]>
Commit | Line | Data |
---|---|---|
15c4dc5a | 1 | //----------------------------------------------------------------------------- |
bd20f8f4 | 2 | // Jonathan Westhues, split Nov 2006 |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
51d4f6f1 | 8 | // Routines to support ISO 14443B. This includes both the reader software and |
9 | // the `fake tag' modes. | |
15c4dc5a | 10 | //----------------------------------------------------------------------------- |
bd20f8f4 | 11 | |
e30c654b | 12 | #include "proxmark3.h" |
15c4dc5a | 13 | #include "apps.h" |
f7e3ed82 | 14 | #include "util.h" |
9ab7a6c7 | 15 | #include "string.h" |
15c4dc5a | 16 | |
f7e3ed82 | 17 | #include "iso14443crc.h" |
15c4dc5a | 18 | |
0d9a86c7 | 19 | #define RECEIVE_SAMPLES_TIMEOUT 2000 |
20 | ||
15c4dc5a | 21 | //============================================================================= |
22 | // An ISO 14443 Type B tag. We listen for commands from the reader, using | |
23 | // a UART kind of thing that's implemented in software. When we get a | |
24 | // frame (i.e., a group of bytes between SOF and EOF), we check the CRC. | |
25 | // If it's good, then we can do something appropriate with it, and send | |
26 | // a response. | |
27 | //============================================================================= | |
28 | ||
29 | //----------------------------------------------------------------------------- | |
30 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
31 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
32 | // them yet, just leaves them ready to send in ToSend[]. | |
33 | //----------------------------------------------------------------------------- | |
f7e3ed82 | 34 | static void CodeIso14443bAsTag(const uint8_t *cmd, int len) |
15c4dc5a | 35 | { |
7d5ebac9 MHS |
36 | int i; |
37 | ||
38 | ToSendReset(); | |
39 | ||
40 | // Transmit a burst of ones, as the initial thing that lets the | |
41 | // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
42 | // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
43 | // so I will too. | |
44 | for(i = 0; i < 20; i++) { | |
45 | ToSendStuffBit(1); | |
46 | ToSendStuffBit(1); | |
47 | ToSendStuffBit(1); | |
48 | ToSendStuffBit(1); | |
49 | } | |
50 | ||
51 | // Send SOF. | |
52 | for(i = 0; i < 10; i++) { | |
53 | ToSendStuffBit(0); | |
54 | ToSendStuffBit(0); | |
55 | ToSendStuffBit(0); | |
56 | ToSendStuffBit(0); | |
57 | } | |
58 | for(i = 0; i < 2; i++) { | |
59 | ToSendStuffBit(1); | |
60 | ToSendStuffBit(1); | |
61 | ToSendStuffBit(1); | |
62 | ToSendStuffBit(1); | |
63 | } | |
64 | ||
65 | for(i = 0; i < len; i++) { | |
66 | int j; | |
67 | uint8_t b = cmd[i]; | |
68 | ||
69 | // Start bit | |
70 | ToSendStuffBit(0); | |
71 | ToSendStuffBit(0); | |
72 | ToSendStuffBit(0); | |
73 | ToSendStuffBit(0); | |
74 | ||
75 | // Data bits | |
76 | for(j = 0; j < 8; j++) { | |
77 | if(b & 1) { | |
78 | ToSendStuffBit(1); | |
79 | ToSendStuffBit(1); | |
80 | ToSendStuffBit(1); | |
81 | ToSendStuffBit(1); | |
82 | } else { | |
83 | ToSendStuffBit(0); | |
84 | ToSendStuffBit(0); | |
85 | ToSendStuffBit(0); | |
86 | ToSendStuffBit(0); | |
87 | } | |
88 | b >>= 1; | |
89 | } | |
90 | ||
91 | // Stop bit | |
92 | ToSendStuffBit(1); | |
93 | ToSendStuffBit(1); | |
94 | ToSendStuffBit(1); | |
95 | ToSendStuffBit(1); | |
96 | } | |
97 | ||
51d4f6f1 | 98 | // Send EOF. |
7d5ebac9 MHS |
99 | for(i = 0; i < 10; i++) { |
100 | ToSendStuffBit(0); | |
101 | ToSendStuffBit(0); | |
102 | ToSendStuffBit(0); | |
103 | ToSendStuffBit(0); | |
104 | } | |
51d4f6f1 | 105 | for(i = 0; i < 2; i++) { |
7d5ebac9 MHS |
106 | ToSendStuffBit(1); |
107 | ToSendStuffBit(1); | |
108 | ToSendStuffBit(1); | |
109 | ToSendStuffBit(1); | |
110 | } | |
111 | ||
112 | // Convert from last byte pos to length | |
113 | ToSendMax++; | |
15c4dc5a | 114 | } |
115 | ||
116 | //----------------------------------------------------------------------------- | |
117 | // The software UART that receives commands from the reader, and its state | |
118 | // variables. | |
119 | //----------------------------------------------------------------------------- | |
120 | static struct { | |
7d5ebac9 MHS |
121 | enum { |
122 | STATE_UNSYNCD, | |
123 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
124 | STATE_AWAITING_START_BIT, | |
46734099 | 125 | STATE_RECEIVING_DATA |
7d5ebac9 MHS |
126 | } state; |
127 | uint16_t shiftReg; | |
128 | int bitCnt; | |
129 | int byteCnt; | |
130 | int byteCntMax; | |
131 | int posCnt; | |
132 | uint8_t *output; | |
15c4dc5a | 133 | } Uart; |
134 | ||
135 | /* Receive & handle a bit coming from the reader. | |
51d4f6f1 | 136 | * |
137 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
138 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us | |
15c4dc5a | 139 | * |
140 | * LED handling: | |
141 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
142 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
143 | * | |
144 | * Returns: true if we received a EOF | |
145 | * false if we are still waiting for some more | |
146 | */ | |
46734099 | 147 | static RAMFUNC int Handle14443bUartBit(uint8_t bit) |
15c4dc5a | 148 | { |
7d5ebac9 | 149 | switch(Uart.state) { |
03dc1740 | 150 | case STATE_UNSYNCD: |
7d5ebac9 MHS |
151 | if(!bit) { |
152 | // we went low, so this could be the beginning | |
153 | // of an SOF | |
154 | Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
155 | Uart.posCnt = 0; | |
156 | Uart.bitCnt = 0; | |
157 | } | |
158 | break; | |
159 | ||
160 | case STATE_GOT_FALLING_EDGE_OF_SOF: | |
161 | Uart.posCnt++; | |
51d4f6f1 | 162 | if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit |
7d5ebac9 | 163 | if(bit) { |
51d4f6f1 | 164 | if(Uart.bitCnt > 9) { |
7d5ebac9 MHS |
165 | // we've seen enough consecutive |
166 | // zeros that it's a valid SOF | |
167 | Uart.posCnt = 0; | |
168 | Uart.byteCnt = 0; | |
169 | Uart.state = STATE_AWAITING_START_BIT; | |
170 | LED_A_ON(); // Indicate we got a valid SOF | |
171 | } else { | |
172 | // didn't stay down long enough | |
173 | // before going high, error | |
46734099 | 174 | Uart.state = STATE_UNSYNCD; |
7d5ebac9 MHS |
175 | } |
176 | } else { | |
177 | // do nothing, keep waiting | |
178 | } | |
179 | Uart.bitCnt++; | |
180 | } | |
181 | if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
51d4f6f1 | 182 | if(Uart.bitCnt > 12) { |
7d5ebac9 MHS |
183 | // Give up if we see too many zeros without |
184 | // a one, too. | |
46734099 | 185 | LED_A_OFF(); |
186 | Uart.state = STATE_UNSYNCD; | |
7d5ebac9 MHS |
187 | } |
188 | break; | |
189 | ||
190 | case STATE_AWAITING_START_BIT: | |
191 | Uart.posCnt++; | |
192 | if(bit) { | |
51d4f6f1 | 193 | if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs |
7d5ebac9 MHS |
194 | // stayed high for too long between |
195 | // characters, error | |
46734099 | 196 | Uart.state = STATE_UNSYNCD; |
7d5ebac9 MHS |
197 | } |
198 | } else { | |
199 | // falling edge, this starts the data byte | |
200 | Uart.posCnt = 0; | |
201 | Uart.bitCnt = 0; | |
202 | Uart.shiftReg = 0; | |
203 | Uart.state = STATE_RECEIVING_DATA; | |
7d5ebac9 MHS |
204 | } |
205 | break; | |
206 | ||
207 | case STATE_RECEIVING_DATA: | |
208 | Uart.posCnt++; | |
209 | if(Uart.posCnt == 2) { | |
210 | // time to sample a bit | |
211 | Uart.shiftReg >>= 1; | |
212 | if(bit) { | |
213 | Uart.shiftReg |= 0x200; | |
214 | } | |
215 | Uart.bitCnt++; | |
216 | } | |
217 | if(Uart.posCnt >= 4) { | |
218 | Uart.posCnt = 0; | |
219 | } | |
220 | if(Uart.bitCnt == 10) { | |
221 | if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
222 | { | |
223 | // this is a data byte, with correct | |
224 | // start and stop bits | |
225 | Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
226 | Uart.byteCnt++; | |
227 | ||
228 | if(Uart.byteCnt >= Uart.byteCntMax) { | |
229 | // Buffer overflowed, give up | |
46734099 | 230 | LED_A_OFF(); |
231 | Uart.state = STATE_UNSYNCD; | |
7d5ebac9 MHS |
232 | } else { |
233 | // so get the next byte now | |
234 | Uart.posCnt = 0; | |
235 | Uart.state = STATE_AWAITING_START_BIT; | |
236 | } | |
46734099 | 237 | } else if (Uart.shiftReg == 0x000) { |
7d5ebac9 MHS |
238 | // this is an EOF byte |
239 | LED_A_OFF(); // Finished receiving | |
46734099 | 240 | Uart.state = STATE_UNSYNCD; |
132a0217 | 241 | if (Uart.byteCnt != 0) { |
242 | return TRUE; | |
243 | } | |
7d5ebac9 MHS |
244 | } else { |
245 | // this is an error | |
46734099 | 246 | LED_A_OFF(); |
247 | Uart.state = STATE_UNSYNCD; | |
7d5ebac9 MHS |
248 | } |
249 | } | |
250 | break; | |
251 | ||
7d5ebac9 | 252 | default: |
46734099 | 253 | LED_A_OFF(); |
7d5ebac9 MHS |
254 | Uart.state = STATE_UNSYNCD; |
255 | break; | |
256 | } | |
257 | ||
7d5ebac9 | 258 | return FALSE; |
15c4dc5a | 259 | } |
260 | ||
46734099 | 261 | |
262 | static void UartReset() | |
263 | { | |
264 | Uart.byteCntMax = MAX_FRAME_SIZE; | |
265 | Uart.state = STATE_UNSYNCD; | |
266 | Uart.byteCnt = 0; | |
267 | Uart.bitCnt = 0; | |
268 | } | |
269 | ||
270 | ||
271 | static void UartInit(uint8_t *data) | |
272 | { | |
273 | Uart.output = data; | |
274 | UartReset(); | |
275 | } | |
276 | ||
277 | ||
15c4dc5a | 278 | //----------------------------------------------------------------------------- |
279 | // Receive a command (from the reader to us, where we are the simulated tag), | |
280 | // and store it in the given buffer, up to the given maximum length. Keeps | |
281 | // spinning, waiting for a well-framed command, until either we get one | |
282 | // (returns TRUE) or someone presses the pushbutton on the board (FALSE). | |
283 | // | |
284 | // Assume that we're called with the SSC (to the FPGA) and ADC path set | |
285 | // correctly. | |
286 | //----------------------------------------------------------------------------- | |
46734099 | 287 | static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) |
15c4dc5a | 288 | { |
51d4f6f1 | 289 | // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen |
7d5ebac9 MHS |
290 | // only, since we are receiving, not transmitting). |
291 | // Signal field is off with the appropriate LED | |
292 | LED_D_OFF(); | |
293 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
294 | ||
7d5ebac9 | 295 | // Now run a `software UART' on the stream of incoming samples. |
46734099 | 296 | UartInit(received); |
7d5ebac9 MHS |
297 | |
298 | for(;;) { | |
299 | WDT_HIT(); | |
300 | ||
301 | if(BUTTON_PRESS()) return FALSE; | |
302 | ||
7d5ebac9 MHS |
303 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
304 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
46734099 | 305 | for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) { |
306 | if(Handle14443bUartBit(b & mask)) { | |
7d5ebac9 MHS |
307 | *len = Uart.byteCnt; |
308 | return TRUE; | |
309 | } | |
310 | } | |
311 | } | |
312 | } | |
46734099 | 313 | |
314 | return FALSE; | |
15c4dc5a | 315 | } |
316 | ||
317 | //----------------------------------------------------------------------------- | |
318 | // Main loop of simulated tag: receive commands from reader, decide what | |
319 | // response to send, and send it. | |
320 | //----------------------------------------------------------------------------- | |
51d4f6f1 | 321 | void SimulateIso14443bTag(void) |
15c4dc5a | 322 | { |
46734099 | 323 | // the only commands we understand is REQB, AFI=0, Select All, N=0: |
7d5ebac9 | 324 | static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; |
46734099 | 325 | // ... and REQB, AFI=0, Normal Request, N=0: |
326 | static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; | |
327 | ||
328 | // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922, | |
51d4f6f1 | 329 | // supports only 106kBit/s in both directions, max frame size = 32Bytes, |
330 | // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported: | |
7d5ebac9 MHS |
331 | static const uint8_t response1[] = { |
332 | 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22, | |
333 | 0x00, 0x21, 0x85, 0x5e, 0xd7 | |
334 | }; | |
15c4dc5a | 335 | |
46734099 | 336 | clear_trace(); |
337 | set_tracing(TRUE); | |
338 | ||
339 | const uint8_t *resp; | |
340 | uint8_t *respCode; | |
341 | uint16_t respLen, respCodeLen; | |
15c4dc5a | 342 | |
51d4f6f1 | 343 | // allocate command receive buffer |
344 | BigBuf_free(); | |
345 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
15c4dc5a | 346 | |
46734099 | 347 | uint16_t len; |
348 | uint16_t cmdsRecvd = 0; | |
15c4dc5a | 349 | |
7d5ebac9 | 350 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
15c4dc5a | 351 | |
51d4f6f1 | 352 | // prepare the (only one) tag answer: |
7d5ebac9 | 353 | CodeIso14443bAsTag(response1, sizeof(response1)); |
46734099 | 354 | uint8_t *resp1Code = BigBuf_malloc(ToSendMax); |
355 | memcpy(resp1Code, ToSend, ToSendMax); | |
356 | uint16_t resp1CodeLen = ToSendMax; | |
15c4dc5a | 357 | |
7d5ebac9 MHS |
358 | // We need to listen to the high-frequency, peak-detected path. |
359 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
360 | FpgaSetupSsc(); | |
15c4dc5a | 361 | |
7d5ebac9 | 362 | cmdsRecvd = 0; |
15c4dc5a | 363 | |
7d5ebac9 | 364 | for(;;) { |
15c4dc5a | 365 | |
46734099 | 366 | if(!GetIso14443bCommandFromReader(receivedCmd, &len)) { |
51d4f6f1 | 367 | Dbprintf("button pressed, received %d commands", cmdsRecvd); |
368 | break; | |
46734099 | 369 | } |
7d5ebac9 | 370 | |
46734099 | 371 | if (tracing) { |
372 | uint8_t parity[MAX_PARITY_SIZE]; | |
373 | LogTrace(receivedCmd, len, 0, 0, parity, TRUE); | |
374 | } | |
7d5ebac9 | 375 | |
46734099 | 376 | // Good, look at the command now. |
377 | if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0) | |
378 | || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) { | |
379 | resp = response1; | |
380 | respLen = sizeof(response1); | |
381 | respCode = resp1Code; | |
382 | respCodeLen = resp1CodeLen; | |
7d5ebac9 MHS |
383 | } else { |
384 | Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd); | |
385 | // And print whether the CRC fails, just for good measure | |
46734099 | 386 | uint8_t b1, b2; |
7d5ebac9 MHS |
387 | ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2); |
388 | if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) { | |
389 | // Not so good, try again. | |
390 | DbpString("+++CRC fail"); | |
391 | } else { | |
392 | DbpString("CRC passes"); | |
393 | } | |
394 | break; | |
395 | } | |
396 | ||
7d5ebac9 MHS |
397 | cmdsRecvd++; |
398 | ||
399 | if(cmdsRecvd > 0x30) { | |
400 | DbpString("many commands later..."); | |
401 | break; | |
402 | } | |
403 | ||
46734099 | 404 | if(respCodeLen <= 0) continue; |
7d5ebac9 MHS |
405 | |
406 | // Modulate BPSK | |
407 | // Signal field is off with the appropriate LED | |
408 | LED_D_OFF(); | |
409 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK); | |
410 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
411 | FpgaSetupSsc(); | |
412 | ||
413 | // Transmit the response. | |
46734099 | 414 | uint16_t i = 0; |
7d5ebac9 MHS |
415 | for(;;) { |
416 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
46734099 | 417 | uint8_t b = respCode[i]; |
7d5ebac9 MHS |
418 | |
419 | AT91C_BASE_SSC->SSC_THR = b; | |
420 | ||
421 | i++; | |
46734099 | 422 | if(i > respCodeLen) { |
7d5ebac9 MHS |
423 | break; |
424 | } | |
425 | } | |
426 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
427 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
428 | (void)b; | |
429 | } | |
430 | } | |
46734099 | 431 | |
432 | // trace the response: | |
433 | if (tracing) { | |
434 | uint8_t parity[MAX_PARITY_SIZE]; | |
435 | LogTrace(resp, respLen, 0, 0, parity, FALSE); | |
436 | } | |
437 | ||
7d5ebac9 | 438 | } |
15c4dc5a | 439 | } |
440 | ||
441 | //============================================================================= | |
442 | // An ISO 14443 Type B reader. We take layer two commands, code them | |
443 | // appropriately, and then send them to the tag. We then listen for the | |
444 | // tag's response, which we leave in the buffer to be demodulated on the | |
445 | // PC side. | |
446 | //============================================================================= | |
447 | ||
448 | static struct { | |
7d5ebac9 MHS |
449 | enum { |
450 | DEMOD_UNSYNCD, | |
451 | DEMOD_PHASE_REF_TRAINING, | |
452 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
453 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
454 | DEMOD_AWAITING_START_BIT, | |
46734099 | 455 | DEMOD_RECEIVING_DATA |
7d5ebac9 MHS |
456 | } state; |
457 | int bitCount; | |
458 | int posCount; | |
459 | int thisBit; | |
51d4f6f1 | 460 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. |
7d5ebac9 MHS |
461 | int metric; |
462 | int metricN; | |
51d4f6f1 | 463 | */ |
7d5ebac9 MHS |
464 | uint16_t shiftReg; |
465 | uint8_t *output; | |
466 | int len; | |
467 | int sumI; | |
468 | int sumQ; | |
15c4dc5a | 469 | } Demod; |
470 | ||
471 | /* | |
472 | * Handles reception of a bit from the tag | |
473 | * | |
51d4f6f1 | 474 | * This function is called 2 times per bit (every 4 subcarrier cycles). |
475 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us | |
476 | * | |
15c4dc5a | 477 | * LED handling: |
478 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
479 | * LED C -> OFF once we have received EOF or are unsynced | |
480 | * | |
481 | * Returns: true if we received a EOF | |
482 | * false if we are still waiting for some more | |
483 | * | |
484 | */ | |
51d4f6f1 | 485 | static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq) |
15c4dc5a | 486 | { |
7d5ebac9 | 487 | int v; |
15c4dc5a | 488 | |
51d4f6f1 | 489 | // The soft decision on the bit uses an estimate of just the |
490 | // quadrant of the reference angle, not the exact angle. | |
15c4dc5a | 491 | #define MAKE_SOFT_DECISION() { \ |
7d5ebac9 MHS |
492 | if(Demod.sumI > 0) { \ |
493 | v = ci; \ | |
494 | } else { \ | |
495 | v = -ci; \ | |
496 | } \ | |
497 | if(Demod.sumQ > 0) { \ | |
498 | v += cq; \ | |
499 | } else { \ | |
500 | v -= cq; \ | |
501 | } \ | |
502 | } | |
15c4dc5a | 503 | |
51d4f6f1 | 504 | #define SUBCARRIER_DETECT_THRESHOLD 8 |
505 | ||
506 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq) | |
507 | /* #define CHECK_FOR_SUBCARRIER() { \ | |
508 | v = ci; \ | |
509 | if(v < 0) v = -v; \ | |
510 | if(cq > 0) { \ | |
511 | v += cq; \ | |
512 | } else { \ | |
513 | v -= cq; \ | |
514 | } \ | |
515 | } | |
516 | */ | |
517 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
518 | #define CHECK_FOR_SUBCARRIER() { \ | |
519 | if(ci < 0) { \ | |
520 | if(cq < 0) { /* ci < 0, cq < 0 */ \ | |
521 | if (cq < ci) { \ | |
522 | v = -cq - (ci >> 1); \ | |
523 | } else { \ | |
524 | v = -ci - (cq >> 1); \ | |
525 | } \ | |
526 | } else { /* ci < 0, cq >= 0 */ \ | |
527 | if (cq < -ci) { \ | |
528 | v = -ci + (cq >> 1); \ | |
529 | } else { \ | |
530 | v = cq - (ci >> 1); \ | |
531 | } \ | |
532 | } \ | |
533 | } else { \ | |
534 | if(cq < 0) { /* ci >= 0, cq < 0 */ \ | |
535 | if (-cq < ci) { \ | |
536 | v = ci - (cq >> 1); \ | |
537 | } else { \ | |
538 | v = -cq + (ci >> 1); \ | |
539 | } \ | |
540 | } else { /* ci >= 0, cq >= 0 */ \ | |
541 | if (cq < ci) { \ | |
542 | v = ci + (cq >> 1); \ | |
543 | } else { \ | |
544 | v = cq + (ci >> 1); \ | |
545 | } \ | |
546 | } \ | |
547 | } \ | |
548 | } | |
549 | ||
7d5ebac9 MHS |
550 | switch(Demod.state) { |
551 | case DEMOD_UNSYNCD: | |
51d4f6f1 | 552 | CHECK_FOR_SUBCARRIER(); |
553 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
7d5ebac9 | 554 | Demod.state = DEMOD_PHASE_REF_TRAINING; |
51d4f6f1 | 555 | Demod.sumI = ci; |
556 | Demod.sumQ = cq; | |
557 | Demod.posCount = 1; | |
558 | } | |
7d5ebac9 MHS |
559 | break; |
560 | ||
561 | case DEMOD_PHASE_REF_TRAINING: | |
562 | if(Demod.posCount < 8) { | |
51d4f6f1 | 563 | CHECK_FOR_SUBCARRIER(); |
564 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
565 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
566 | // note: synchronization time > 80 1/fs | |
567 | Demod.sumI += ci; | |
568 | Demod.sumQ += cq; | |
569 | Demod.posCount++; | |
570 | } else { // subcarrier lost | |
571 | Demod.state = DEMOD_UNSYNCD; | |
7d5ebac9 | 572 | } |
51d4f6f1 | 573 | } else { |
574 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
7d5ebac9 | 575 | } |
7d5ebac9 MHS |
576 | break; |
577 | ||
578 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
579 | MAKE_SOFT_DECISION(); | |
51d4f6f1 | 580 | if(v < 0) { // logic '0' detected |
7d5ebac9 | 581 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; |
51d4f6f1 | 582 | Demod.posCount = 0; // start of SOF sequence |
7d5ebac9 | 583 | } else { |
51d4f6f1 | 584 | if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs |
7d5ebac9 MHS |
585 | Demod.state = DEMOD_UNSYNCD; |
586 | } | |
587 | } | |
588 | Demod.posCount++; | |
589 | break; | |
590 | ||
591 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
51d4f6f1 | 592 | Demod.posCount++; |
7d5ebac9 MHS |
593 | MAKE_SOFT_DECISION(); |
594 | if(v > 0) { | |
51d4f6f1 | 595 | if(Demod.posCount < 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges |
7d5ebac9 MHS |
596 | Demod.state = DEMOD_UNSYNCD; |
597 | } else { | |
598 | LED_C_ON(); // Got SOF | |
599 | Demod.state = DEMOD_AWAITING_START_BIT; | |
600 | Demod.posCount = 0; | |
601 | Demod.len = 0; | |
51d4f6f1 | 602 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. |
7d5ebac9 MHS |
603 | Demod.metricN = 0; |
604 | Demod.metric = 0; | |
51d4f6f1 | 605 | */ |
7d5ebac9 MHS |
606 | } |
607 | } else { | |
51d4f6f1 | 608 | if(Demod.posCount > 12*2) { // low phase of SOF too long (> 12 etu) |
7d5ebac9 | 609 | Demod.state = DEMOD_UNSYNCD; |
09c66f1f | 610 | LED_C_OFF(); |
7d5ebac9 MHS |
611 | } |
612 | } | |
7d5ebac9 MHS |
613 | break; |
614 | ||
615 | case DEMOD_AWAITING_START_BIT: | |
51d4f6f1 | 616 | Demod.posCount++; |
7d5ebac9 MHS |
617 | MAKE_SOFT_DECISION(); |
618 | if(v > 0) { | |
51d4f6f1 | 619 | if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs |
7d5ebac9 | 620 | Demod.state = DEMOD_UNSYNCD; |
09c66f1f | 621 | LED_C_OFF(); |
7d5ebac9 | 622 | } |
51d4f6f1 | 623 | } else { // start bit detected |
7d5ebac9 | 624 | Demod.bitCount = 0; |
51d4f6f1 | 625 | Demod.posCount = 1; // this was the first half |
7d5ebac9 MHS |
626 | Demod.thisBit = v; |
627 | Demod.shiftReg = 0; | |
628 | Demod.state = DEMOD_RECEIVING_DATA; | |
629 | } | |
630 | break; | |
631 | ||
632 | case DEMOD_RECEIVING_DATA: | |
633 | MAKE_SOFT_DECISION(); | |
51d4f6f1 | 634 | if(Demod.posCount == 0) { // first half of bit |
7d5ebac9 MHS |
635 | Demod.thisBit = v; |
636 | Demod.posCount = 1; | |
51d4f6f1 | 637 | } else { // second half of bit |
7d5ebac9 MHS |
638 | Demod.thisBit += v; |
639 | ||
51d4f6f1 | 640 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. |
7d5ebac9 MHS |
641 | if(Demod.thisBit > 0) { |
642 | Demod.metric += Demod.thisBit; | |
643 | } else { | |
644 | Demod.metric -= Demod.thisBit; | |
645 | } | |
646 | (Demod.metricN)++; | |
51d4f6f1 | 647 | */ |
7d5ebac9 MHS |
648 | |
649 | Demod.shiftReg >>= 1; | |
51d4f6f1 | 650 | if(Demod.thisBit > 0) { // logic '1' |
7d5ebac9 MHS |
651 | Demod.shiftReg |= 0x200; |
652 | } | |
653 | ||
654 | Demod.bitCount++; | |
655 | if(Demod.bitCount == 10) { | |
656 | uint16_t s = Demod.shiftReg; | |
51d4f6f1 | 657 | if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0' |
7d5ebac9 MHS |
658 | uint8_t b = (s >> 1); |
659 | Demod.output[Demod.len] = b; | |
660 | Demod.len++; | |
661 | Demod.state = DEMOD_AWAITING_START_BIT; | |
7d5ebac9 MHS |
662 | } else { |
663 | Demod.state = DEMOD_UNSYNCD; | |
09c66f1f | 664 | LED_C_OFF(); |
665 | if(s == 0x000) { | |
51d4f6f1 | 666 | // This is EOF (start, stop and all data bits == '0' |
09c66f1f | 667 | return TRUE; |
668 | } | |
7d5ebac9 MHS |
669 | } |
670 | } | |
671 | Demod.posCount = 0; | |
672 | } | |
673 | break; | |
674 | ||
675 | default: | |
676 | Demod.state = DEMOD_UNSYNCD; | |
09c66f1f | 677 | LED_C_OFF(); |
7d5ebac9 MHS |
678 | break; |
679 | } | |
680 | ||
7d5ebac9 MHS |
681 | return FALSE; |
682 | } | |
67ac4bf7 | 683 | |
684 | ||
aeadbdb2 MHS |
685 | static void DemodReset() |
686 | { | |
687 | // Clear out the state of the "UART" that receives from the tag. | |
aeadbdb2 MHS |
688 | Demod.len = 0; |
689 | Demod.state = DEMOD_UNSYNCD; | |
51d4f6f1 | 690 | Demod.posCount = 0; |
aeadbdb2 | 691 | memset(Demod.output, 0x00, MAX_FRAME_SIZE); |
7d5ebac9 | 692 | } |
67ac4bf7 | 693 | |
694 | ||
7d5ebac9 MHS |
695 | static void DemodInit(uint8_t *data) |
696 | { | |
697 | Demod.output = data; | |
698 | DemodReset(); | |
aeadbdb2 MHS |
699 | } |
700 | ||
67ac4bf7 | 701 | |
15c4dc5a | 702 | /* |
355c8b4a | 703 | * Demodulate the samples we received from the tag, also log to tracebuffer |
15c4dc5a | 704 | * quiet: set to 'TRUE' to disable debug output |
705 | */ | |
51d4f6f1 | 706 | static void GetSamplesFor14443bDemod(int n, bool quiet) |
15c4dc5a | 707 | { |
7d5ebac9 | 708 | int max = 0; |
51d4f6f1 | 709 | bool gotFrame = FALSE; |
7d5ebac9 MHS |
710 | int lastRxCounter, ci, cq, samples = 0; |
711 | ||
712 | // Allocate memory from BigBuf for some buffers | |
713 | // free all previous allocations first | |
714 | BigBuf_free(); | |
715 | ||
7d5ebac9 MHS |
716 | // The response (tag -> reader) that we're receiving. |
717 | uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); | |
718 | ||
719 | // The DMA buffer, used to stream samples from the FPGA | |
132a0217 | 720 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(DMA_BUFFER_SIZE); |
15c4dc5a | 721 | |
7d5ebac9 MHS |
722 | // Set up the demodulator for tag -> reader responses. |
723 | DemodInit(receivedResponse); | |
15c4dc5a | 724 | |
7d5ebac9 | 725 | // Setup and start DMA. |
132a0217 | 726 | FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE); |
15c4dc5a | 727 | |
67ac4bf7 | 728 | int8_t *upTo = dmaBuf; |
132a0217 | 729 | lastRxCounter = DMA_BUFFER_SIZE; |
15c4dc5a | 730 | |
7d5ebac9 | 731 | // Signal field is ON with the appropriate LED: |
51d4f6f1 | 732 | LED_D_ON(); |
7d5ebac9 | 733 | // And put the FPGA in the appropriate mode |
da586b17 | 734 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); |
15c4dc5a | 735 | |
7d5ebac9 MHS |
736 | for(;;) { |
737 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
738 | if(behindBy > max) max = behindBy; | |
15c4dc5a | 739 | |
132a0217 | 740 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1)) > 2) { |
7d5ebac9 MHS |
741 | ci = upTo[0]; |
742 | cq = upTo[1]; | |
743 | upTo += 2; | |
132a0217 | 744 | if(upTo >= dmaBuf + DMA_BUFFER_SIZE) { |
0d9a86c7 | 745 | upTo = dmaBuf; |
7d5ebac9 | 746 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; |
132a0217 | 747 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
7d5ebac9 MHS |
748 | } |
749 | lastRxCounter -= 2; | |
750 | if(lastRxCounter <= 0) { | |
132a0217 | 751 | lastRxCounter += DMA_BUFFER_SIZE; |
7d5ebac9 | 752 | } |
15c4dc5a | 753 | |
7d5ebac9 | 754 | samples += 2; |
15c4dc5a | 755 | |
51d4f6f1 | 756 | if(Handle14443bSamplesDemod(ci, cq)) { |
757 | gotFrame = TRUE; | |
758 | break; | |
7d5ebac9 MHS |
759 | } |
760 | } | |
15c4dc5a | 761 | |
51d4f6f1 | 762 | if(samples > n || gotFrame) { |
7d5ebac9 MHS |
763 | break; |
764 | } | |
765 | } | |
51d4f6f1 | 766 | |
7d5ebac9 | 767 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
51d4f6f1 | 768 | |
769 | if (!quiet) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", max, samples, gotFrame, Demod.len, Demod.sumI, Demod.sumQ); | |
355c8b4a MHS |
770 | //Tracing |
771 | if (tracing && Demod.len > 0) { | |
772 | uint8_t parity[MAX_PARITY_SIZE]; | |
d5875804 | 773 | //GetParity(Demod.output, Demod.len, parity); |
0d9a86c7 | 774 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); |
355c8b4a | 775 | } |
15c4dc5a | 776 | } |
777 | ||
67ac4bf7 | 778 | |
15c4dc5a | 779 | //----------------------------------------------------------------------------- |
780 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
781 | //----------------------------------------------------------------------------- | |
51d4f6f1 | 782 | static void TransmitFor14443b(void) |
15c4dc5a | 783 | { |
7d5ebac9 | 784 | int c; |
15c4dc5a | 785 | |
7d5ebac9 | 786 | FpgaSetupSsc(); |
15c4dc5a | 787 | |
7d5ebac9 MHS |
788 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
789 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
790 | } | |
15c4dc5a | 791 | |
7d5ebac9 | 792 | // Signal field is ON with the appropriate Red LED |
15c4dc5a | 793 | LED_D_ON(); |
794 | // Signal we are transmitting with the Green LED | |
795 | LED_B_ON(); | |
51d4f6f1 | 796 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); |
7d5ebac9 MHS |
797 | |
798 | for(c = 0; c < 10;) { | |
799 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
800 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
801 | c++; | |
802 | } | |
803 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
804 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
805 | (void)r; | |
806 | } | |
807 | WDT_HIT(); | |
808 | } | |
809 | ||
810 | c = 0; | |
811 | for(;;) { | |
812 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
813 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
814 | c++; | |
815 | if(c >= ToSendMax) { | |
816 | break; | |
817 | } | |
818 | } | |
819 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
820 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
821 | (void)r; | |
822 | } | |
823 | WDT_HIT(); | |
824 | } | |
825 | LED_B_OFF(); // Finished sending | |
15c4dc5a | 826 | } |
827 | ||
67ac4bf7 | 828 | |
15c4dc5a | 829 | //----------------------------------------------------------------------------- |
830 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
51d4f6f1 | 831 | // so that it is ready to transmit to the tag using TransmitFor14443b(). |
15c4dc5a | 832 | //----------------------------------------------------------------------------- |
7cf3ef20 | 833 | static void CodeIso14443bAsReader(const uint8_t *cmd, int len) |
15c4dc5a | 834 | { |
7d5ebac9 MHS |
835 | int i, j; |
836 | uint8_t b; | |
837 | ||
838 | ToSendReset(); | |
839 | ||
840 | // Establish initial reference level | |
841 | for(i = 0; i < 40; i++) { | |
842 | ToSendStuffBit(1); | |
843 | } | |
844 | // Send SOF | |
845 | for(i = 0; i < 10; i++) { | |
846 | ToSendStuffBit(0); | |
847 | } | |
848 | ||
849 | for(i = 0; i < len; i++) { | |
850 | // Stop bits/EGT | |
851 | ToSendStuffBit(1); | |
852 | ToSendStuffBit(1); | |
853 | // Start bit | |
854 | ToSendStuffBit(0); | |
855 | // Data bits | |
856 | b = cmd[i]; | |
857 | for(j = 0; j < 8; j++) { | |
858 | if(b & 1) { | |
859 | ToSendStuffBit(1); | |
860 | } else { | |
861 | ToSendStuffBit(0); | |
862 | } | |
863 | b >>= 1; | |
864 | } | |
865 | } | |
866 | // Send EOF | |
867 | ToSendStuffBit(1); | |
868 | for(i = 0; i < 10; i++) { | |
869 | ToSendStuffBit(0); | |
870 | } | |
871 | for(i = 0; i < 8; i++) { | |
872 | ToSendStuffBit(1); | |
873 | } | |
874 | ||
875 | // And then a little more, to make sure that the last character makes | |
876 | // it out before we switch to rx mode. | |
877 | for(i = 0; i < 24; i++) { | |
878 | ToSendStuffBit(1); | |
879 | } | |
880 | ||
881 | // Convert from last character reference to length | |
882 | ToSendMax++; | |
15c4dc5a | 883 | } |
884 | ||
67ac4bf7 | 885 | |
355c8b4a MHS |
886 | /** |
887 | Convenience function to encode, transmit and trace iso 14443b comms | |
888 | **/ | |
889 | static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len) | |
890 | { | |
891 | CodeIso14443bAsReader(cmd, len); | |
51d4f6f1 | 892 | TransmitFor14443b(); |
355c8b4a MHS |
893 | if (tracing) { |
894 | uint8_t parity[MAX_PARITY_SIZE]; | |
895 | GetParity(cmd, len, parity); | |
896 | LogTrace(cmd,len, 0, 0, parity, TRUE); | |
897 | } | |
898 | } | |
899 | ||
67ac4bf7 | 900 | |
15c4dc5a | 901 | //----------------------------------------------------------------------------- |
51d4f6f1 | 902 | // Read a SRI512 ISO 14443B tag. |
15c4dc5a | 903 | // |
904 | // SRI512 tags are just simple memory tags, here we're looking at making a dump | |
905 | // of the contents of the memory. No anticollision algorithm is done, we assume | |
906 | // we have a single tag in the field. | |
907 | // | |
908 | // I tried to be systematic and check every answer of the tag, every CRC, etc... | |
909 | //----------------------------------------------------------------------------- | |
51d4f6f1 | 910 | void ReadSTMemoryIso14443b(uint32_t dwLast) |
15c4dc5a | 911 | { |
355c8b4a MHS |
912 | clear_trace(); |
913 | set_tracing(TRUE); | |
914 | ||
7d5ebac9 | 915 | uint8_t i = 0x00; |
15c4dc5a | 916 | |
7d5ebac9 MHS |
917 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
918 | // Make sure that we start from off, since the tags are stateful; | |
919 | // confusing things will happen if we don't reset them between reads. | |
920 | LED_D_OFF(); | |
921 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
922 | SpinDelay(200); | |
15c4dc5a | 923 | |
7d5ebac9 MHS |
924 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
925 | FpgaSetupSsc(); | |
15c4dc5a | 926 | |
7d5ebac9 MHS |
927 | // Now give it time to spin up. |
928 | // Signal field is on with the appropriate LED | |
929 | LED_D_ON(); | |
930 | FpgaWriteConfWord( | |
da586b17 | 931 | FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); |
7d5ebac9 | 932 | SpinDelay(200); |
15c4dc5a | 933 | |
7d5ebac9 | 934 | // First command: wake up the tag using the INITIATE command |
51d4f6f1 | 935 | uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b}; |
355c8b4a MHS |
936 | |
937 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
15c4dc5a | 938 | // LED_A_ON(); |
51d4f6f1 | 939 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
15c4dc5a | 940 | // LED_A_OFF(); |
941 | ||
7d5ebac9 | 942 | if (Demod.len == 0) { |
15c4dc5a | 943 | DbpString("No response from tag"); |
944 | return; | |
7d5ebac9 | 945 | } else { |
132a0217 | 946 | Dbprintf("Randomly generated UID from tag (+ 2 byte CRC): %02x %02x %02x", |
51d4f6f1 | 947 | Demod.output[0], Demod.output[1], Demod.output[2]); |
7d5ebac9 MHS |
948 | } |
949 | // There is a response, SELECT the uid | |
950 | DbpString("Now SELECT tag:"); | |
951 | cmd1[0] = 0x0E; // 0x0E is SELECT | |
952 | cmd1[1] = Demod.output[0]; | |
953 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
355c8b4a MHS |
954 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); |
955 | ||
15c4dc5a | 956 | // LED_A_ON(); |
51d4f6f1 | 957 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
15c4dc5a | 958 | // LED_A_OFF(); |
7d5ebac9 | 959 | if (Demod.len != 3) { |
51d4f6f1 | 960 | Dbprintf("Expected 3 bytes from tag, got %d", Demod.len); |
961 | return; | |
7d5ebac9 MHS |
962 | } |
963 | // Check the CRC of the answer: | |
964 | ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]); | |
965 | if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) { | |
51d4f6f1 | 966 | DbpString("CRC Error reading select response."); |
967 | return; | |
7d5ebac9 MHS |
968 | } |
969 | // Check response from the tag: should be the same UID as the command we just sent: | |
970 | if (cmd1[1] != Demod.output[0]) { | |
132a0217 | 971 | Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]); |
51d4f6f1 | 972 | return; |
7d5ebac9 MHS |
973 | } |
974 | // Tag is now selected, | |
975 | // First get the tag's UID: | |
976 | cmd1[0] = 0x0B; | |
977 | ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]); | |
355c8b4a MHS |
978 | CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one |
979 | ||
15c4dc5a | 980 | // LED_A_ON(); |
51d4f6f1 | 981 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
15c4dc5a | 982 | // LED_A_OFF(); |
7d5ebac9 | 983 | if (Demod.len != 10) { |
51d4f6f1 | 984 | Dbprintf("Expected 10 bytes from tag, got %d", Demod.len); |
985 | return; | |
7d5ebac9 MHS |
986 | } |
987 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
988 | ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]); | |
51d4f6f1 | 989 | if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) { |
132a0217 | 990 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", |
51d4f6f1 | 991 | (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]); |
992 | // Do not return;, let's go on... (we should retry, maybe ?) | |
7d5ebac9 MHS |
993 | } |
994 | Dbprintf("Tag UID (64 bits): %08x %08x", | |
51d4f6f1 | 995 | (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4], |
996 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]); | |
15c4dc5a | 997 | |
7d5ebac9 | 998 | // Now loop to read all 16 blocks, address from 0 to last block |
132a0217 | 999 | Dbprintf("Tag memory dump, block 0 to %d", dwLast); |
7d5ebac9 MHS |
1000 | cmd1[0] = 0x08; |
1001 | i = 0x00; | |
1002 | dwLast++; | |
1003 | for (;;) { | |
51d4f6f1 | 1004 | if (i == dwLast) { |
7d5ebac9 MHS |
1005 | DbpString("System area block (0xff):"); |
1006 | i = 0xff; | |
1007 | } | |
1008 | cmd1[1] = i; | |
1009 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
355c8b4a MHS |
1010 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); |
1011 | ||
15c4dc5a | 1012 | // LED_A_ON(); |
51d4f6f1 | 1013 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
15c4dc5a | 1014 | // LED_A_OFF(); |
7d5ebac9 | 1015 | if (Demod.len != 6) { // Check if we got an answer from the tag |
51d4f6f1 | 1016 | DbpString("Expected 6 bytes from tag, got less..."); |
1017 | return; | |
7d5ebac9 MHS |
1018 | } |
1019 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1020 | ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]); | |
51d4f6f1 | 1021 | if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) { |
132a0217 | 1022 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", |
51d4f6f1 | 1023 | (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]); |
1024 | // Do not return;, let's go on... (we should retry, maybe ?) | |
7d5ebac9 MHS |
1025 | } |
1026 | // Now print out the memory location: | |
132a0217 | 1027 | Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i, |
51d4f6f1 | 1028 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0], |
1029 | (Demod.output[4]<<8)+Demod.output[5]); | |
7d5ebac9 | 1030 | if (i == 0xff) { |
51d4f6f1 | 1031 | break; |
7d5ebac9 MHS |
1032 | } |
1033 | i++; | |
1034 | } | |
15c4dc5a | 1035 | } |
1036 | ||
1037 | ||
1038 | //============================================================================= | |
1039 | // Finally, the `sniffer' combines elements from both the reader and | |
1040 | // simulated tag, to show both sides of the conversation. | |
1041 | //============================================================================= | |
1042 | ||
1043 | //----------------------------------------------------------------------------- | |
1044 | // Record the sequence of commands sent by the reader to the tag, with | |
1045 | // triggering so that we start recording at the point that the tag is moved | |
1046 | // near the reader. | |
1047 | //----------------------------------------------------------------------------- | |
1048 | /* | |
1049 | * Memory usage for this function, (within BigBuf) | |
5b95953d | 1050 | * Last Received command (reader->tag) - MAX_FRAME_SIZE |
1051 | * Last Received command (tag->reader) - MAX_FRAME_SIZE | |
132a0217 | 1052 | * DMA Buffer - DMA_BUFFER_SIZE |
5b95953d | 1053 | * Demodulated samples received - all the rest |
15c4dc5a | 1054 | */ |
51d4f6f1 | 1055 | void RAMFUNC SnoopIso14443b(void) |
15c4dc5a | 1056 | { |
7d5ebac9 MHS |
1057 | // We won't start recording the frames that we acquire until we trigger; |
1058 | // a good trigger condition to get started is probably when we see a | |
1059 | // response from the tag. | |
5b95953d | 1060 | int triggered = TRUE; // TODO: set and evaluate trigger condition |
15c4dc5a | 1061 | |
7d5ebac9 | 1062 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
f71f4deb | 1063 | BigBuf_free(); |
15c4dc5a | 1064 | |
aeadbdb2 MHS |
1065 | clear_trace(); |
1066 | set_tracing(TRUE); | |
1067 | ||
7d5ebac9 | 1068 | // The DMA buffer, used to stream samples from the FPGA |
132a0217 | 1069 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(DMA_BUFFER_SIZE); |
7d5ebac9 | 1070 | int lastRxCounter; |
67ac4bf7 | 1071 | int8_t *upTo; |
7d5ebac9 MHS |
1072 | int ci, cq; |
1073 | int maxBehindBy = 0; | |
1074 | ||
1075 | // Count of samples received so far, so that we can include timing | |
1076 | // information in the trace buffer. | |
1077 | int samples = 0; | |
15c4dc5a | 1078 | |
7d5ebac9 MHS |
1079 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); |
1080 | UartInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
15c4dc5a | 1081 | |
7d5ebac9 MHS |
1082 | // Print some debug information about the buffer sizes |
1083 | Dbprintf("Snooping buffers initialized:"); | |
1084 | Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); | |
aeadbdb2 MHS |
1085 | Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE); |
1086 | Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE); | |
132a0217 | 1087 | Dbprintf(" DMA: %i bytes", DMA_BUFFER_SIZE); |
e30c654b | 1088 | |
51d4f6f1 | 1089 | // Signal field is off, no reader signal, no tag signal |
1090 | LEDsoff(); | |
aeadbdb2 MHS |
1091 | |
1092 | // And put the FPGA in the appropriate mode | |
da586b17 | 1093 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); |
7d5ebac9 MHS |
1094 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1095 | ||
1096 | // Setup for the DMA. | |
1097 | FpgaSetupSsc(); | |
1098 | upTo = dmaBuf; | |
132a0217 | 1099 | lastRxCounter = DMA_BUFFER_SIZE; |
1100 | FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE); | |
aeadbdb2 | 1101 | uint8_t parity[MAX_PARITY_SIZE]; |
5b95953d | 1102 | |
1103 | bool TagIsActive = FALSE; | |
1104 | bool ReaderIsActive = FALSE; | |
1105 | ||
7d5ebac9 MHS |
1106 | // And now we loop, receiving samples. |
1107 | for(;;) { | |
1108 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & | |
132a0217 | 1109 | (DMA_BUFFER_SIZE-1); |
7d5ebac9 MHS |
1110 | if(behindBy > maxBehindBy) { |
1111 | maxBehindBy = behindBy; | |
7d5ebac9 | 1112 | } |
51d4f6f1 | 1113 | |
7d5ebac9 MHS |
1114 | if(behindBy < 2) continue; |
1115 | ||
1116 | ci = upTo[0]; | |
1117 | cq = upTo[1]; | |
1118 | upTo += 2; | |
1119 | lastRxCounter -= 2; | |
132a0217 | 1120 | if(upTo >= dmaBuf + DMA_BUFFER_SIZE) { |
0d9a86c7 | 1121 | upTo = dmaBuf; |
132a0217 | 1122 | lastRxCounter += DMA_BUFFER_SIZE; |
0d9a86c7 | 1123 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; |
132a0217 | 1124 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
51d4f6f1 | 1125 | WDT_HIT(); |
132a0217 | 1126 | if(behindBy > (9*DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not? |
1127 | Dbprintf("blew circular buffer! behindBy=%d", behindBy); | |
51d4f6f1 | 1128 | break; |
1129 | } | |
1130 | if(!tracing) { | |
1131 | DbpString("Reached trace limit"); | |
1132 | break; | |
1133 | } | |
1134 | if(BUTTON_PRESS()) { | |
1135 | DbpString("cancelled"); | |
1136 | break; | |
1137 | } | |
7d5ebac9 | 1138 | } |
15c4dc5a | 1139 | |
7d5ebac9 | 1140 | samples += 2; |
15c4dc5a | 1141 | |
5b95953d | 1142 | if (!TagIsActive) { // no need to try decoding reader data if the tag is sending |
51d4f6f1 | 1143 | if(Handle14443bUartBit(ci & 0x01)) { |
5b95953d | 1144 | if(triggered && tracing) { |
d5875804 | 1145 | //GetParity(Uart.output, Uart.byteCnt, parity); |
51d4f6f1 | 1146 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE); |
5b95953d | 1147 | } |
5b95953d | 1148 | /* And ready to receive another command. */ |
1149 | UartReset(); | |
1150 | /* And also reset the demod code, which might have been */ | |
1151 | /* false-triggered by the commands from the reader. */ | |
1152 | DemodReset(); | |
aeadbdb2 | 1153 | } |
51d4f6f1 | 1154 | if(Handle14443bUartBit(cq & 0x01)) { |
5b95953d | 1155 | if(triggered && tracing) { |
d5875804 | 1156 | //GetParity(Uart.output, Uart.byteCnt, parity); |
51d4f6f1 | 1157 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE); |
5b95953d | 1158 | } |
5b95953d | 1159 | /* And ready to receive another command. */ |
1160 | UartReset(); | |
1161 | /* And also reset the demod code, which might have been */ | |
1162 | /* false-triggered by the commands from the reader. */ | |
1163 | DemodReset(); | |
1164 | } | |
46734099 | 1165 | ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF); |
aeadbdb2 | 1166 | } |
15c4dc5a | 1167 | |
5b95953d | 1168 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time |
46734099 | 1169 | if(Handle14443bSamplesDemod(ci | 0x01, cq | 0x01)) { |
15c4dc5a | 1170 | |
5b95953d | 1171 | //Use samples as a time measurement |
1172 | if(tracing) | |
1173 | { | |
1174 | uint8_t parity[MAX_PARITY_SIZE]; | |
d5875804 | 1175 | //GetParity(Demod.output, Demod.len, parity); |
09c66f1f | 1176 | LogTrace(Demod.output, Demod.len, samples, samples, parity, FALSE); |
5b95953d | 1177 | } |
1178 | triggered = TRUE; | |
15c4dc5a | 1179 | |
5b95953d | 1180 | // And ready to receive another response. |
1181 | DemodReset(); | |
1182 | } | |
d5875804 | 1183 | TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF); |
aeadbdb2 | 1184 | } |
15c4dc5a | 1185 | |
7d5ebac9 | 1186 | } |
51d4f6f1 | 1187 | |
aeadbdb2 | 1188 | FpgaDisableSscDma(); |
51d4f6f1 | 1189 | LEDsoff(); |
aeadbdb2 | 1190 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
15c4dc5a | 1191 | DbpString("Snoop statistics:"); |
355c8b4a | 1192 | Dbprintf(" Max behind by: %i", maxBehindBy); |
15c4dc5a | 1193 | Dbprintf(" Uart State: %x", Uart.state); |
1194 | Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt); | |
1195 | Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax); | |
3000dc4e | 1196 | Dbprintf(" Trace length: %i", BigBuf_get_traceLen()); |
15c4dc5a | 1197 | } |
7cf3ef20 | 1198 | |
67ac4bf7 | 1199 | |
7cf3ef20 | 1200 | /* |
1201 | * Send raw command to tag ISO14443B | |
1202 | * @Input | |
1203 | * datalen len of buffer data | |
1204 | * recv bool when true wait for data from tag and send to client | |
1205 | * powerfield bool leave the field on when true | |
1206 | * data buffer with byte to send | |
1207 | * | |
1208 | * @Output | |
1209 | * none | |
1210 | * | |
1211 | */ | |
67ac4bf7 | 1212 | void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[]) |
7cf3ef20 | 1213 | { |
7d5ebac9 | 1214 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
51d4f6f1 | 1215 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1216 | FpgaSetupSsc(); | |
1217 | ||
1218 | set_tracing(TRUE); | |
1219 | ||
1220 | /* if(!powerfield) { | |
7d5ebac9 MHS |
1221 | // Make sure that we start from off, since the tags are stateful; |
1222 | // confusing things will happen if we don't reset them between reads. | |
1223 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1224 | LED_D_OFF(); | |
1225 | SpinDelay(200); | |
1226 | } | |
51d4f6f1 | 1227 | */ |
7d5ebac9 | 1228 | |
51d4f6f1 | 1229 | // if(!GETBIT(GPIO_LED_D)) { // if field is off |
da586b17 | 1230 | // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); |
51d4f6f1 | 1231 | // // Signal field is on with the appropriate LED |
1232 | // LED_D_ON(); | |
1233 | // SpinDelay(200); | |
1234 | // } | |
7cf3ef20 | 1235 | |
355c8b4a MHS |
1236 | CodeAndTransmit14443bAsReader(data, datalen); |
1237 | ||
51d4f6f1 | 1238 | if(recv) { |
1239 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
1240 | uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE); | |
1241 | cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen); | |
7d5ebac9 | 1242 | } |
51d4f6f1 | 1243 | |
1244 | if(!powerfield) { | |
7d5ebac9 MHS |
1245 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1246 | LED_D_OFF(); | |
1247 | } | |
7cf3ef20 | 1248 | } |
1249 |