, int offset) //prints binary found and saves in graphbuffer for further commands int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert) { - uint32_t i; - // int invert=0; //invert default - int high = 0, low = 128; - *clk=DetectASKClock(BinStream,*bitLen,*clk); //clock default - uint8_t BitStream[502] = {0}; - - if (*clk<8) *clk =64; - if (*clk<32) *clk=32; - if (*invert != 0 && *invert != 1) *invert =0; - uint32_t initLoopMax = 200; - if (initLoopMax>*bitLen) initLoopMax=*bitLen; - // Detect high and lows - for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values - { - if (BinStream[i] > high) - high = BinStream[i]; - else if (BinStream[i] < low) - low = BinStream[i]; - } - if ((high < 158)){ //throw away static - // PrintAndLog("no data found"); - return -2; - } - //25% fuzz in case highs and lows aren't clipped [marshmellow] - high=(int)((high-128)*.75)+128; - low= (int)((low-128)*.75)+128; - - //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); - int lastBit = 0; //set first clock check - uint32_t bitnum = 0; //output counter - uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave - if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely - uint32_t iii = 0; - uint32_t gLen = *bitLen; - if (gLen > 500) gLen=500; - uint8_t errCnt =0; - uint32_t bestStart = *bitLen; - uint32_t bestErrCnt = (*bitLen/1000); - uint8_t midBit=0; - //PrintAndLog("DEBUG - lastbit - %d",lastBit); - //loop to find first wave that works - for (iii=0; iii < gLen; ++iii){ - if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ - lastBit=iii-*clk; - //loop through to see if this start location works - for (i = iii; i < *bitLen; ++i) { - if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ - lastBit+=*clk; - BitStream[bitnum] = *invert; - bitnum++; - midBit=0; - } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ - //low found and we are expecting a bar - lastBit+=*clk; - BitStream[bitnum] = 1-*invert; - bitnum++; - midBit=0; - } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ - //mid bar? - midBit=1; - BitStream[bitnum]= 1-*invert; - bitnum++; - } else if ((BinStream[i]>=high)&&(midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ - //mid bar? - midBit=1; - BitStream[bitnum]= *invert; - bitnum++; - } else if ((i-lastBit)>((*clk/2)+tol)&&(midBit==0)){ - //no mid bar found - midBit=1; - BitStream[bitnum]= BitStream[bitnum-1]; - bitnum++; - } else { - //mid value found or no bar supposed to be here - - if ((i-lastBit)>(*clk+tol)){ - //should have hit a high or low based on clock!! - //debug - //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); - if (bitnum > 0){ - BitStream[bitnum]=77; - bitnum++; + uint32_t i; + // int invert=0; //invert default + int high = 0, low = 128; + *clk=DetectASKClock(BinStream,*bitLen,*clk); //clock default + uint8_t BitStream[502] = {0}; + + if (*clk<8) *clk =64; + if (*clk<32) *clk=32; + if (*invert != 0 && *invert != 1) *invert =0; + uint32_t initLoopMax = 200; + if (initLoopMax>*bitLen) initLoopMax=*bitLen; + // Detect high and lows + for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values + { + if (BinStream[i] > high) + high = BinStream[i]; + else if (BinStream[i] < low) + low = BinStream[i]; + } + if ((high < 158)){ //throw away static + // PrintAndLog("no data found"); + return -2; + } + //25% fuzz in case highs and lows aren't clipped [marshmellow] + high=(int)((high-128)*.75)+128; + low= (int)((low-128)*.75)+128; + + //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); + int lastBit = 0; //set first clock check + uint32_t bitnum = 0; //output counter + uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave + if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely + uint32_t iii = 0; + uint32_t gLen = *bitLen; + if (gLen > 500) gLen=500; + uint8_t errCnt =0; + uint32_t bestStart = *bitLen; + uint32_t bestErrCnt = (*bitLen/1000); + uint8_t midBit=0; + //PrintAndLog("DEBUG - lastbit - %d",lastBit); + //loop to find first wave that works + for (iii=0; iii < gLen; ++iii){ + if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ + lastBit=iii-*clk; + //loop through to see if this start location works + for (i = iii; i < *bitLen; ++i) { + if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ + lastBit+=*clk; + BitStream[bitnum] = *invert; + bitnum++; + midBit=0; + } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ + //low found and we are expecting a bar + lastBit+=*clk; + BitStream[bitnum] = 1-*invert; + bitnum++; + midBit=0; + } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ + //mid bar? + midBit=1; + BitStream[bitnum]= 1-*invert; + bitnum++; + } else if ((BinStream[i]>=high)&&(midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ + //mid bar? + midBit=1; + BitStream[bitnum]= *invert; + bitnum++; + } else if ((i-lastBit)>((*clk/2)+tol)&&(midBit==0)){ + //no mid bar found + midBit=1; + BitStream[bitnum]= BitStream[bitnum-1]; + bitnum++; + } else { + //mid value found or no bar supposed to be here + + if ((i-lastBit)>(*clk+tol)){ + //should have hit a high or low based on clock!! + //debug + //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); + if (bitnum > 0){ + BitStream[bitnum]=77; + bitnum++; + } + + + errCnt++; + lastBit+=*clk;//skip over until hit too many errors + if (errCnt>((*bitLen/1000))){ //allow 1 error for every 1000 samples else start over + errCnt=0; + bitnum=0;//start over + break; + } + } + } + if (bitnum>500) break; } - - - errCnt++; - lastBit+=*clk;//skip over until hit too many errors - if (errCnt>((*bitLen/1000))){ //allow 1 error for every 1000 samples else start over - errCnt=0; - bitnum=0;//start over - break; + //we got more than 64 good bits and not all errors + if ((bitnum > (64+errCnt)) && (errCnt<(*bitLen/1000))) { + //possible good read + if (errCnt==0) break; //great read - finish + if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish + if (errCnt500) break; - } - //we got more than 64 good bits and not all errors - if ((bitnum > (64+errCnt)) && (errCnt<(*bitLen/1000))) { - //possible good read - if (errCnt==0) break; //great read - finish - if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish - if (errCnt=gLen){ //exhausted test + //if there was a ok test go back to that one and re-run the best run (then dump after that run) + if (bestErrCnt < (*bitLen/1000)) iii=bestStart; } - } - } - if (iii>=gLen){ //exhausted test - //if there was a ok test go back to that one and re-run the best run (then dump after that run) - if (bestErrCnt < (*bitLen/1000)) iii=bestStart; } - } - if (bitnum>16){ - - // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum); - //move BitStream back to BinStream - // ClearGraph(0); - for (i=0; i < bitnum; ++i){ - BinStream[i]=BitStream[i]; - } - *bitLen=bitnum; - // RepaintGraphWindow(); - //output - // if (errCnt>0){ - // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt); - // } - // PrintAndLog("ASK decoded bitstream:"); - // Now output the bitstream to the scrollback by line of 16 bits - // printBitStream2(BitStream,bitnum); - //int errCnt=0; - //errCnt=manrawdemod(BitStream,bitnum); + if (bitnum>16){ - // Em410xDecode(Cmd); - } else return -1; - return errCnt; + // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum); + //move BitStream back to BinStream + // ClearGraph(0); + for (i=0; i < bitnum; ++i){ + BinStream[i]=BitStream[i]; + } + *bitLen=bitnum; + // RepaintGraphWindow(); + //output + // if (errCnt>0){ + // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt); + // } + // PrintAndLog("ASK decoded bitstream:"); + // Now output the bitstream to the scrollback by line of 16 bits + // printBitStream2(BitStream,bitnum); + //int errCnt=0; + //errCnt=manrawdemod(BitStream,bitnum); + + // Em410xDecode(Cmd); + } else return -1; + return errCnt; } //translate wave to 11111100000 (1 for each short wave 0 for each long wave) size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) { - uint32_t last_transition = 0; - uint32_t idx = 1; - uint32_t maxVal=0; - if (fchigh==0) fchigh=10; - if (fclow==0) fclow=8; - // we do care about the actual theshold value as sometimes near the center of the - // wave we may get static that changes direction of wave for one value - // if our value is too low it might affect the read. and if our tag or - // antenna is weak a setting too high might not see anything. [marshmellow] - if (size<100) return 0; - for(idx=1; idx<100; idx++){ - if(maxVal1 transition - if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition - if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise - //do nothing with extra garbage - } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves - dest[numBits]=1; - } else { //9+ = 10 waves - dest[numBits]=0; - } - last_transition = idx; - numBits++; - } - } - return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 + uint8_t threshold_value = (uint8_t)(((maxVal-128)*.75)+128); + // idx=1; + //uint8_t threshold_value = 127; + + // sync to first lo-hi transition, and threshold + + // Need to threshold first sample + + if(dest[0] < threshold_value) dest[0] = 0; + else dest[0] = 1; + + size_t numBits = 0; + // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) + // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere + // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 + for(idx = 1; idx < size; idx++) { + // threshold current value + + if (dest[idx] < threshold_value) dest[idx] = 0; + else dest[idx] = 1; + + // Check for 0->1 transition + if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition + if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise + //do nothing with extra garbage + } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves + dest[numBits]=1; + } else { //9+ = 10 waves + dest[numBits]=0; + } + last_transition = idx; + numBits++; + } + } + return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 } uint32_t myround2(float f) { - if (f >= 2000) return 2000;//something bad happened - return (uint32_t) (f + (float)0.5); + if (f >= 2000) return 2000;//something bad happened + return (uint32_t) (f + (float)0.5); } //translate 11111100000 to 10 size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert,uint8_t fchigh,uint8_t fclow )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, { - uint8_t lastval=dest[0]; - uint32_t idx=0; - size_t numBits=0; - uint32_t n=1; + uint8_t lastval=dest[0]; + uint32_t idx=0; + size_t numBits=0; + uint32_t n=1; - for( idx=1; idx < size; idx++) { + for( idx=1; idx < size; idx++) { - if (dest[idx]==lastval) { - n++; - continue; - } - //if lastval was 1, we have a 1->0 crossing - if ( dest[idx-1]==1 ) { - n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow)); - //n=(n+1) / h2l_crossing_value; - } else {// 0->1 crossing - n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor - //n=(n+1) / l2h_crossing_value; - } - if (n == 0) n = 1; - - if(n < maxConsequtiveBits) //Consecutive - { - if(invert==0){ //invert bits - memset(dest+numBits, dest[idx-1] , n); - }else{ - memset(dest+numBits, dest[idx-1]^1 , n); - } - numBits += n; - } - n=0; - lastval=dest[idx]; - }//end for - return numBits; + if (dest[idx]==lastval) { + n++; + continue; + } + //if lastval was 1, we have a 1->0 crossing + if ( dest[idx-1]==1 ) { + n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow)); + //n=(n+1) / h2l_crossing_value; + } else {// 0->1 crossing + n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor + //n=(n+1) / l2h_crossing_value; + } + if (n == 0) n = 1; + + if(n < maxConsequtiveBits) //Consecutive + { + if(invert==0){ //invert bits + memset(dest+numBits, dest[idx-1] , n); + }else{ + memset(dest+numBits, dest[idx-1]^1 , n); + } + numBits += n; + } + n=0; + lastval=dest[idx]; + }//end for + return numBits; } //by marshmellow (from holiman's base) // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) { - // FSK demodulator - size = fsk_wave_demod(dest, size, fchigh, fclow); - size = aggregate_bits(dest, size,rfLen,192,invert,fchigh,fclow); - return size; + // FSK demodulator + size = fsk_wave_demod(dest, size, fchigh, fclow); + size = aggregate_bits(dest, size,rfLen,192,invert,fchigh,fclow); + return size; } // loop to get raw HID waveform then FSK demodulate the TAG ID from it int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) { - - size_t idx=0; //, found=0; //size=0, - // FSK demodulator - size = fskdemod(dest, size,50,0,10,8); - // final loop, go over previously decoded manchester data and decode into usable tag ID - // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 - uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; - int numshifts = 0; - idx = 0; - //one scan - while( idx + sizeof(frame_marker_mask) < size) { - // search for a start of frame marker - if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { // frame marker found - idx+=sizeof(frame_marker_mask); - while(dest[idx] != dest[idx+1] && idx < size-2) - { - // Keep going until next frame marker (or error) - // Shift in a bit. Start by shifting high registers - *hi2 = (*hi2<<1)|(*hi>>31); - *hi = (*hi<<1)|(*lo>>31); - //Then, shift in a 0 or one into low - if (dest[idx] && !dest[idx+1]) // 1 0 - *lo=(*lo<<1)|0; - else // 0 1 - *lo=(*lo<<1)|1; - numshifts++; - idx += 2; - } - // Hopefully, we read a tag and hit upon the next frame marker - if(idx + sizeof(frame_marker_mask) < size) - { - if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { - //good return - return idx; - } - } - // reset - *hi2 = *hi = *lo = 0; - numshifts = 0; - }else { - idx++; - } - } - return -1; + size_t idx=0; //, found=0; //size=0, + // FSK demodulator + size = fskdemod(dest, size,50,0,10,8); + + // final loop, go over previously decoded manchester data and decode into usable tag ID + // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 + uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; + int numshifts = 0; + idx = 0; + //one scan + while( idx + sizeof(frame_marker_mask) < size) { + // search for a start of frame marker + if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) + { // frame marker found + idx+=sizeof(frame_marker_mask); + while(dest[idx] != dest[idx+1] && idx < size-2) + { + // Keep going until next frame marker (or error) + // Shift in a bit. Start by shifting high registers + *hi2 = (*hi2<<1)|(*hi>>31); + *hi = (*hi<<1)|(*lo>>31); + //Then, shift in a 0 or one into low + if (dest[idx] && !dest[idx+1]) // 1 0 + *lo=(*lo<<1)|0; + else // 0 1 + *lo=(*lo<<1)|1; + numshifts++; + idx += 2; + } + // Hopefully, we read a tag and hit upon the next frame marker + if(idx + sizeof(frame_marker_mask) < size) + { + if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) + { + //good return + return idx; + } + } + // reset + *hi2 = *hi = *lo = 0; + numshifts = 0; + }else { + idx++; + } + } + return -1; } uint32_t bytebits_to_byte(uint8_t* src, int numbits) { - uint32_t num = 0; - for(int i = 0 ; i < numbits ; i++) - { - num = (num << 1) | (*src); - src++; - } - return num; + uint32_t num = 0; + for(int i = 0 ; i < numbits ; i++) + { + num = (num << 1) | (*src); + src++; + } + return num; } int IOdemodFSK(uint8_t *dest, size_t size) { - uint32_t idx=0; - //make sure buffer has data - if (size < 66) return -1; - //test samples are not just noise - uint8_t testMax=0; - for(idx=0;idx<65;idx++){ - if (testMax170){ - // FSK demodulator - size = fskdemod(dest, size,64,1,10,8); // RF/64 and invert - if (size < 65) return -1; //did we get a good demod? - //Index map - //0 10 20 30 40 50 60 - //| | | | | | | - //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 - //----------------------------------------------------------------------------- - //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 - // - //XSF(version)facility:codeone+codetwo - //Handle the data - uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; - for( idx=0; idx < (size - 65); idx++) { - if ( memcmp(dest + idx, mask, sizeof(mask))==0) { - //frame marker found - if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ - //confirmed proper separator bits found - //return start position - return (int) idx; - } - } - } - } - return 0; + uint32_t idx=0; + //make sure buffer has data + if (size < 66) return -1; + //test samples are not just noise + uint8_t testMax=0; + for(idx=0;idx<65;idx++){ + if (testMax20){ + // FSK demodulator + size = fskdemod(dest, size,64,1,10,8); // RF/64 and invert + if (size < 65) return -1; //did we get a good demod? + //Index map + //0 10 20 30 40 50 60 + //| | | | | | | + //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 + //----------------------------------------------------------------------------- + //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 + // + //XSF(version)facility:codeone+codetwo + //Handle the data + uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; + for( idx=0; idx < (size - 65); idx++) { + if ( memcmp(dest + idx, mask, sizeof(mask))==0) { + //frame marker found + if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ + //confirmed proper separator bits found + //return start position + return (int) idx; + } + } + } + } + return 0; } // by marshmellow @@ -635,521 +635,67 @@ int IOdemodFSK(uint8_t *dest, size_t size) // maybe somehow adjust peak trimming value based on samples to fix? int DetectASKClock(uint8_t dest[], size_t size, int clock) { - int i=0; - int peak=0; - int low=128; - int clk[]={16,32,40,50,64,100,128,256}; - int loopCnt = 256; //don't need to loop through entire array... - if (sizepeak){ - peak = dest[i]; - } - if(dest[i]=peak) || (dest[ii]<=low)){ - errCnt=0; - // now that we have the first one lined up test rest of wave array - for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ - if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ - }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ - }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ - }else{ //error no peak detected - errCnt++; - } + int i=0; + int peak=0; + int low=128; + int clk[]={16,32,40,50,64,100,128,256}; + int loopCnt = 256; //don't need to loop through entire array... + if (sizepeak){ + peak = dest[i]; } - //if we found no errors this is correct one - return this clock - if(errCnt==0) return clk[clkCnt]; - //if we found errors see if it is lowest so far and save it as best run - if(errCntpeak){ - peak = dest[i]; - } - if(dest[i]=peak) || (dest[ii]<=low)){ - errCnt=0; - peakcnt=0; - // now that we have the first one lined up test rest of wave array - for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ - if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ - peakcnt++; - }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ - peakcnt++; - }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ - peakcnt++; - }else{ //error no peak detected - errCnt++; - } + if(dest[i]peaksdet[clkCnt]) { - peaksdet[clkCnt]=peakcnt; - bestErr[clkCnt]=errCnt; - } - } - } - } - int iii=0; - int best=0; - //int ratio2; //debug - int ratio; - //int bits; - for (iii=0; iii<7;++iii){ - ratio=1000; - //ratio2=1000; //debug - //bits=size/clk[iii]; //debug - if (peaksdet[iii]>0){ - ratio=bestErr[iii]/peaksdet[iii]; - if (((bestErr[best]/peaksdet[best])>(ratio)+1)){ - best = iii; - } - //ratio2=bits/peaksdet[iii]; //debug - } - //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2); - } - return clk[best]; -} - -/* -int DetectNRZpskClock(uint8_t dest[], size_t size, int clock) -{ - int i=0; - int peak=0; - int low=128; - int clk[]={16,32,40,50,64,100,128,256}; - int loopCnt = 1500; //don't need to loop through entire array... - if (sizepeak){ - peak = dest[i]; - } - if(dest[i]=peak) || (dest[ii]<=low)){ - lastClk = ii-*clk; - errCnt[clkCnt]=0; - // now that we have the first one lined up test rest of wave array - for (i=ii; i=peak || dest[i]<=low) && (i>=lastClk+*clk-tol && i<=lastClk+*clk+tol)){ - bitHigh=1; - lastClk=lastClk+*clk; - ignorewin=clk[clkCnt]/8; - }else if(dest[i]low) { - if (ignorewin==0){ - bitHigh=0; - }else ignorewin--; - if (i>=lastClk+*clk+tol){ //past possible bar - lowBitCnt[clkCnt]++; + peak=(int)((peak-128)*.75)+128; + low= (int)((low-128)*.75)+128; + int ii; + int clkCnt; + int tol = 0; + int bestErr=1000; + int errCnt[]={0,0,0,0,0,0,0,0}; + //test each valid clock from smallest to greatest to see which lines up + for(clkCnt=0; clkCnt<6;++clkCnt){ + if (clk[clkCnt]==32){ + tol=1; + }else{ + tol=0; + } + bestErr=1000; + //try lining up the peaks by moving starting point (try first 256) + for (ii=0; ii=peak) || (dest[ii]<=low)){ + errCnt[clkCnt]=0; + // now that we have the first one lined up test rest of wave array + for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ + if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ + }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ + }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ + }else{ //error no peak detected + errCnt[clkCnt]++; + } + } + //if we found no errors this is correct one - return this clock + if(errCnt[clkCnt]==0) return clk[clkCnt]; + //if we found errors see if it is lowest so far and save it as best run + if(errCnt[clkCnt]=peak || dest[i]<=low) && (i=lastClk+*clk+tol) && (bitHigh==0)){ - //error bar found no clock... - errCnt[clkCnt]++; - } } - //if we found no errors this is correct one - return this clock - if(errCnt[clkCnt]==0 && lowBitCnt[clkCnt]==0) return clk[clkCnt]; - //if we found errors see if it is lowest so far and save it as best run - if(errCnt[clkCnt]high) high=bitStream[i]; - } - high = (int)(((high-128)*.80)+128); - low = (int)(((low-128)*.90)+128); - //low = (uint8_t)(((int)(low)-128)*.80)+128; - for (i=0; i=high) newHigh=1; - } - return; -} - -int indala26decode(uint8_t *bitStream, int *bitLen, uint8_t *invert) -{ - //26 bit 40134 format (don't know other formats) - // Finding the start of a UID - int i; - int long_wait; - //uidlen = 64; - long_wait = 29;//29 leading zeros in format - int start; - int first = 0; - int first2 = 0; - int bitCnt = 0; - int ii; - for (start = 0; start <= *bitLen - 250; start++) { - first = bitStream[start]; - for (i = start; i < start + long_wait; i++) { - if (bitStream[i] != first) { - break; - } - } - if (i == (start + long_wait)) { - break; - } - } - if (start == *bitLen - 250 + 1) { - // did not find start sequence - return -1; - } - //found start once now test length by finding next one - // Inverting signal if needed - if (first == 1) { - for (i = start; i < *bitLen; i++) { - bitStream[i] = !bitStream[i]; - } - *invert = 1; - }else *invert=0; - - int iii; - for (ii=start+29; ii <= *bitLen - 250; ii++) { - first2 = bitStream[ii]; - for (iii = ii; iii < ii + long_wait; iii++) { - if (bitStream[iii] != first2) { - break; - } - } - if (iii == (ii + long_wait)) { - break; } - } - if (ii== *bitLen - 250 + 1){ - // did not find second start sequence - return -2; - } - bitCnt=ii-start; - - // Dumping UID - i = start; - for (ii = 0; ii < bitCnt; ii++) { - bitStream[ii] = bitStream[i++]; - //showbits[bit] = '0' + bits[bit]; - } - *bitLen=bitCnt; - return 1; -} - -int pskNRZrawDemod(uint8_t *dest, int *bitLen, int *clk, int *invert) -{ - pskCleanWave(dest,*bitLen); - int clk2 = DetectpskNRZClock(dest, *bitLen, *clk); - *clk=clk2; - uint32_t i; - uint8_t high=0, low=128; - uint32_t gLen = *bitLen; - if (gLen > 1280) gLen=1280; - // get high - for (i=0; ihigh) high = dest[i]; - if (dest[i]=high)||(dest[iii]<=low)){ - lastBit=iii-*clk; - //loop through to see if this start location works - for (i = iii; i < *bitLen; ++i) { - //if we found a high bar and we are at a clock bit - if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ - bitHigh=1; - lastBit+=*clk; - //curBit=1-*invert; - //dest[bitnum]=curBit; - ignorewin=*clk/8; - bitnum++; - //else if low bar found and we are at a clock point - }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ - bitHigh=1; - lastBit+=*clk; - ignorewin=*clk/8; - //curBit=*invert; - //dest[bitnum]=curBit; - bitnum++; - //else if no bars found - }else if(dest[i]low) { - if (ignorewin==0){ - bitHigh=0; - }else ignorewin--; - //if we are past a clock point - if (i>=lastBit+*clk+tol){ //clock val - //dest[bitnum]=curBit; - lastBit+=*clk; - bitnum++; - } - //else if bar found but we are not at a clock bit and we did not just have a clock bit - }else if ((dest[i]>=high || dest[i]<=low) && (ilastBit+*clk+tol) && (bitHigh==0)){ - //error bar found no clock... - errCnt++; - } - if (bitnum>=1000) break; - } - //we got more than 64 good bits and not all errors - if ((bitnum > (64+errCnt)) && (errCnt<(maxErr))) { - //possible good read - if (errCnt==0){ - bestStart = iii; - bestErrCnt=errCnt; - break; //great read - finish - } - if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish - if (errCnt=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ - bitHigh=1; - lastBit+=*clk; - curBit=1-*invert; - dest[bitnum]=curBit; - ignorewin=*clk/8; - bitnum++; - //else if low bar found and we are at a clock point - }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ - bitHigh=1; - lastBit+=*clk; - curBit=*invert; - dest[bitnum]=curBit; - ignorewin=*clk/8; - bitnum++; - //else if no bars found - }else if(dest[i]low) { - if (ignorewin==0){ - bitHigh=0; - }else ignorewin--; - //if we are past a clock point - if (i>=lastBit+*clk+tol){ //clock val - lastBit+=*clk; - dest[bitnum]=curBit; - bitnum++; - } - //else if bar found but we are not at a clock bit and we did not just have a clock bit - }else if ((dest[i]>=high || dest[i]<=low) && ((ilastBit+*clk+tol)) && (bitHigh==0)){ - //error bar found no clock... - bitHigh=1; - dest[bitnum]=77; - bitnum++; - errCnt++; - } - if (bitnum >=1000) break; } - *bitLen=bitnum; - } else{ - *bitLen=bitnum; - *clk=bestStart; - return -1; - } - - if (bitnum>16){ - *bitLen=bitnum; - } else return -1; - return errCnt; + return clk[best]; } - - - /*not needed? - uint32_t i; - uint8_t high=0, low=128; - uint32_t loopMax = 1280; //20 raw bits - - // get high - if (sizehigh) high = dest[i]; - if (dest[i]=high) dest[i]=high; - else if(dest[i]<=low) dest[i]=low; - else dest[i]=0; - } - */ diff --git a/common/lfdemod.h b/common/lfdemod.h index 2e0acf75..ad95fda5 100644 --- a/common/lfdemod.h +++ b/common/lfdemod.h @@ -12,8 +12,8 @@ #include int DetectASKClock(uint8_t dest[], size_t size, int clock); -int askmandemod(uint8_t *BinStream,int *BitLen,int *clk, int *invert); -uint64_t Em410xDecode(uint8_t *BitStream,int BitLen); +int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert); +uint64_t Em410xDecode(uint8_t *BitStream,uint32_t BitLen); int manrawdecode(uint8_t *BitStream, int *bitLen); int BiphaseRawDecode(uint8_t * BitStream, int *bitLen, int offset); int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert); @@ -21,9 +21,5 @@ int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_ int IOdemodFSK(uint8_t *dest, size_t size); int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow); uint32_t bytebits_to_byte(uint8_t* src, int numbits); -int pskNRZrawDemod(uint8_t *dest, int *bitLen, int *clk, int *invert); -int DetectpskNRZClock(uint8_t dest[], size_t size, int clock); -int indala26decode(uint8_t *bitStream, int *bitLen, uint8_t *invert); -void pskCleanWave(uint8_t *bitStream, int bitLen); #endif -- 2.39.5