]>
Commit | Line | Data |
---|---|---|
f89c7050 M |
1 | //----------------------------------------------------------------------------- |
2 | // Merlok - June 2011 | |
3 | // Roel - Dec 2009 | |
4 | // Unknown author | |
5 | // | |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
9 | //----------------------------------------------------------------------------- | |
10 | // MIFARE Darkside hack | |
11 | //----------------------------------------------------------------------------- | |
f89c7050 | 12 | #include "nonce2key.h" |
f89c7050 | 13 | |
1c611bbd | 14 | int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) { |
0de8e387 | 15 | struct Crypto1State *state; |
a0f33b66 | 16 | uint32_t i, pos, rr = 0, nr_diff; |
0de8e387 | 17 | byte_t bt, ks3x[8], par[8][8]; |
b19bd5d6 | 18 | |
0de8e387 | 19 | // Reset the last three significant bits of the reader nonce |
20 | nr &= 0xffffff1f; | |
f89c7050 | 21 | |
22635d61 | 22 | PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08x)\n", uid, nt, par_info, ks_info, nr); |
0de8e387 | 23 | |
738eeccd | 24 | for ( pos = 0; pos < 8; pos++ ) { |
0de8e387 | 25 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; |
26 | bt = (par_info >> (pos*8)) & 0xff; | |
738eeccd | 27 | |
28 | for ( i = 0; i < 8; i++) { | |
0de8e387 | 29 | par[7-pos][i] = (bt >> i) & 0x01; |
30 | } | |
31 | } | |
f89c7050 | 32 | |
cd91e41c | 33 | printf("+----+--------+---+-----+---------------+\n"); |
0de8e387 | 34 | printf("|diff|{nr} |ks3|ks3^5|parity |\n"); |
35 | printf("+----+--------+---+-----+---------------+\n"); | |
738eeccd | 36 | for ( i = 0; i < 8; i++) { |
0de8e387 | 37 | nr_diff = nr | i << 5; |
5fdf8672 | 38 | printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5); |
39 | ||
a0f33b66 | 40 | for (pos = 0; pos < 7; pos++) printf("%01x,", par[i][pos]); |
0de8e387 | 41 | printf("%01x|\n", par[i][7]); |
42 | } | |
43 | printf("+----+--------+---+-----+---------------+\n"); | |
f89c7050 | 44 | |
5fdf8672 | 45 | clock_t t1 = clock(); |
46 | ||
a0f33b66 | 47 | state = lfsr_common_prefix(nr, rr, ks3x, par); |
59e933fc | 48 | lfsr_rollback_word(state, uid ^ nt, 0); |
a0f33b66 | 49 | crypto1_get_lfsr(state, key); |
50 | crypto1_destroy(state); | |
5fdf8672 | 51 | |
52 | t1 = clock() - t1; | |
53 | if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks \n", (float)t1); | |
a0f33b66 | 54 | return 0; |
f89c7050 | 55 | } |
46cd801c | 56 | |
19693bdc | 57 | int compar_intA(const void * a, const void * b) { |
58 | if (*(int64_t*)b == *(int64_t*)a) return 0; | |
59 | if (*(int64_t*)b > *(int64_t*)a) return 1; | |
60 | return -1; | |
61 | } | |
62 | ||
59e933fc | 63 | // call when PAR == 0, special attack? It seems to need two calls. with same uid, block, keytype |
64 | int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) { | |
65 | ||
cd91e41c | 66 | struct Crypto1State *state; |
67 | uint32_t i, pos, key_count; | |
19693bdc | 68 | uint8_t ks3x[8]; |
cd91e41c | 69 | uint64_t key_recovered; |
70 | int64_t *state_s; | |
59e933fc | 71 | static uint8_t last_blockno; |
72 | static uint8_t last_keytype; | |
cd91e41c | 73 | static uint32_t last_uid; |
74 | static int64_t *last_keylist; | |
59e933fc | 75 | |
76 | if (last_uid != uid && | |
77 | last_blockno != blockno && | |
78 | last_keytype != keytype && | |
79 | last_keylist != NULL) | |
80 | { | |
cd91e41c | 81 | free(last_keylist); |
82 | last_keylist = NULL; | |
83 | } | |
84 | last_uid = uid; | |
59e933fc | 85 | last_blockno = blockno; |
86 | last_keytype = keytype; | |
cd91e41c | 87 | |
88 | // Reset the last three significant bits of the reader nonce | |
89 | nr &= 0xffffff1f; | |
cd91e41c | 90 | |
19693bdc | 91 | // split keystream into array |
cd91e41c | 92 | for (pos=0; pos<8; pos++) { |
93 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; | |
94 | } | |
19693bdc | 95 | |
96 | // find possible states for this keystream | |
cd91e41c | 97 | state = lfsr_common_prefix_ex(nr, ks3x); |
19693bdc | 98 | |
99 | if (!state) { | |
100 | key_count = 0; | |
101 | PrintAndLog("Failed getting states"); | |
102 | return 1; | |
103 | } | |
104 | ||
cd91e41c | 105 | state_s = (int64_t*)state; |
106 | ||
19693bdc | 107 | uint32_t xored = uid ^ nt; |
108 | ||
cd91e41c | 109 | for (i = 0; (state) && ((state + i)->odd != -1); i++) { |
19693bdc | 110 | lfsr_rollback_word(state + i, xored, 0); |
cd91e41c | 111 | crypto1_get_lfsr(state + i, &key_recovered); |
112 | *(state_s + i) = key_recovered; | |
cd91e41c | 113 | } |
19693bdc | 114 | |
115 | qsort(state_s, i, sizeof(int64_t), compar_intA); | |
cd91e41c | 116 | *(state_s + i) = -1; |
117 | ||
19693bdc | 118 | // first call to this function. clear all other stuff and set new found states. |
119 | if (last_keylist == NULL) { | |
120 | key_count = 0; | |
121 | free(last_keylist); | |
122 | last_keylist = state_s; | |
123 | PrintAndLog("parity is all zero, testing special attack. First call, this attack needs at least two calls. Hold on..."); | |
124 | PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08x)\n", uid, nt, ks_info, nr); | |
125 | return 1; | |
126 | } | |
59e933fc | 127 | |
19693bdc | 128 | PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08x)\n", uid, nt, ks_info, nr); |
129 | ||
130 | //Create the intersection: | |
131 | int64_t *p1, *p2, *p3; | |
132 | p1 = p3 = last_keylist; | |
133 | p2 = state_s; | |
59e933fc | 134 | |
19693bdc | 135 | while ( *p1 != -1 && *p2 != -1 ) { |
136 | if (compar_intA(p1, p2) == 0) { | |
137 | printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1); | |
138 | *p3++ = *p1++; | |
139 | p2++; | |
140 | } | |
141 | else { | |
142 | while (compar_intA(p1, p2) == -1) ++p1; | |
143 | while (compar_intA(p1, p2) == 1) ++p2; | |
cd91e41c | 144 | } |
cd91e41c | 145 | } |
19693bdc | 146 | key_count = p3 - last_keylist; |
147 | printf("key_count: %d\n", key_count); | |
148 | if ( key_count == 0 ){ | |
149 | free(state); | |
150 | return 0; | |
151 | } | |
cd91e41c | 152 | |
19693bdc | 153 | // Validate all key candidates with testing each of them with mfCheckKeys |
59e933fc | 154 | uint8_t keyBlock[6] = {0,0,0,0,0,0}; |
cd91e41c | 155 | uint64_t key64; |
156 | for (i = 0; i < key_count; i++) { | |
157 | key64 = *(last_keylist + i); | |
158 | num_to_bytes(key64, 6, keyBlock); | |
159 | key64 = 0; | |
59e933fc | 160 | if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) { |
cd91e41c | 161 | *key = key64; |
162 | free(last_keylist); | |
163 | last_keylist = NULL; | |
164 | free(state); | |
165 | return 0; | |
166 | } | |
59e933fc | 167 | } |
cd91e41c | 168 | return 1; |
169 | } | |
46cd801c | 170 | |
f0e183ec | 171 | // 32 bit recover key from 2 nonces |
ba39db37 | 172 | bool tryMfk32(nonces_t data, uint64_t *outputkey, bool verbose) { |
46cd801c | 173 | struct Crypto1State *s,*t; |
f0e183ec | 174 | uint64_t outkey = 0; |
175 | uint64_t key=0; // recovered key | |
176 | uint32_t uid = data.cuid; | |
177 | uint32_t nt = data.nonce; // first tag challenge (nonce) | |
178 | uint32_t nr0_enc = data.nr; // first encrypted reader challenge | |
179 | uint32_t ar0_enc = data.ar; // first encrypted reader response | |
180 | uint32_t nr1_enc = data.nr2; // second encrypted reader challenge | |
181 | uint32_t ar1_enc = data.ar2; // second encrypted reader response | |
46cd801c | 182 | bool isSuccess = FALSE; |
f0e183ec | 183 | uint8_t counter = 0; |
ba39db37 | 184 | |
185 | clock_t t1 = clock(); | |
02d5a583 | 186 | uint32_t p64 = prng_successor(nt, 64); |
ba39db37 | 187 | |
188 | if ( verbose ) { | |
189 | printf("Recovering key for:\n"); | |
190 | printf(" uid: %08x\n",uid); | |
191 | printf(" nt: %08x\n",nt); | |
192 | printf(" {nr_0}: %08x\n",nr0_enc); | |
193 | printf(" {ar_0}: %08x\n",ar0_enc); | |
194 | printf(" {nr_1}: %08x\n",nr1_enc); | |
195 | printf(" {ar_1}: %08x\n",ar1_enc); | |
196 | printf("\nLFSR succesors of the tag challenge:\n"); | |
197 | printf(" nt': %08x\n", p64); | |
198 | printf(" nt'': %08x\n", prng_successor(p64, 32)); | |
199 | } | |
02d5a583 | 200 | |
201 | s = lfsr_recovery32(ar0_enc ^ p64, 0); | |
46cd801c | 202 | |
203 | for(t = s; t->odd | t->even; ++t) { | |
204 | lfsr_rollback_word(t, 0, 0); | |
205 | lfsr_rollback_word(t, nr0_enc, 1); | |
206 | lfsr_rollback_word(t, uid ^ nt, 0); | |
207 | crypto1_get_lfsr(t, &key); | |
208 | crypto1_word(t, uid ^ nt, 0); | |
209 | crypto1_word(t, nr1_enc, 1); | |
02d5a583 | 210 | if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) { |
f0e183ec | 211 | outkey = key; |
46cd801c | 212 | ++counter; |
f0e183ec | 213 | if (counter==20) break; |
46cd801c | 214 | } |
215 | } | |
f0e183ec | 216 | isSuccess = (counter > 0); |
cd91e41c | 217 | t1 = clock() - t1; |
f0e183ec | 218 | if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d\n", (float)t1, counter); |
02d5a583 | 219 | |
220 | *outputkey = ( isSuccess ) ? outkey : 0; | |
cd91e41c | 221 | crypto1_destroy(s); |
46cd801c | 222 | return isSuccess; |
223 | } | |
224 | ||
ba39db37 | 225 | bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey, bool verbose) { |
738eeccd | 226 | struct Crypto1State *s, *t; |
f0e183ec | 227 | uint64_t outkey = 0; |
cd91e41c | 228 | uint64_t key = 0; // recovered key |
f0e183ec | 229 | uint32_t uid = data.cuid; |
230 | uint32_t nt0 = data.nonce; // first tag challenge (nonce) | |
231 | uint32_t nr0_enc = data.nr; // first encrypted reader challenge | |
232 | uint32_t ar0_enc = data.ar; // first encrypted reader response | |
cd91e41c | 233 | //uint32_t uid1 = le32toh(data+16); |
f0e183ec | 234 | uint32_t nt1 = data.nonce2; // second tag challenge (nonce) |
235 | uint32_t nr1_enc = data.nr2; // second encrypted reader challenge | |
236 | uint32_t ar1_enc = data.ar2; // second encrypted reader response | |
d8af608f | 237 | bool isSuccess = FALSE; |
238 | int counter = 0; | |
ba39db37 | 239 | |
240 | clock_t t1 = clock(); | |
241 | ||
242 | uint32_t p640 = prng_successor(nt0, 64); | |
243 | uint32_t p641 = prng_successor(nt1, 64); | |
d8af608f | 244 | |
ba39db37 | 245 | if (verbose) { |
dfdbfa07 MF |
246 | printf("Recovering key for:\n"); |
247 | printf(" uid: %08x\n", uid); | |
248 | printf(" nt_0: %08x\n", nt0); | |
249 | printf(" {nr_0}: %08x\n", nr0_enc); | |
250 | printf(" {ar_0}: %08x\n", ar0_enc); | |
251 | printf(" nt_1: %08x\n", nt1); | |
252 | printf(" {nr_1}: %08x\n", nr1_enc); | |
253 | printf(" {ar_1}: %08x\n", ar1_enc); | |
dfdbfa07 MF |
254 | printf("\nLFSR succesors of the tag challenge:\n"); |
255 | printf(" nt': %08x\n", p640); | |
256 | printf(" nt'': %08x\n", prng_successor(p640, 32)); | |
257 | } | |
b6e05350 | 258 | |
02d5a583 | 259 | s = lfsr_recovery32(ar0_enc ^ p640, 0); |
d8af608f | 260 | |
261 | for(t = s; t->odd | t->even; ++t) { | |
262 | lfsr_rollback_word(t, 0, 0); | |
263 | lfsr_rollback_word(t, nr0_enc, 1); | |
264 | lfsr_rollback_word(t, uid ^ nt0, 0); | |
265 | crypto1_get_lfsr(t, &key); | |
266 | ||
267 | crypto1_word(t, uid ^ nt1, 0); | |
268 | crypto1_word(t, nr1_enc, 1); | |
02d5a583 | 269 | if (ar1_enc == (crypto1_word(t, 0, 0) ^ p641)) { |
f0e183ec | 270 | outkey=key; |
d8af608f | 271 | ++counter; |
f0e183ec | 272 | if (counter==20) break; |
d8af608f | 273 | } |
274 | } | |
f0e183ec | 275 | isSuccess = (counter > 0); |
cd91e41c | 276 | t1 = clock() - t1; |
f0e183ec | 277 | if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d\n", (float)t1, counter); |
02d5a583 | 278 | |
f0e183ec | 279 | *outputkey = ( isSuccess ) ? outkey : 0; |
cd91e41c | 280 | crypto1_destroy(s); |
d8af608f | 281 | return isSuccess; |
282 | } | |
283 | ||
cd91e41c | 284 | int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){ |
285 | uint32_t uid = le32toh(data); | |
286 | uint32_t nt = le32toh(data+4); // tag challenge | |
287 | uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge | |
288 | uint32_t ar_enc = le32toh(data+12); // encrypted reader response | |
289 | uint32_t at_enc = le32toh(data+16); // encrypted tag response | |
290 | return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey); | |
291 | } | |
46cd801c | 292 | |
cd91e41c | 293 | int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){ |
02d5a583 | 294 | uint64_t key = 0; // recovered key |
295 | uint32_t ks2; // keystream used to encrypt reader response | |
296 | uint32_t ks3; // keystream used to encrypt tag response | |
46cd801c | 297 | struct Crypto1State *revstate; |
46cd801c | 298 | |
cd91e41c | 299 | PrintAndLog("Enter mfkey64"); |
300 | clock_t t1 = clock(); | |
46cd801c | 301 | |
46cd801c | 302 | // Extract the keystream from the messages |
303 | ks2 = ar_enc ^ prng_successor(nt, 64); | |
304 | ks3 = at_enc ^ prng_successor(nt, 96); | |
46cd801c | 305 | revstate = lfsr_recovery64(ks2, ks3); |
306 | lfsr_rollback_word(revstate, 0, 0); | |
307 | lfsr_rollback_word(revstate, 0, 0); | |
308 | lfsr_rollback_word(revstate, nr_enc, 1); | |
309 | lfsr_rollback_word(revstate, uid ^ nt, 0); | |
310 | crypto1_get_lfsr(revstate, &key); | |
02d5a583 | 311 | |
cd91e41c | 312 | PrintAndLog("Found Key: [%012"llx"]", key); |
cd91e41c | 313 | t1 = clock() - t1; |
314 | if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1); | |
02d5a583 | 315 | |
316 | *outputkey = key; | |
317 | crypto1_destroy(revstate); | |
46cd801c | 318 | return 0; |
5fdf8672 | 319 | } |