]> cvs.zerfleddert.de Git - raggedstone/blame_incremental - ethernet/source/pci/pci_wbr_fifo_control.v
watch inta
[raggedstone] / ethernet / source / pci / pci_wbr_fifo_control.v
... / ...
CommitLineData
1//////////////////////////////////////////////////////////////////////
2//// ////
3//// File name "wbr_fifo_control.v" ////
4//// ////
5//// This file is part of the "PCI bridge" project ////
6//// http://www.opencores.org/cores/pci/ ////
7//// ////
8//// Author(s): ////
9//// - Miha Dolenc (mihad@opencores.org) ////
10//// ////
11//// All additional information is avaliable in the README ////
12//// file. ////
13//// ////
14//// ////
15//////////////////////////////////////////////////////////////////////
16//// ////
17//// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org ////
18//// ////
19//// This source file may be used and distributed without ////
20//// restriction provided that this copyright statement is not ////
21//// removed from the file and that any derivative work contains ////
22//// the original copyright notice and the associated disclaimer. ////
23//// ////
24//// This source file is free software; you can redistribute it ////
25//// and/or modify it under the terms of the GNU Lesser General ////
26//// Public License as published by the Free Software Foundation; ////
27//// either version 2.1 of the License, or (at your option) any ////
28//// later version. ////
29//// ////
30//// This source is distributed in the hope that it will be ////
31//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
32//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
33//// PURPOSE. See the GNU Lesser General Public License for more ////
34//// details. ////
35//// ////
36//// You should have received a copy of the GNU Lesser General ////
37//// Public License along with this source; if not, download it ////
38//// from http://www.opencores.org/lgpl.shtml ////
39//// ////
40//////////////////////////////////////////////////////////////////////
41//
42// CVS Revision History
43//
44// $Log: pci_wbr_fifo_control.v,v $
45// Revision 1.1 2007-03-20 17:50:56 sithglan
46// add shit
47//
48// Revision 1.4 2003/08/14 13:06:03 simons
49// synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated.
50//
51// Revision 1.3 2003/07/29 08:20:11 mihad
52// Found and simulated the problem in the synchronization logic.
53// Repaired the synchronization logic in the FIFOs.
54//
55// Revision 1.2 2003/03/26 13:16:18 mihad
56// Added the reset value parameter to the synchronizer flop module.
57// Added resets to all synchronizer flop instances.
58// Repaired initial sync value in fifos.
59//
60// Revision 1.1 2003/01/27 16:49:31 mihad
61// Changed module and file names. Updated scripts accordingly. FIFO synchronizations changed.
62//
63// Revision 1.6 2002/11/27 20:36:12 mihad
64// Changed the code a bit to make it more readable.
65// Functionality not changed in any way.
66// More robust synchronization in fifos is still pending.
67//
68// Revision 1.5 2002/09/30 16:03:04 mihad
69// Added meta flop module for easier meta stable FF identification during synthesis
70//
71// Revision 1.4 2002/09/25 15:53:52 mihad
72// Removed all logic from asynchronous reset network
73//
74// Revision 1.3 2002/02/01 15:25:13 mihad
75// Repaired a few bugs, updated specification, added test bench files and design document
76//
77// Revision 1.2 2001/10/05 08:14:30 mihad
78// Updated all files with inclusion of timescale file for simulation purposes.
79//
80// Revision 1.1.1.1 2001/10/02 15:33:47 mihad
81// New project directory structure
82//
83//
84
85/* FIFO_CONTROL module provides read/write address and status generation for
86 FIFOs implemented with standard dual port SRAM cells in ASIC or FPGA designs */
87`include "pci_constants.v"
88// synopsys translate_off
89`include "timescale.v"
90// synopsys translate_on
91
92module pci_wbr_fifo_control
93(
94 rclock_in,
95 wclock_in,
96 renable_in,
97 wenable_in,
98 reset_in,
99 flush_in,
100 empty_out,
101 waddr_out,
102 raddr_out,
103 rallow_out,
104 wallow_out
105) ;
106
107parameter ADDR_LENGTH = 7 ;
108
109// independent clock inputs - rclock_in = read clock, wclock_in = write clock
110input rclock_in, wclock_in;
111
112// enable inputs - read address changes on rising edge of rclock_in when reads are allowed
113// write address changes on rising edge of wclock_in when writes are allowed
114input renable_in, wenable_in;
115
116// reset input
117input reset_in;
118
119// flush input
120input flush_in ;
121
122// empty status output
123output empty_out;
124
125// read and write addresses outputs
126output [(ADDR_LENGTH - 1):0] waddr_out, raddr_out;
127
128// read and write allow outputs
129output rallow_out, wallow_out ;
130
131// read address register
132reg [(ADDR_LENGTH - 1):0] raddr ;
133
134// write address register
135reg [(ADDR_LENGTH - 1):0] waddr;
136assign waddr_out = waddr ;
137
138// grey code register
139reg [(ADDR_LENGTH - 1):0] wgrey_addr ;
140
141// next write gray address calculation - bitwise xor between address and shifted address
142wire [(ADDR_LENGTH - 2):0] calc_wgrey_next = waddr[(ADDR_LENGTH - 1):1] ^ waddr[(ADDR_LENGTH - 2):0] ;
143
144// grey code register
145reg [(ADDR_LENGTH - 1):0] rgrey_addr ;
146
147// next read gray address calculation - bitwise xor between address and shifted address
148wire [(ADDR_LENGTH - 2):0] calc_rgrey_next = raddr[(ADDR_LENGTH - 1):1] ^ raddr[(ADDR_LENGTH - 2):0] ;
149
150// FF for registered empty flag
151wire empty ;
152
153// write allow wire
154wire wallow = wenable_in ;
155
156// write allow output assignment
157assign wallow_out = wallow ;
158
159// read allow wire
160wire rallow ;
161
162// clear generation for FFs and registers
163wire clear = reset_in /*|| flush_in*/ ; // flush changed to synchronous operation
164
165assign empty_out = empty ;
166
167//rallow generation
168assign rallow = renable_in && !empty ; // reads allowed if read enable is high and FIFO is not empty
169
170// rallow output assignment
171assign rallow_out = renable_in ;
172
173// at any clock edge that rallow is high, this register provides next read address, so wait cycles are not necessary
174// when FIFO is empty, this register provides actual read address, so first location can be read
175reg [(ADDR_LENGTH - 1):0] raddr_plus_one ;
176
177// address output mux - when FIFO is empty, current actual address is driven out, when it is non - empty next address is driven out
178// done for zero wait state burst
179assign raddr_out = rallow ? raddr_plus_one : raddr ;
180
181always@(posedge rclock_in or posedge clear)
182begin
183 if (clear)
184 begin
185 raddr_plus_one <= #`FF_DELAY 2 ;
186 raddr <= #`FF_DELAY 1 ;
187 end
188 else if (flush_in)
189 begin
190 raddr_plus_one <= #`FF_DELAY waddr + 1'b1 ;
191 raddr <= #`FF_DELAY waddr ;
192 end
193 else if (rallow)
194 begin
195 raddr_plus_one <= #`FF_DELAY raddr_plus_one + 1'b1 ;
196 raddr <= #`FF_DELAY raddr_plus_one ;
197 end
198end
199
200/*-----------------------------------------------------------------------------------------------
201Read address control consists of Read address counter and Grey Address register
202--------------------------------------------------------------------------------------------------*/
203// grey coded address
204always@(posedge rclock_in or posedge clear)
205begin
206 if (clear)
207 begin
208 rgrey_addr <= #`FF_DELAY 0 ;
209 end
210 else if (flush_in)
211 begin
212 rgrey_addr <= #`FF_DELAY wgrey_addr ; // when flushed, copy value from write side
213 end
214 else if (rallow)
215 begin
216 rgrey_addr <= #`FF_DELAY {raddr[ADDR_LENGTH - 1], calc_rgrey_next} ;
217 end
218end
219
220/*--------------------------------------------------------------------------------------------
221Write address control consists of write address counter and Grey Code Register
222----------------------------------------------------------------------------------------------*/
223// grey coded address for status generation in write clock domain
224always@(posedge wclock_in or posedge clear)
225begin
226 if (clear)
227 begin
228 wgrey_addr <= #1 0 ;
229 end
230 else
231 if (wallow)
232 begin
233 wgrey_addr <= #1 {waddr[(ADDR_LENGTH - 1)], calc_wgrey_next} ;
234 end
235end
236
237// write address counter - nothing special except initial value
238always@(posedge wclock_in or posedge clear)
239begin
240 if (clear)
241 // initial value is 1
242 waddr <= #`FF_DELAY 1 ;
243 else
244 if (wallow)
245 waddr <= #`FF_DELAY waddr + 1'b1 ;
246end
247
248
249/*------------------------------------------------------------------------------------------------------------------------------
250Empty control:
251Gray coded write address pointer is synchronized to read clock domain and compared to Gray coded read address pointer.
252If they are equal, fifo is empty.
253--------------------------------------------------------------------------------------------------------------------------------*/
254wire [(ADDR_LENGTH - 1):0] rclk_sync_wgrey_addr ;
255reg [(ADDR_LENGTH - 1):0] rclk_wgrey_addr ;
256pci_synchronizer_flop #(ADDR_LENGTH, 0) i_synchronizer_reg_wgrey_addr
257(
258 .data_in (wgrey_addr),
259 .clk_out (rclock_in),
260 .sync_data_out (rclk_sync_wgrey_addr),
261 .async_reset (clear)
262) ;
263
264always@(posedge rclock_in or posedge clear)
265begin
266 if (clear)
267 rclk_wgrey_addr <= #`FF_DELAY 0 ;
268 else
269 rclk_wgrey_addr <= #`FF_DELAY rclk_sync_wgrey_addr ;
270end
271
272assign empty = (rgrey_addr == rclk_wgrey_addr) ;
273endmodule
Impressum, Datenschutz