From 8ce3e4b4e937f2e3b2fda5b0d5d2c6bd9c6b3ebc Mon Sep 17 00:00:00 2001 From: iceman1001 Date: Wed, 2 Dec 2015 16:48:25 +0100 Subject: [PATCH] add: missing two hard_nested files.. --- armsrc/lfops.c | 20 +- client/cmdhfmfhard.c | 1058 ++++++++++++++++++++++++++++++++++++++++++ client/cmdhfmfhard.h | 11 + client/cmdlfem4x.c | 7 +- common/protocols.c | 27 +- 5 files changed, 1092 insertions(+), 31 deletions(-) create mode 100644 client/cmdhfmfhard.c create mode 100644 client/cmdhfmfhard.h diff --git a/armsrc/lfops.c b/armsrc/lfops.c index 702f4b1f..e9392595 100644 --- a/armsrc/lfops.c +++ b/armsrc/lfops.c @@ -1060,9 +1060,9 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) * Q5 tags seems to have issues when these values changes. */ -#define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) +#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) -#define WRITE_0 16*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) +#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550 #define READ_GAP 15*8 @@ -1260,7 +1260,7 @@ void T55xxWakeUp(uint32_t Pwd){ void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) { // write last block first and config block last (if included) for (uint8_t i = numblocks+startblock; i > startblock; i--) - T55xxWriteBlockExt(blockdata[i-1],i-1,0,0); + T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0); } // Copy HID id to card and setup block 0 config @@ -1429,11 +1429,11 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { LED_D_ON(); // Write EM410x ID - uint32_t data[] = {0, id>>32, id & 0xFFFFFFFF}; + uint32_t data[] = {0, (uint32_t)(id>>32), id & 0xFFFFFFFF}; - clock = (card & 0xFF00) >> 8; - clock = (clock == 0) ? 64 : clock; - Dbprintf("Clock rate: %d", clock); + clock = (card & 0xFF00) >> 8; + clock = (clock == 0) ? 64 : clock; + Dbprintf("Clock rate: %d", clock); if (card & 0xFF) { //t55x7 clock = GetT55xxClockBit(clock); if (clock == 0) { @@ -1449,8 +1449,10 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { WriteT55xx(data, 0, 3); LED_D_OFF(); - Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", - (uint32_t)(id >> 32), (uint32_t)id); + Dbprintf("Tag %s written with 0x%08x%08x\n", + card ? "T55x7":"T5555", + (uint32_t)(id >> 32), + (uint32_t)id); } //----------------------------------- diff --git a/client/cmdhfmfhard.c b/client/cmdhfmfhard.c new file mode 100644 index 00000000..6cd5a5b9 --- /dev/null +++ b/client/cmdhfmfhard.c @@ -0,0 +1,1058 @@ +//----------------------------------------------------------------------------- +// Copyright (C) 2015 piwi +// +// This code is licensed to you under the terms of the GNU GPL, version 2 or, +// at your option, any later version. See the LICENSE.txt file for the text of +// the license. +//----------------------------------------------------------------------------- +// Implements a card only attack based on crypto text (encrypted nonces +// received during a nested authentication) only. Unlike other card only +// attacks this doesn't rely on implementation errors but only on the +// inherent weaknesses of the crypto1 cypher. Described in +// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened +// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on +// Computer and Communications Security, 2015 +//----------------------------------------------------------------------------- + +#include +#include +#include +#include +#include +#include "proxmark3.h" +#include "cmdmain.h" +#include "ui.h" +#include "util.h" +#include "nonce2key/crapto1.h" + +// uint32_t test_state_odd = 0; +// uint32_t test_state_even = 0; + +#define CONFIDENCE_THRESHOLD 0.99 // Collect nonces until we are certain enough that the following brute force is successfull +#define GOOD_BYTES_REQUIRED 25 + + +static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K + 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, + 0.0290 }; + + +typedef struct noncelistentry { + uint32_t nonce_enc; + uint8_t par_enc; + void *next; +} noncelistentry_t; + +typedef struct noncelist { + uint16_t num; + uint16_t Sum; + uint16_t Sum8_guess; + uint8_t BitFlip[2]; + float Sum8_prob; + bool updated; + noncelistentry_t *first; +} noncelist_t; + + +static uint32_t cuid; +static noncelist_t nonces[256]; +static uint16_t first_byte_Sum = 0; +static uint16_t first_byte_num = 0; +static uint16_t num_good_first_bytes = 0; + +#define MAX_BEST_BYTES 40 +static uint8_t best_first_bytes[MAX_BEST_BYTES]; + + +typedef enum { + EVEN_STATE = 0, + ODD_STATE = 1 +} odd_even_t; + +#define STATELIST_INDEX_WIDTH 16 +#define STATELIST_INDEX_SIZE (1<> 24; + noncelistentry_t *p1 = nonces[first_byte].first; + noncelistentry_t *p2 = NULL; + + if (p1 == NULL) { // first nonce with this 1st byte + first_byte_num++; + first_byte_Sum += parity((nonce_enc & 0xff000000) | (par_enc & 0x08) | 0x01); // 1st byte sum property. Note: added XOR 1 + // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n", + // nonce_enc, + // par_enc, + // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01, + // parity((nonce_enc & 0xff000000) | (par_enc & 0x08) | 0x01)); + } + + while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) { + p2 = p1; + p1 = p1->next; + } + + if (p1 == NULL) { // need to add at the end of the list + if (p2 == NULL) { // list is empty yet. Add first entry. + p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); + } else { // add new entry at end of existing list. + p2 = p2->next = malloc(sizeof(noncelistentry_t)); + } + } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert. + if (p2 == NULL) { // need to insert at start of list + p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); + } else { + p2 = p2->next = malloc(sizeof(noncelistentry_t)); + } + } else { // we have seen this 2nd byte before. Nothing to add or insert. + return (0); + } + + // add or insert new data + p2->next = p1; + p2->nonce_enc = nonce_enc; + p2->par_enc = par_enc; + + nonces[first_byte].num++; + nonces[first_byte].Sum += parity((nonce_enc & 0x00ff0000) | (par_enc & 0x04) | 0x01); // 2nd byte sum property. Note: added XOR 1 + nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte + + return (1); // new nonce added +} + + +static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) +{ + uint16_t sum = 0; + for (uint16_t j = 0; j < 16; j++) { + uint32_t st = state; + uint16_t part_sum = 0; + if (odd_even == ODD_STATE) { + for (uint16_t i = 0; i < 5; i++) { + part_sum ^= filter(st); + st = (st << 1) | ((j >> (3-i)) & 0x01) ; + } + } else { + for (uint16_t i = 0; i < 4; i++) { + st = (st << 1) | ((j >> (3-i)) & 0x01) ; + part_sum ^= filter(st); + } + } + sum += part_sum; + } + return sum; +} + + +static uint16_t SumProperty(struct Crypto1State *s) +{ + uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); + uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); + return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); +} + + +static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) +{ + // for efficient computation we are using the recursive definition + // (K-k+1) * (n-k+1) + // P(X=k) = P(X=k-1) * -------------------- + // k * (N-K-n+k) + // and + // (N-K)*(N-K-1)*...*(N-K-n+1) + // P(X=0) = ----------------------------- + // N*(N-1)*...*(N-n+1) + + if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below + if (k == 0) { + // use logarithms to avoid overflow with huge factorials (double type can only hold 170!) + double log_result = 0.0; + for (int16_t i = N-K; i >= N-K-n+1; i--) { + log_result += log(i); + } + for (int16_t i = N; i >= N-n+1; i--) { + log_result -= log(i); + } + return exp(log_result); + } else { + if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception + double log_result = 0.0; + for (int16_t i = k+1; i <= n; i++) { + log_result += log(i); + } + for (int16_t i = K+1; i <= N; i++) { + log_result -= log(i); + } + return exp(log_result); + } else { // recursion + return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k))); + } + } +} + + +static float sum_probability(uint16_t K, uint16_t n, uint16_t k) +{ + const uint16_t N = 256; + + + + if (k > K || p_K[K] == 0.0) return 0.0; + + double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k); + double p_S_is_K = p_K[K]; + double p_T_is_k = 0; + for (uint16_t i = 0; i <= 256; i++) { + if (p_K[i] != 0.0) { + p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k); + } + } + return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); +} + + +static void Tests() +{ + printf("Tests: Partial Statelist sizes\n"); + for (uint16_t i = 0; i <= 16; i+=2) { + printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]); + } + for (uint16_t i = 0; i <= 16; i+=2) { + printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]); + } + + // #define NUM_STATISTICS 100000 + // uint64_t statistics[257]; + // uint32_t statistics_odd[17]; + // uint32_t statistics_even[17]; + // struct Crypto1State cs; + // time_t time1 = clock(); + + // for (uint16_t i = 0; i < 257; i++) { + // statistics[i] = 0; + // } + // for (uint16_t i = 0; i < 17; i++) { + // statistics_odd[i] = 0; + // statistics_even[i] = 0; + // } + + // for (uint64_t i = 0; i < NUM_STATISTICS; i++) { + // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); + // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); + // uint16_t sum_property = SumProperty(&cs); + // statistics[sum_property] += 1; + // sum_property = PartialSumProperty(cs.even, EVEN_STATE); + // statistics_even[sum_property]++; + // sum_property = PartialSumProperty(cs.odd, ODD_STATE); + // statistics_odd[sum_property]++; + // if (i%(NUM_STATISTICS/100) == 0) printf("."); + // } + + // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC); + // for (uint16_t i = 0; i < 257; i++) { + // if (statistics[i] != 0) { + // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS); + // } + // } + // for (uint16_t i = 0; i <= 16; i++) { + // if (statistics_odd[i] != 0) { + // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS); + // } + // } + // for (uint16_t i = 0; i <= 16; i++) { + // if (statistics_odd[i] != 0) { + // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS); + // } + // } + + // printf("Tests: Sum Probabilities based on Partial Sums\n"); + // for (uint16_t i = 0; i < 257; i++) { + // statistics[i] = 0; + // } + // uint64_t num_states = 0; + // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) { + // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) { + // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum; + // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); + // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); + // } + // } + // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48)); + // for (uint16_t i = 0; i < 257; i++) { + // if (statistics[i] != 0) { + // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states); + // } + // } + + // printf("\nTests: Hypergeometric Probability for selected parameters\n"); + // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206)); + // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205)); + // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1)); + // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0)); + // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1)); + // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0)); + + struct Crypto1State *pcs; + pcs = crypto1_create(0xffffffffffff); + printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); + printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + best_first_bytes[0], + SumProperty(pcs), + pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + //test_state_odd = pcs->odd & 0x00ffffff; + //test_state_even = pcs->even & 0x00ffffff; + crypto1_destroy(pcs); + pcs = crypto1_create(0xa0a1a2a3a4a5); + printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); + printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", + best_first_bytes[0], + SumProperty(pcs), + pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); + // test_state_odd = pcs->odd & 0x00ffffff; + // test_state_even = pcs->even & 0x00ffffff; + crypto1_destroy(pcs); + + + printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20)); + + printf("\nTests: Actual BitFlipProperties odd/even:\n"); + for (uint16_t i = 0; i < 256; i++) { + printf("[%3d]:%c%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':' ', nonces[i].BitFlip[EVEN_STATE]?'e':' '); + if (i % 8 == 7) { + printf("\n"); + } + } + + printf("\nTests: Best %d first bytes:\n", MAX_BEST_BYTES); + for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) { + uint8_t best_byte = best_first_bytes[i]; + uint16_t best_num = nonces[best_byte].num; + uint16_t best_sum = nonces[best_byte].Sum; + uint16_t best_sum8 = nonces[best_byte].Sum8_guess; + float confidence = nonces[best_byte].Sum8_prob; + printf("Byte: %02x, n = %2d, k = %2d, Sum(a8): %3d, Confidence: %2.1f%%\n", best_byte, best_num, best_sum, best_sum8, confidence*100); + } +} + + +static void sort_best_first_bytes(void) +{ + // find the best choice for the very first byte (b) + float min_p_K = 1.0; + float max_prob_min_p_K = 0.0; + uint8_t best_byte = 0; + for (uint16_t i = 0; i < 256; i++ ) { + float prob1 = nonces[i].Sum8_prob; + uint16_t sum8 = nonces[i].Sum8_guess; + if (p_K[sum8] <= min_p_K && prob1 > CONFIDENCE_THRESHOLD) { + if (p_K[sum8] < min_p_K) { + min_p_K = p_K[sum8]; + best_byte = i; + max_prob_min_p_K = prob1; + } else if (prob1 > max_prob_min_p_K) { + max_prob_min_p_K = prob1; + best_byte = i; + } + } + } + best_first_bytes[0] = best_byte; + // printf("Best Byte = 0x%02x, Sum8=%d, prob=%1.3f\n", best_byte, nonces[best_byte].Sum8_guess, nonces[best_byte].Sum8_prob); + + // sort the most probable guesses as following bytes (b') + for (uint16_t i = 0; i < 256; i++ ) { + if (i == best_first_bytes[0]) { + continue; + } + uint16_t j = 1; + float prob1 = nonces[i].Sum8_prob; + float prob2 = nonces[best_first_bytes[1]].Sum8_prob; + while (prob1 < prob2 && j < MAX_BEST_BYTES-1) { + prob2 = nonces[best_first_bytes[++j]].Sum8_prob; + } + if (prob1 >= prob2) { + for (uint16_t k = MAX_BEST_BYTES-1; k > j; k--) { + best_first_bytes[k] = best_first_bytes[k-1]; + } + best_first_bytes[j] = i; + } + } +} + + +static uint16_t estimate_second_byte_sum(void) +{ + for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) { + best_first_bytes[i] = 0; + } + + for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { + float Sum8_prob = 0.0; + uint16_t Sum8 = 0; + if (nonces[first_byte].updated) { + for (uint16_t sum = 0; sum <= 256; sum++) { + float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum); + if (prob > Sum8_prob) { + Sum8_prob = prob; + Sum8 = sum; + } + } + nonces[first_byte].Sum8_guess = Sum8; + nonces[first_byte].Sum8_prob = Sum8_prob; + nonces[first_byte].updated = false; + } + } + + sort_best_first_bytes(); + + uint16_t num_good_nonces = 0; + for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) { + if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) { + ++num_good_nonces; + } + } + + return num_good_nonces; +} + + +static int read_nonce_file(void) +{ + FILE *fnonces = NULL; + uint8_t trgBlockNo; + uint8_t trgKeyType; + uint8_t read_buf[9]; + uint32_t nt_enc1, nt_enc2; + uint8_t par_enc; + int total_num_nonces = 0; + + if ((fnonces = fopen("nonces.bin","rb")) == NULL) { + PrintAndLog("Could not open file nonces.bin"); + return 1; + } + + PrintAndLog("Reading nonces from file nonces.bin..."); + if (fread(read_buf, 1, 6, fnonces) == 0) { + PrintAndLog("File reading error."); + fclose(fnonces); + return 1; + } + cuid = bytes_to_num(read_buf, 4); + trgBlockNo = bytes_to_num(read_buf+4, 1); + trgKeyType = bytes_to_num(read_buf+5, 1); + + while (fread(read_buf, 1, 9, fnonces) == 9) { + nt_enc1 = bytes_to_num(read_buf, 4); + nt_enc2 = bytes_to_num(read_buf+4, 4); + par_enc = bytes_to_num(read_buf+8, 1); + //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); + //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); + add_nonce(nt_enc1, par_enc >> 4); + add_nonce(nt_enc2, par_enc & 0x0f); + total_num_nonces += 2; + } + fclose(fnonces); + PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B'); + + return 0; +} + + +int static acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow) +{ + clock_t time1 = clock(); + bool initialize = true; + bool field_off = false; + bool finished = false; + uint32_t flags = 0; + uint8_t write_buf[9]; + uint32_t total_num_nonces = 0; + uint32_t next_fivehundred = 500; + uint32_t total_added_nonces = 0; + FILE *fnonces = NULL; + UsbCommand resp; + + printf("Acquiring nonces...\n"); + + clearCommandBuffer(); + + do { + flags = 0; + flags |= initialize ? 0x0001 : 0; + flags |= slow ? 0x0002 : 0; + flags |= field_off ? 0x0004 : 0; + UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}}; + memcpy(c.d.asBytes, key, 6); + + SendCommand(&c); + + if (field_off) finished = true; + + if (initialize) { + if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; + if (resp.arg[0]) return resp.arg[0]; // error during nested_hard + + cuid = resp.arg[1]; + // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid); + if (nonce_file_write && fnonces == NULL) { + if ((fnonces = fopen("nonces.bin","wb")) == NULL) { + PrintAndLog("Could not create file nonces.bin"); + return 3; + } + PrintAndLog("Writing acquired nonces to binary file nonces.bin"); + num_to_bytes(cuid, 4, write_buf); + fwrite(write_buf, 1, 4, fnonces); + fwrite(&trgBlockNo, 1, 1, fnonces); + fwrite(&trgKeyType, 1, 1, fnonces); + } + } + + if (!initialize) { + uint32_t nt_enc1, nt_enc2; + uint8_t par_enc; + uint16_t num_acquired_nonces = resp.arg[2]; + uint8_t *bufp = resp.d.asBytes; + for (uint16_t i = 0; i < num_acquired_nonces; i+=2) { + nt_enc1 = bytes_to_num(bufp, 4); + nt_enc2 = bytes_to_num(bufp+4, 4); + par_enc = bytes_to_num(bufp+8, 1); + + //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); + total_added_nonces += add_nonce(nt_enc1, par_enc >> 4); + //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); + total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f); + + + if (nonce_file_write) { + fwrite(bufp, 1, 9, fnonces); + } + + bufp += 9; + } + + total_num_nonces += num_acquired_nonces; + } + + if (first_byte_num == 256 ) { + // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); + num_good_first_bytes = estimate_second_byte_sum(); + if (total_num_nonces > next_fivehundred) { + next_fivehundred = (total_num_nonces/500+1) * 500; + printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", + total_num_nonces, + total_added_nonces, + CONFIDENCE_THRESHOLD * 100.0, + num_good_first_bytes); + } + if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) { + field_off = true; // switch off field with next SendCommand and then finish + } + } + + if (!initialize) { + if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; + if (resp.arg[0]) return resp.arg[0]; // error during nested_hard + } + + initialize = false; + + } while (!finished); + + + if (nonce_file_write) { + fclose(fnonces); + } + + PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%d nonces/minute)", + total_num_nonces, + ((float)clock()-time1)/CLOCKS_PER_SEC, + total_num_nonces*60*CLOCKS_PER_SEC/(clock()-time1)); + + return 0; +} + + +static int init_partial_statelists(void) +{ + const uint32_t sizes_odd[17] = { 125601, 0, 17607, 0, 73421, 0, 182033, 0, 248801, 0, 181737, 0, 74241, 0, 18387, 0, 126757 }; + const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 }; + + printf("Allocating memory for partial statelists...\n"); + for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { + for (uint16_t i = 0; i <= 16; i+=2) { + partial_statelist[i].len[odd_even] = 0; + uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i]; + partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states); + if (partial_statelist[i].states[odd_even] == NULL) { + PrintAndLog("Cannot allocate enough memory. Aborting"); + return 4; + } + for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) { + partial_statelist[i].index[odd_even][j] = NULL; + } + } + } + + printf("Generating partial statelists...\n"); + for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { + uint32_t index = -1; + uint32_t num_of_states = 1<<20; + for (uint32_t state = 0; state < num_of_states; state++) { + uint16_t sum_property = PartialSumProperty(state, odd_even); + uint32_t *p = partial_statelist[sum_property].states[odd_even]; + p += partial_statelist[sum_property].len[odd_even]; + *p = state; + partial_statelist[sum_property].len[odd_even]++; + uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH); + if ((state & index_mask) != index) { + index = state & index_mask; + } + if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) { + partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p; + } + } + // add End Of List markers + for (uint16_t i = 0; i <= 16; i += 2) { + uint32_t *p = partial_statelist[i].states[odd_even]; + p += partial_statelist[i].len[odd_even]; + *p = 0xffffffff; + } + } + + return 0; +} + + +static void init_BitFlip_statelist(void) +{ + printf("Generating bitflip statelist...\n"); + uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20); + uint32_t index = -1; + uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH); + for (uint32_t state = 0; state < (1 << 20); state++) { + if (filter(state) != filter(state^1)) { + if ((state & index_mask) != index) { + index = state & index_mask; + } + if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) { + statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p; + } + *p++ = state; + } + } + // set len and add End Of List marker + statelist_bitflip.len[0] = p - statelist_bitflip.states[0]; + *p = 0xffffffff; + statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1)); +} + + +static void add_state(statelist_t *sl, uint32_t state, odd_even_t odd_even) +{ + uint32_t *p; + + p = sl->states[odd_even]; + p += sl->len[odd_even]; + *p = state; + sl->len[odd_even]++; +} + + +uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even) +{ + uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index + + if (p == NULL) return NULL; + while ((*p & mask) < (state & mask)) p++; + if (*p == 0xffffffff) return NULL; // reached end of list, no match + if ((*p & mask) == (state & mask)) return p; // found a match. + return NULL; // no match +} + + +static bool remaining_bits_match(uint8_t num_common_bits, uint8_t byte1, uint8_t byte2, uint32_t state1, uint32_t state2, odd_even_t odd_even) +{ + uint8_t j = num_common_bits; + if (odd_even == ODD_STATE) { + j |= 0x01; // consider the next odd bit + } else { + j = (j+1) & 0xfe; // consider the next even bit + } + + while (j <= 7) { + if (j != num_common_bits) { // this is not the first differing bit, we need first to check if the invariant still holds + uint32_t bit_diff = ((byte1 ^ byte2) << (17-j)) & 0x00010000; // difference of (j-1)th bit -> bit 16 + uint32_t filter_diff = filter(state1 >> (4-j/2)) ^ filter(state2 >> (4-j/2)); // difference in filter function -> bit 0 + uint32_t mask_y12_y13 = 0x000000c0 >> (j/2); + uint32_t state_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 -> bits 6/7 ... 4/5 + uint32_t all_diff = parity(bit_diff | state_diff | filter_diff); // use parity function to XOR all 4 bits + if (all_diff) { // invariant doesn't hold any more. Accept this state. + // if ((odd_even == ODD_STATE && state1 == test_state_odd) + // || (odd_even == EVEN_STATE && state1 == test_state_even)) { + // printf("remaining_bits_match(): %s test state: Invariant doesn't hold. Bytes = %02x, %02x, Common Bits=%d, Testing Bit %d, State1=0x%08x, State2=0x%08x\n", + // odd_even==ODD_STATE?"odd":"even", byte1, byte2, num_common_bits, j, state1, state2); + // } + return true; + } + } + // check for validity of state candidate + uint32_t bit_diff = ((byte1 ^ byte2) << (16-j)) & 0x00010000; // difference of jth bit -> bit 16 + uint32_t mask_y13_y16 = 0x00000048 >> (j/2); + uint32_t state_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 -> bits 3/6 ... 0/3 + uint32_t all_diff = parity(bit_diff | state_diff); // use parity function to XOR all 3 bits + if (all_diff) { // not a valid state + // if ((odd_even == ODD_STATE && state1 == test_state_odd) + // || (odd_even == EVEN_STATE && state1 == test_state_even)) { + // printf("remaining_bits_match(): %s test state: Invalid state. Bytes = %02x, %02x, Common Bits=%d, Testing Bit %d, State1=0x%08x, State2=0x%08x\n", + // odd_even==ODD_STATE?"odd":"even", byte1, byte2, num_common_bits, j, state1, state2); + // printf(" byte1^byte2: 0x%02x, bit_diff: 0x%08x, state_diff: 0x%08x, all_diff: 0x%08x\n", + // byte1^byte2, bit_diff, state_diff, all_diff); + // } + return false; + } + // continue checking for the next bit + j += 2; + } + + return true; // valid state +} + + +static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even) +{ + for (uint16_t i = 1; i < num_good_first_bytes; i++) { + uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess; + uint8_t j = 0; // number of common bits + uint8_t common_bits = best_first_bytes[0] ^ best_first_bytes[i]; + uint32_t mask = 0xfffffff0; + if (odd_even == ODD_STATE) { + while ((common_bits & 0x01) == 0 && j < 8) { + j++; + common_bits >>= 1; + if (j % 2 == 0) { // the odd bits + mask >>= 1; + } + } + } else { + while ((common_bits & 0x01) == 0 && j < 8) { + j++; + common_bits >>= 1; + if (j % 2 == 1) { // the even bits + mask >>= 1; + } + } + } + mask &= 0x000fffff; + //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8); + bool found_match = false; + for (uint16_t r = 0; r <= 16 && !found_match; r += 2) { + for (uint16_t s = 0; s <= 16 && !found_match; s += 2) { + if (r*(16-s) + (16-r)*s == sum_a8) { + //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s); + uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s; + uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even); + if (p != NULL) { + while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) { + if (remaining_bits_match(j, best_first_bytes[0], best_first_bytes[i], state, (state&0x00fffff0) | *p, odd_even)) { + found_match = true; + // if ((odd_even == ODD_STATE && state == test_state_odd) + // || (odd_even == EVEN_STATE && state == test_state_even)) { + // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", + // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); + // } + break; + } else { + // if ((odd_even == ODD_STATE && state == test_state_odd) + // || (odd_even == EVEN_STATE && state == test_state_even)) { + // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", + // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); + // } + } + p++; + } + } else { + // if ((odd_even == ODD_STATE && state == test_state_odd) + // || (odd_even == EVEN_STATE && state == test_state_even)) { + // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", + // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); + // } + } + } + } + } + + if (!found_match) { + // if ((odd_even == ODD_STATE && state == test_state_odd) + // || (odd_even == EVEN_STATE && state == test_state_even)) { + // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j); + // } + return false; + } + } + + return true; +} + + +static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) +{ + uint32_t worstcase_size = 1<<20; + + candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); + if (candidates->states[odd_even] == NULL) { + PrintAndLog("Out of memory error.\n"); + return 4; + } + for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != 0xffffffff; p1++) { + uint32_t search_mask = 0x000ffff0; + uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even); + if (p2 != NULL) { + while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != 0xffffffff) { + if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) { + add_state(candidates, (*p1 << 4) | *p2, odd_even); + } + p2++; + } + } + p2 = candidates->states[odd_even]; + p2 += candidates->len[odd_even]; + *p2 = 0xffffffff; + } + candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); + + return 0; +} + + +static statelist_t *add_more_candidates(statelist_t *current_candidates) +{ + statelist_t *new_candidates = NULL; + if (current_candidates == NULL) { + if (candidates == NULL) { + candidates = (statelist_t *)malloc(sizeof(statelist_t)); + } + new_candidates = candidates; + } else { + new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t)); + } + new_candidates->next = NULL; + new_candidates->len[ODD_STATE] = 0; + new_candidates->len[EVEN_STATE] = 0; + new_candidates->states[ODD_STATE] = NULL; + new_candidates->states[EVEN_STATE] = NULL; + return new_candidates; +} + + +static void TestIfKeyExists(uint64_t key) +{ + struct Crypto1State *pcs; + pcs = crypto1_create(key); + crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); + + uint32_t state_odd = pcs->odd & 0x00ffffff; + uint32_t state_even = pcs->even & 0x00ffffff; + printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even); + + for (statelist_t *p = candidates; p != NULL; p = p->next) { + uint32_t *p_odd = p->states[ODD_STATE]; + uint32_t *p_even = p->states[EVEN_STATE]; + while (*p_odd != 0xffffffff) { + if (*p_odd == state_odd) printf("o"); + p_odd++; + } + while (*p_even != 0xffffffff) { + if (*p_even == state_even) printf("e"); + p_even++; + } + printf("|"); + } + printf("\n"); + crypto1_destroy(pcs); +} + + +static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) +{ + printf("Generating crypto1 state candidates... \n"); + + statelist_t *current_candidates = NULL; + // estimate maximum candidate states + uint64_t maximum_states = 0; + for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) { + for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) { + if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) { + maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8); + } + } + } + printf("Number of possible keys with Sum(a0) = %d: %lld (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); + + for (uint16_t p = 0; p <= 16; p += 2) { + for (uint16_t q = 0; q <= 16; q += 2) { + if (p*(16-q) + (16-p)*q == sum_a0) { + printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", + p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); + for (uint16_t r = 0; r <= 16; r += 2) { + for (uint16_t s = 0; s <= 16; s += 2) { + if (r*(16-s) + (16-r)*s == sum_a8) { + current_candidates = add_more_candidates(current_candidates); + add_matching_states(current_candidates, p, r, ODD_STATE); + printf("Odd state candidates: %d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2)); + add_matching_states(current_candidates, q, s, EVEN_STATE); + printf("Even state candidates: %d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2)); + } + } + } + } + } + } + + + maximum_states = 0; + for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { + maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; + } + printf("Number of remaining possible keys: %lld (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); + + TestIfKeyExists(0xffffffffffff); + TestIfKeyExists(0xa0a1a2a3a4a5); + +} + + +static void Check_for_FilterFlipProperties(void) +{ + printf("Checking for Filter Flip Properties...\n"); + + for (uint16_t i = 0; i < 256; i++) { + nonces[i].BitFlip[ODD_STATE] = false; + nonces[i].BitFlip[EVEN_STATE] = false; + } + + for (uint16_t i = 0; i < 256; i++) { + uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte + uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped + uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped + + if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits + nonces[i].BitFlip[ODD_STATE] = true; + } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits + nonces[i].BitFlip[EVEN_STATE] = true; + } + } +} + + +int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_read, bool nonce_file_write, bool slow) +{ + + // initialize the list of nonces + for (uint16_t i = 0; i < 256; i++) { + nonces[i].num = 0; + nonces[i].Sum = 0; + nonces[i].Sum8_guess = 0; + nonces[i].Sum8_prob = 0.0; + nonces[i].updated = true; + nonces[i].first = NULL; + } + first_byte_num = 0; + first_byte_Sum = 0; + num_good_first_bytes = 0; + + init_partial_statelists(); + init_BitFlip_statelist(); + + if (nonce_file_read) { // use pre-acquired data from file nonces.bin + if (read_nonce_file() != 0) { + return 3; + } + num_good_first_bytes = estimate_second_byte_sum(); + } else { // acquire nonces. + uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); + if (is_OK != 0) { + return is_OK; + } + } + + Check_for_FilterFlipProperties(); + + Tests(); + + PrintAndLog(""); + PrintAndLog("Sum(a0) = %d", first_byte_Sum); + // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x", + // best_first_bytes[0], + // best_first_bytes[1], + // best_first_bytes[2], + // best_first_bytes[3], + // best_first_bytes[4], + // best_first_bytes[5], + // best_first_bytes[6], + // best_first_bytes[7], + // best_first_bytes[8], + // best_first_bytes[9] ); + PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); + + generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); + + PrintAndLog("Brute force phase not yet implemented"); + + return 0; +} + + diff --git a/client/cmdhfmfhard.h b/client/cmdhfmfhard.h new file mode 100644 index 00000000..94c57717 --- /dev/null +++ b/client/cmdhfmfhard.h @@ -0,0 +1,11 @@ +//----------------------------------------------------------------------------- +// Copyright (C) 2015 piwi +// +// This code is licensed to you under the terms of the GNU GPL, version 2 or, +// at your option, any later version. See the LICENSE.txt file for the text of +// the license. +//----------------------------------------------------------------------------- +// hf mf hardnested command +//----------------------------------------------------------------------------- + +int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_read, bool nonce_file_write, bool slow); diff --git a/client/cmdlfem4x.c b/client/cmdlfem4x.c index 61b7047d..f3c754ff 100644 --- a/client/cmdlfem4x.c +++ b/client/cmdlfem4x.c @@ -173,7 +173,7 @@ int CmdEM410xWrite(const char *Cmd) { uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value int card = 0xFF; // invalid card value - unsigned int clock = 0; // invalid clock value + uint32_t clock = 0; // invalid clock value sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock); @@ -199,8 +199,8 @@ int CmdEM410xWrite(const char *Cmd) // Check Clock // Default: 64 - if (clock == 0) - clock = 64; + if (clock == 0) + clock = 64; // Allowed clock rates: 16, 32, 40 and 64 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) { @@ -225,7 +225,6 @@ int CmdEM410xWrite(const char *Cmd) UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; SendCommand(&c); - return 0; } diff --git a/common/protocols.c b/common/protocols.c index ee8abadd..9f561e6b 100644 --- a/common/protocols.c +++ b/common/protocols.c @@ -7,24 +7,15 @@ // ATA55xx shared presets & routines uint32_t GetT55xxClockBit(uint32_t clock) { switch (clock) { - case 128: - return T55x7_BITRATE_RF_128; - case 100: - return T55x7_BITRATE_RF_100; - case 64: - return T55x7_BITRATE_RF_64; - case 50: - return T55x7_BITRATE_RF_50; - case 40: - return T55x7_BITRATE_RF_40; - case 32: - return T55x7_BITRATE_RF_32; - case 16: - return T55x7_BITRATE_RF_16; - case 8: - return T55x7_BITRATE_RF_8; - default: - return 0; + case 128: return T55x7_BITRATE_RF_128; + case 100: return T55x7_BITRATE_RF_100; + case 64: return T55x7_BITRATE_RF_64; + case 50: return T55x7_BITRATE_RF_50; + case 40: return T55x7_BITRATE_RF_40; + case 32: return T55x7_BITRATE_RF_32; + case 16: return T55x7_BITRATE_RF_16; + case 8: return T55x7_BITRATE_RF_8; + default : return 0; } } -- 2.39.5