]> cvs.zerfleddert.de Git - raggedstone/blame_incremental - ethernet/source/pci/pci_master32_sm.v
PHY Documentation
[raggedstone] / ethernet / source / pci / pci_master32_sm.v
... / ...
CommitLineData
1//////////////////////////////////////////////////////////////////////
2//// ////
3//// File name "pci_master32_sm.v" ////
4//// ////
5//// This file is part of the "PCI bridge" project ////
6//// http://www.opencores.org/cores/pci/ ////
7//// ////
8//// Author(s): ////
9//// - Miha Dolenc (mihad@opencores.org) ////
10//// ////
11//// All additional information is avaliable in the README ////
12//// file. ////
13//// ////
14//// ////
15//////////////////////////////////////////////////////////////////////
16//// ////
17//// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org ////
18//// ////
19//// This source file may be used and distributed without ////
20//// restriction provided that this copyright statement is not ////
21//// removed from the file and that any derivative work contains ////
22//// the original copyright notice and the associated disclaimer. ////
23//// ////
24//// This source file is free software; you can redistribute it ////
25//// and/or modify it under the terms of the GNU Lesser General ////
26//// Public License as published by the Free Software Foundation; ////
27//// either version 2.1 of the License, or (at your option) any ////
28//// later version. ////
29//// ////
30//// This source is distributed in the hope that it will be ////
31//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
32//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
33//// PURPOSE. See the GNU Lesser General Public License for more ////
34//// details. ////
35//// ////
36//// You should have received a copy of the GNU Lesser General ////
37//// Public License along with this source; if not, download it ////
38//// from http://www.opencores.org/lgpl.shtml ////
39//// ////
40//////////////////////////////////////////////////////////////////////
41//
42// CVS Revision History
43//
44// $Log: pci_master32_sm.v,v $
45// Revision 1.1 2007-03-20 17:50:56 sithglan
46// add shit
47//
48// Revision 1.5 2003/01/27 16:49:31 mihad
49// Changed module and file names. Updated scripts accordingly. FIFO synchronizations changed.
50//
51// Revision 1.4 2003/01/21 16:06:56 mihad
52// Bug fixes, testcases added.
53//
54// Revision 1.3 2002/02/01 15:25:12 mihad
55// Repaired a few bugs, updated specification, added test bench files and design document
56//
57// Revision 1.2 2001/10/05 08:14:29 mihad
58// Updated all files with inclusion of timescale file for simulation purposes.
59//
60// Revision 1.1.1.1 2001/10/02 15:33:46 mihad
61// New project directory structure
62//
63//
64
65// module includes pci master state machine and surrounding logic
66
67// synopsys translate_off
68`include "timescale.v"
69// synopsys translate_on
70`include "pci_constants.v"
71
72module pci_master32_sm
73(
74 // system inputs
75 clk_in,
76 reset_in,
77 // arbitration
78 pci_req_out,
79 pci_gnt_in,
80 // master in/outs
81 pci_frame_in,
82 pci_frame_out,
83 pci_frame_out_in,
84 pci_frame_load_out,
85 pci_frame_en_in,
86 pci_frame_en_out,
87 pci_irdy_in,
88 pci_irdy_out,
89 pci_irdy_en_out,
90
91 // target response inputs
92 pci_trdy_in,
93 pci_trdy_reg_in,
94 pci_stop_in,
95 pci_stop_reg_in,
96 pci_devsel_in,
97 pci_devsel_reg_in,
98
99 // address, data, bus command, byte enable in/outs
100 pci_ad_reg_in,
101 pci_ad_out,
102 pci_ad_en_out,
103 pci_cbe_out,
104 pci_cbe_en_out,
105
106 // other side of state machine
107 address_in,
108 bc_in,
109 data_in,
110 data_out,
111 be_in,
112 req_in,
113 rdy_in,
114 last_in,
115 next_data_in,
116 next_be_in,
117 next_last_in,
118 ad_load_out,
119 ad_load_on_transfer_out,
120 wait_out,
121 wtransfer_out,
122 rtransfer_out,
123 retry_out,
124 rerror_out,
125 first_out,
126 mabort_out,
127 latency_tim_val_in
128) ;
129
130// system inputs
131input clk_in,
132 reset_in ;
133
134/*==================================================================================================================
135PCI interface signals - bidirectional signals are divided to inputs and outputs in I/O cells instantiation
136module. Enables are separate signals.
137==================================================================================================================*/
138// arbitration
139output pci_req_out ;
140
141input pci_gnt_in ;
142
143// master in/outs
144input pci_frame_in ;
145input pci_frame_en_in ;
146input pci_frame_out_in ;
147
148output pci_frame_out,
149 pci_frame_en_out ;
150
151output pci_frame_load_out ;
152
153input pci_irdy_in ;
154output pci_irdy_out,
155 pci_irdy_en_out;
156
157// target response inputs
158input pci_trdy_in,
159 pci_trdy_reg_in,
160 pci_stop_in,
161 pci_stop_reg_in,
162 pci_devsel_in,
163 pci_devsel_reg_in ;
164
165// address, data, bus command, byte enable in/outs
166input [31:0] pci_ad_reg_in ;
167output [31:0] pci_ad_out ;
168
169reg [31:0] pci_ad_out ;
170
171output pci_ad_en_out ;
172
173output [3:0] pci_cbe_out ;
174
175reg [3:0] pci_cbe_out ;
176
177output pci_cbe_en_out ;
178
179input [31:0] address_in ; // current request address input
180
181input [3:0] bc_in ; // current request bus command input
182
183input [31:0] data_in ; // current dataphase data input
184
185output [31:0] data_out ; // for read operations - current request data output
186
187reg [31:0] data_out ;
188
189input [3:0] be_in ; // current dataphase byte enable inputs
190
191input req_in ; // initiator cycle is requested
192input rdy_in ; // requestor indicates that data is ready to be sent for write transaction and ready to
193 // be received on read transaction
194input last_in ; // last dataphase in current transaction indicator
195
196// status outputs
197output wait_out, // wait indicates to the backend that dataphases are not in progress on PCI bus
198 wtransfer_out, // on any rising clock edge that this status is 1, data is transferred - heavy constraints here
199 rtransfer_out, // registered transfer indicator - when 1 indicates that data was transfered on previous clock cycle
200 retry_out, // retry status output - when target signals a retry
201 rerror_out, // registered error output - when 1 indicates that error was signalled by a target on previous clock cycle
202 first_out , // indicates whether or not any data was transfered in current transaction
203 mabort_out; // master abort indicator
204
205reg wait_out ;
206
207// latency timer value input - state machine starts latency timer whenever it starts a transaction and last is not
208// asserted ( meaning burst transfer ).
209input [7:0] latency_tim_val_in ;
210
211// next data, byte enable and last inputs
212input [31:0] next_data_in ;
213input [3:0] next_be_in ;
214input next_last_in ;
215
216// clock enable for data output flip-flops - whenever data is transfered, sm loads next data to those flip flops
217output ad_load_out,
218 ad_load_on_transfer_out ;
219
220// parameters - states - one hot
221// idle state
222parameter S_IDLE = 4'h1 ;
223
224// address state
225parameter S_ADDRESS = 4'h2 ;
226
227// transfer state - dataphases
228parameter S_TRANSFER = 4'h4 ;
229
230// turn arround state
231parameter S_TA_END = 4'h8 ;
232
233// change state - clock enable for sm state register
234wire change_state ;
235// next state for state machine
236reg [3:0] next_state ;
237// SM state register
238reg [3:0] cur_state ;
239
240// variables for indicating which state state machine is in
241// this variables are used to reduce logic levels in case of heavily constrained PCI signals
242reg sm_idle ;
243reg sm_address ;
244reg sm_data_phases ;
245reg sm_turn_arround ;
246
247// state machine register control logic with clock enable
248always@(posedge reset_in or posedge clk_in)
249begin
250 if (reset_in)
251 cur_state <= #`FF_DELAY S_IDLE ;
252 else
253 if ( change_state )
254 cur_state <= #`FF_DELAY next_state ;
255end
256
257// parameters - data selector - ad and bc lines switch between address/data and bus command/byte enable respectively
258parameter SEL_ADDR_BC = 2'b01 ;
259parameter SEL_DATA_BE = 2'b00 ;
260parameter SEL_NEXT_DATA_BE = 2'b11 ;
261
262reg [1:0] wdata_selector ;
263
264wire u_dont_have_pci_bus = pci_gnt_in || ~pci_frame_in || ~pci_irdy_in ; // pci master can't start a transaction when GNT is deasserted ( 1 ) or
265 // bus is not in idle state ( FRAME and IRDY both 1 )
266wire u_have_pci_bus = ~pci_gnt_in && pci_frame_in && pci_irdy_in ;
267
268// decode count enable - counter that counts cycles passed since address phase
269wire sm_decode_count_enable = sm_data_phases ; // counter is enabled when master wants to transfer
270wire decode_count_enable = sm_decode_count_enable && pci_trdy_in && pci_stop_in && pci_devsel_in ; // and target is not responding
271wire decode_count_load = ~decode_count_enable ;
272reg [2:0] decode_count ;
273
274wire decode_to = ~( decode_count[2] || decode_count[1]) ;
275
276always@(posedge reset_in or posedge clk_in)
277begin
278 if ( reset_in )
279 // initial value of counter is 4
280 decode_count <= #`FF_DELAY 3'h4 ;
281 else
282 if ( decode_count_load )
283 decode_count <= #`FF_DELAY 3'h4 ;
284 else
285 if ( decode_count_enable )
286 decode_count <= #`FF_DELAY decode_count - 1'b1 ;
287end
288
289// Bus commands LSbit indicates whether operation is a read or a write
290wire do_write = bc_in[0] ;
291
292// latency timer
293reg [7:0] latency_timer ;
294
295wire latency_time_out = ~(
296 (latency_timer[7] || latency_timer[6] || latency_timer[5] || latency_timer[4]) ||
297 (latency_timer[3] || latency_timer[2] || latency_timer[1] )
298 ) ;
299
300wire latency_timer_enable = (sm_address || sm_data_phases) && ~latency_time_out ;
301wire latency_timer_load = ~sm_address && ~sm_data_phases ;
302
303always@(posedge clk_in or posedge reset_in)
304begin
305 if (reset_in)
306 latency_timer <= #`FF_DELAY 8'h00 ;
307 else
308 if ( latency_timer_load )
309 latency_timer <= #`FF_DELAY latency_tim_val_in ;
310 else
311 if ( latency_timer_enable) // latency timer counts down until it expires - then it stops
312 latency_timer <= #`FF_DELAY latency_timer - 1'b1 ;
313end
314
315// master abort indicators - when decode time out occurres and still no target response is received
316wire do_master_abort = decode_to && pci_trdy_in && pci_stop_in && pci_devsel_in ;
317reg mabort1 ;
318always@(posedge reset_in or posedge clk_in)
319begin
320 if (reset_in)
321 mabort1 <= #`FF_DELAY 1'b0 ;
322 else
323 mabort1 <= #`FF_DELAY do_master_abort ;
324end
325
326reg mabort2 ;
327always@(posedge reset_in or posedge clk_in)
328begin
329 if ( reset_in )
330 mabort2 <= #`FF_DELAY 1'b0 ;
331 else
332 mabort2 <= #`FF_DELAY mabort1 ;
333end
334
335// master abort is only asserted for one clock cycle
336assign mabort_out = mabort1 && ~mabort2 ;
337
338// register indicating when master should do timeout termination (latency timer expires)
339reg timeout ;
340always@(posedge reset_in or posedge clk_in)
341begin
342 if (reset_in)
343 timeout <= #`FF_DELAY 1'b0 ;
344 else
345 timeout <= #`FF_DELAY (latency_time_out && ~pci_frame_out_in && pci_gnt_in || timeout ) && ~wait_out ;
346end
347
348wire timeout_termination = sm_turn_arround && timeout && pci_stop_reg_in ;
349
350// frame control logic
351// frame is forced to 0 (active) when state machine is in idle state, since only possible next state is address state which always drives frame active
352wire force_frame = ~sm_idle ;
353// slow signal for frame calculated from various registers in the core
354wire slow_frame = last_in || (latency_time_out && pci_gnt_in) || (next_last_in && sm_data_phases) || mabort1 ;
355// critical timing frame logic in separate module - some combinations of target signals force frame to inactive state immediately after sampled asserted
356// (STOP)
357pci_frame_crit frame_iob_feed
358(
359 .pci_frame_out (pci_frame_out),
360 .force_frame_in (force_frame),
361 .slow_frame_in (slow_frame),
362 .pci_stop_in (pci_stop_in)
363) ;
364
365// frame IOB flip flop's clock enable signal
366// slow clock enable - calculated from internal - non critical paths
367wire frame_load_slow = sm_idle || sm_address || mabort1 ;
368
369// critical clock enable for frame IOB in separate module - target response signals actually allow frame value change - critical timing
370pci_frame_load_crit frame_iob_ce
371(
372 .pci_frame_load_out (pci_frame_load_out),
373 .sm_data_phases_in (sm_data_phases),
374 .frame_load_slow_in (frame_load_slow),
375 .pci_trdy_in (pci_trdy_in),
376 .pci_stop_in (pci_stop_in)
377) ;
378
379// IRDY driving
380// non critical path for IRDY calculation
381wire irdy_slow = pci_frame_out_in && mabort1 || mabort2 ;
382
383// critical path in separate module
384pci_irdy_out_crit irdy_iob_feed
385(
386 .pci_irdy_out (pci_irdy_out),
387 .irdy_slow_in (irdy_slow),
388 .pci_frame_out_in (pci_frame_out_in),
389 .pci_trdy_in (pci_trdy_in),
390 .pci_stop_in (pci_stop_in)
391) ;
392
393// transfer FF indicator - when first transfer occurs it is set to 1 so backend can distinguish between disconnects and retries.
394wire sm_transfer = sm_data_phases ;
395reg transfer ;
396
397wire transfer_input = sm_transfer && (~(pci_trdy_in || pci_devsel_in) || transfer) ;
398
399always@(posedge clk_in or posedge reset_in)
400begin
401 if (reset_in)
402 transfer <= #`FF_DELAY 1'b0 ;
403 else
404 transfer <= #`FF_DELAY transfer_input ;
405end
406
407assign first_out = ~transfer ;
408
409// fast transfer status output - it's only negated target ready, since wait indicator qualifies valid transfer
410assign wtransfer_out = ~pci_trdy_in ;
411
412// registered transfer status output - calculated from registered target response inputs
413assign rtransfer_out = ~(pci_trdy_reg_in || pci_devsel_reg_in) ;
414
415// registered error status - calculated from registered target response inputs
416assign rerror_out = (~pci_stop_reg_in && pci_devsel_reg_in) ;
417
418// retry is signalled to backend depending on registered target response or when latency timer expires
419assign retry_out = timeout_termination || (~pci_stop_reg_in && ~pci_devsel_reg_in) ;
420
421// AD output flip flops' clock enable
422// new data is loaded to AD outputs whenever state machine is idle, bus was granted and bus is in idle state or
423// when address phase is about to be finished
424wire ad_load_slow = sm_address ;
425wire ad_load_on_grant = sm_idle && pci_frame_in && pci_irdy_in ;
426
427pci_mas_ad_load_crit mas_ad_load_feed
428(
429 .ad_load_out (ad_load_out),
430 .ad_load_in (ad_load_slow),
431 .ad_load_on_grant_in (ad_load_on_grant),
432 .pci_gnt_in (pci_gnt_in)
433);
434
435// next data loading is allowed when state machine is in transfer state and operation is a write
436assign ad_load_on_transfer_out = sm_data_phases && do_write ;
437
438// request for a bus is issued anytime when backend is requesting a transaction and state machine is in idle state
439assign pci_req_out = ~(req_in && sm_idle) ;
440
441// change state signal is actually clock enable for state register
442// Non critical path for state change enable:
443// state is always changed when:
444// - address phase is finishing
445// - state machine is in turn arround state
446// - state machine is in transfer state and master abort termination is in progress
447
448wire ch_state_slow = sm_address || sm_turn_arround || sm_data_phases && ( pci_frame_out_in && mabort1 || mabort2 ) ;
449
450// a bit more critical change state enable is calculated with GNT signal
451wire ch_state_med = ch_state_slow || sm_idle && u_have_pci_bus && req_in && rdy_in ;
452
453// most critical change state enable - calculated from target response signals
454pci_mas_ch_state_crit state_machine_ce
455(
456 .change_state_out (change_state),
457 .ch_state_med_in (ch_state_med),
458 .sm_data_phases_in (sm_data_phases),
459 .pci_trdy_in (pci_trdy_in),
460 .pci_stop_in (pci_stop_in)
461) ;
462
463// ad enable driving
464// also divided in several categories - from less critical to most critical in separate module
465//wire ad_en_slowest = do_write && (sm_address || sm_data_phases && ~pci_frame_out_in) ;
466//wire ad_en_on_grant = sm_idle && pci_frame_in && pci_irdy_in || sm_turn_arround ;
467//wire ad_en_slow = ad_en_on_grant && ~pci_gnt_in || ad_en_slowest ;
468//wire ad_en_keep = sm_data_phases && do_write && (pci_frame_out_in && ~mabort1 && ~mabort2) ;
469
470wire ad_en_slow = do_write && ( sm_address || ( sm_data_phases && !( ( pci_frame_out_in && mabort1 ) || mabort2 ) ) ) ;
471wire ad_en_on_grant = ( sm_idle && pci_frame_in && pci_irdy_in ) || sm_turn_arround ;
472
473// critical timing ad enable - calculated from grant input
474pci_mas_ad_en_crit ad_iob_oe_feed
475(
476 .pci_ad_en_out (pci_ad_en_out),
477 .ad_en_slow_in (ad_en_slow),
478 .ad_en_on_grant_in (ad_en_on_grant),
479 .pci_gnt_in (pci_gnt_in)
480) ;
481
482// cbe enable driving
483wire cbe_en_on_grant = sm_idle && pci_frame_in && pci_irdy_in || sm_turn_arround ;
484wire cbe_en_slow = cbe_en_on_grant && ~pci_gnt_in || sm_address || sm_data_phases && ~pci_frame_out_in ;
485wire cbe_en_keep = sm_data_phases && pci_frame_out_in && ~mabort1 && ~mabort2 ;
486
487// most critical cbe enable in separate module - calculated with most critical target inputs
488pci_cbe_en_crit cbe_iob_feed
489(
490 .pci_cbe_en_out (pci_cbe_en_out),
491 .cbe_en_slow_in (cbe_en_slow),
492 .cbe_en_keep_in (cbe_en_keep),
493 .pci_stop_in (pci_stop_in),
494 .pci_trdy_in (pci_trdy_in)
495
496) ;
497
498// IRDY enable is equal to FRAME enable delayed for one clock
499assign pci_irdy_en_out = pci_frame_en_in ;
500
501// frame enable driving - sometimes it's calculated from non critical paths
502wire frame_en_slow = (sm_idle && u_have_pci_bus && req_in && rdy_in) || sm_address || (sm_data_phases && ~pci_frame_out_in) ;
503wire frame_en_keep = sm_data_phases && pci_frame_out_in && ~mabort1 && ~mabort2 ;
504
505// most critical frame enable - calculated from heavily constrained target inputs in separate module
506pci_frame_en_crit frame_iob_en_feed
507(
508 .pci_frame_en_out (pci_frame_en_out),
509 .frame_en_slow_in (frame_en_slow),
510 .frame_en_keep_in (frame_en_keep),
511 .pci_stop_in (pci_stop_in),
512 .pci_trdy_in (pci_trdy_in)
513) ;
514
515// state machine next state definitions
516always@(
517 cur_state or
518 do_write or
519 pci_frame_out_in
520)
521begin
522 // default values for state machine outputs
523 wait_out = 1'b1 ;
524 wdata_selector = SEL_ADDR_BC ;
525 sm_idle = 1'b0 ;
526 sm_address = 1'b0 ;
527 sm_data_phases = 1'b0 ;
528 sm_turn_arround = 1'b0 ;
529
530 case ( cur_state )
531
532 S_IDLE: begin
533 // indicate the state
534 sm_idle = 1'b1 ;
535 // assign next state - only possible is address - if state machine is supposed to stay in idle state
536 // outside signals disable the clock
537 next_state = S_ADDRESS ;
538 wdata_selector = SEL_DATA_BE ;
539 end
540
541 S_ADDRESS: begin
542 // indicate the state
543 sm_address = 1'b1 ;
544 // select appropriate data/be for outputs
545 wdata_selector = SEL_NEXT_DATA_BE ;
546 // only possible next state is transfer state
547 next_state = S_TRANSFER ;
548 end
549
550 S_TRANSFER: begin
551 // during transfers wait indicator is inactive - all status signals are now valid
552 wait_out = 1'b0 ;
553 // indicate the state
554 sm_data_phases = 1'b1 ;
555 // select appropriate data/be for outputs
556 wdata_selector = SEL_NEXT_DATA_BE ;
557 if ( pci_frame_out_in )
558 begin
559 // when frame is inactive next state will be turn arround
560 next_state = S_TA_END ;
561 end
562 else
563 // while frame is active state cannot be anything else then transfer
564 next_state = S_TRANSFER ;
565 end
566
567 S_TA_END: begin
568 // wait is still inactive because of registered statuses
569 wait_out = 1'b0 ;
570 // indicate the state
571 sm_turn_arround = 1'b1 ;
572 // next state is always idle
573 next_state = S_IDLE ;
574 end
575 default: next_state = S_IDLE ;
576 endcase
577end
578
579// ad and cbe lines multiplexer for write data
580reg [1:0] rdata_selector ;
581always@(posedge clk_in or posedge reset_in)
582begin
583 if ( reset_in )
584 rdata_selector <= #`FF_DELAY SEL_ADDR_BC ;
585 else
586 if ( change_state )
587 rdata_selector <= #`FF_DELAY wdata_selector ;
588end
589
590always@(rdata_selector or address_in or bc_in or data_in or be_in or next_data_in or next_be_in)
591begin
592 case ( rdata_selector )
593 SEL_ADDR_BC: begin
594 pci_ad_out = address_in ;
595 pci_cbe_out = bc_in ;
596 end
597
598 SEL_DATA_BE: begin
599 pci_ad_out = data_in ;
600 pci_cbe_out = be_in ;
601 end
602 SEL_NEXT_DATA_BE,
603 2'b10: begin
604 pci_ad_out = next_data_in ;
605 pci_cbe_out = next_be_in ;
606 end
607 endcase
608end
609
610// data output mux for reads
611always@(mabort_out or pci_ad_reg_in)
612begin
613 if ( mabort_out )
614 data_out = 32'hFFFF_FFFF ;
615 else
616 data_out = pci_ad_reg_in ;
617end
618endmodule
Impressum, Datenschutz