]>
Commit | Line | Data |
---|---|---|
cee5a30d | 1 | //----------------------------------------------------------------------------- |
2 | // Gerhard de Koning Gans - May 2008 | |
3 | // Hagen Fritsch - June 2010 | |
4 | // Gerhard de Koning Gans - May 2011 | |
1e262141 | 5 | // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation |
cee5a30d | 6 | // |
7 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
8 | // at your option, any later version. See the LICENSE.txt file for the text of | |
9 | // the license. | |
10 | //----------------------------------------------------------------------------- | |
11 | // Routines to support iClass. | |
12 | //----------------------------------------------------------------------------- | |
13 | // Based on ISO14443a implementation. Still in experimental phase. | |
14 | // Contribution made during a security research at Radboud University Nijmegen | |
15 | // | |
16 | // Please feel free to contribute and extend iClass support!! | |
17 | //----------------------------------------------------------------------------- | |
18 | // | |
cee5a30d | 19 | // FIX: |
20 | // ==== | |
21 | // We still have sometimes a demodulation error when snooping iClass communication. | |
22 | // The resulting trace of a read-block-03 command may look something like this: | |
23 | // | |
24 | // + 22279: : 0c 03 e8 01 | |
25 | // | |
26 | // ...with an incorrect answer... | |
27 | // | |
28 | // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc | |
29 | // | |
30 | // We still left the error signalling bytes in the traces like 0xbb | |
31 | // | |
32 | // A correct trace should look like this: | |
33 | // | |
34 | // + 21112: : 0c 03 e8 01 | |
35 | // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 | |
36 | // | |
37 | //----------------------------------------------------------------------------- | |
38 | ||
39 | #include "proxmark3.h" | |
40 | #include "apps.h" | |
41 | #include "util.h" | |
42 | #include "string.h" | |
7e67e42f | 43 | #include "common.h" |
1e262141 | 44 | // Needed for CRC in emulation mode; |
45 | // same construction as in ISO 14443; | |
46 | // different initial value (CRC_ICLASS) | |
47 | #include "iso14443crc.h" | |
c3963755 | 48 | #include "iso15693tools.h" |
cee5a30d | 49 | |
1e262141 | 50 | static int timeout = 4096; |
cee5a30d | 51 | |
52 | // CARD TO READER | |
53 | // Sequence D: 11110000 modulation with subcarrier during first half | |
54 | // Sequence E: 00001111 modulation with subcarrier during second half | |
55 | // Sequence F: 00000000 no modulation with subcarrier | |
56 | // READER TO CARD | |
57 | // Sequence X: 00001100 drop after half a period | |
58 | // Sequence Y: 00000000 no drop | |
59 | // Sequence Z: 11000000 drop at start | |
cee5a30d | 60 | #define SEC_X 0x0c |
61 | #define SEC_Y 0x00 | |
62 | #define SEC_Z 0xc0 | |
63 | ||
1e262141 | 64 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); |
cee5a30d | 65 | |
66 | //----------------------------------------------------------------------------- | |
67 | // The software UART that receives commands from the reader, and its state | |
68 | // variables. | |
69 | //----------------------------------------------------------------------------- | |
70 | static struct { | |
71 | enum { | |
72 | STATE_UNSYNCD, | |
73 | STATE_START_OF_COMMUNICATION, | |
74 | STATE_RECEIVING | |
75 | } state; | |
76 | uint16_t shiftReg; | |
77 | int bitCnt; | |
78 | int byteCnt; | |
79 | int byteCntMax; | |
80 | int posCnt; | |
81 | int nOutOfCnt; | |
82 | int OutOfCnt; | |
83 | int syncBit; | |
1e262141 | 84 | int parityBits; |
85 | int samples; | |
cee5a30d | 86 | int highCnt; |
87 | int swapper; | |
88 | int counter; | |
89 | int bitBuffer; | |
90 | int dropPosition; | |
91 | uint8_t *output; | |
92 | } Uart; | |
93 | ||
1e262141 | 94 | static RAMFUNC int OutOfNDecoding(int bit) |
cee5a30d | 95 | { |
9f693930 | 96 | //int error = 0; |
cee5a30d | 97 | int bitright; |
98 | ||
99 | if(!Uart.bitBuffer) { | |
100 | Uart.bitBuffer = bit ^ 0xFF0; | |
101 | return FALSE; | |
102 | } | |
103 | else { | |
104 | Uart.bitBuffer <<= 4; | |
105 | Uart.bitBuffer ^= bit; | |
106 | } | |
107 | ||
108 | /*if(Uart.swapper) { | |
109 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
110 | Uart.byteCnt++; | |
111 | Uart.swapper = 0; | |
112 | if(Uart.byteCnt > 15) { return TRUE; } | |
113 | } | |
114 | else { | |
115 | Uart.swapper = 1; | |
116 | }*/ | |
117 | ||
118 | if(Uart.state != STATE_UNSYNCD) { | |
119 | Uart.posCnt++; | |
120 | ||
121 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { | |
122 | bit = 0x00; | |
123 | } | |
124 | else { | |
125 | bit = 0x01; | |
126 | } | |
127 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { | |
128 | bitright = 0x00; | |
129 | } | |
130 | else { | |
131 | bitright = 0x01; | |
132 | } | |
133 | if(bit != bitright) { bit = bitright; } | |
134 | ||
135 | ||
136 | // So, now we only have to deal with *bit*, lets see... | |
137 | if(Uart.posCnt == 1) { | |
138 | // measurement first half bitperiod | |
139 | if(!bit) { | |
140 | // Drop in first half means that we are either seeing | |
141 | // an SOF or an EOF. | |
142 | ||
143 | if(Uart.nOutOfCnt == 1) { | |
144 | // End of Communication | |
145 | Uart.state = STATE_UNSYNCD; | |
146 | Uart.highCnt = 0; | |
147 | if(Uart.byteCnt == 0) { | |
148 | // Its not straightforward to show single EOFs | |
149 | // So just leave it and do not return TRUE | |
150 | Uart.output[Uart.byteCnt] = 0xf0; | |
151 | Uart.byteCnt++; | |
152 | ||
153 | // Calculate the parity bit for the client... | |
154 | Uart.parityBits = 1; | |
155 | } | |
156 | else { | |
157 | return TRUE; | |
158 | } | |
159 | } | |
160 | else if(Uart.state != STATE_START_OF_COMMUNICATION) { | |
161 | // When not part of SOF or EOF, it is an error | |
162 | Uart.state = STATE_UNSYNCD; | |
163 | Uart.highCnt = 0; | |
9f693930 | 164 | //error = 4; |
cee5a30d | 165 | } |
166 | } | |
167 | } | |
168 | else { | |
169 | // measurement second half bitperiod | |
170 | // Count the bitslot we are in... (ISO 15693) | |
171 | Uart.nOutOfCnt++; | |
172 | ||
173 | if(!bit) { | |
174 | if(Uart.dropPosition) { | |
175 | if(Uart.state == STATE_START_OF_COMMUNICATION) { | |
9f693930 | 176 | //error = 1; |
cee5a30d | 177 | } |
178 | else { | |
9f693930 | 179 | //error = 7; |
cee5a30d | 180 | } |
181 | // It is an error if we already have seen a drop in current frame | |
182 | Uart.state = STATE_UNSYNCD; | |
183 | Uart.highCnt = 0; | |
184 | } | |
185 | else { | |
186 | Uart.dropPosition = Uart.nOutOfCnt; | |
187 | } | |
188 | } | |
189 | ||
190 | Uart.posCnt = 0; | |
191 | ||
192 | ||
193 | if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { | |
194 | Uart.nOutOfCnt = 0; | |
195 | ||
196 | if(Uart.state == STATE_START_OF_COMMUNICATION) { | |
197 | if(Uart.dropPosition == 4) { | |
198 | Uart.state = STATE_RECEIVING; | |
199 | Uart.OutOfCnt = 256; | |
200 | } | |
201 | else if(Uart.dropPosition == 3) { | |
202 | Uart.state = STATE_RECEIVING; | |
203 | Uart.OutOfCnt = 4; | |
204 | //Uart.output[Uart.byteCnt] = 0xdd; | |
205 | //Uart.byteCnt++; | |
206 | } | |
207 | else { | |
208 | Uart.state = STATE_UNSYNCD; | |
209 | Uart.highCnt = 0; | |
210 | } | |
211 | Uart.dropPosition = 0; | |
212 | } | |
213 | else { | |
214 | // RECEIVING DATA | |
215 | // 1 out of 4 | |
216 | if(!Uart.dropPosition) { | |
217 | Uart.state = STATE_UNSYNCD; | |
218 | Uart.highCnt = 0; | |
9f693930 | 219 | //error = 9; |
cee5a30d | 220 | } |
221 | else { | |
222 | Uart.shiftReg >>= 2; | |
223 | ||
224 | // Swap bit order | |
225 | Uart.dropPosition--; | |
226 | //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } | |
227 | //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } | |
228 | ||
229 | Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); | |
230 | Uart.bitCnt += 2; | |
231 | Uart.dropPosition = 0; | |
232 | ||
233 | if(Uart.bitCnt == 8) { | |
234 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); | |
235 | Uart.byteCnt++; | |
236 | ||
237 | // Calculate the parity bit for the client... | |
238 | Uart.parityBits <<= 1; | |
239 | Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)]; | |
240 | ||
241 | Uart.bitCnt = 0; | |
242 | Uart.shiftReg = 0; | |
243 | } | |
244 | } | |
245 | } | |
246 | } | |
247 | else if(Uart.nOutOfCnt == Uart.OutOfCnt) { | |
248 | // RECEIVING DATA | |
249 | // 1 out of 256 | |
250 | if(!Uart.dropPosition) { | |
251 | Uart.state = STATE_UNSYNCD; | |
252 | Uart.highCnt = 0; | |
9f693930 | 253 | //error = 3; |
cee5a30d | 254 | } |
255 | else { | |
256 | Uart.dropPosition--; | |
257 | Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); | |
258 | Uart.byteCnt++; | |
259 | ||
260 | // Calculate the parity bit for the client... | |
261 | Uart.parityBits <<= 1; | |
262 | Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)]; | |
263 | ||
264 | Uart.bitCnt = 0; | |
265 | Uart.shiftReg = 0; | |
266 | Uart.nOutOfCnt = 0; | |
267 | Uart.dropPosition = 0; | |
268 | } | |
269 | } | |
270 | ||
271 | /*if(error) { | |
272 | Uart.output[Uart.byteCnt] = 0xAA; | |
273 | Uart.byteCnt++; | |
274 | Uart.output[Uart.byteCnt] = error & 0xFF; | |
275 | Uart.byteCnt++; | |
276 | Uart.output[Uart.byteCnt] = 0xAA; | |
277 | Uart.byteCnt++; | |
278 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; | |
279 | Uart.byteCnt++; | |
280 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
281 | Uart.byteCnt++; | |
282 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; | |
283 | Uart.byteCnt++; | |
284 | Uart.output[Uart.byteCnt] = 0xAA; | |
285 | Uart.byteCnt++; | |
286 | return TRUE; | |
287 | }*/ | |
288 | } | |
289 | ||
290 | } | |
291 | else { | |
292 | bit = Uart.bitBuffer & 0xf0; | |
293 | bit >>= 4; | |
294 | bit ^= 0x0F; // drops become 1s ;-) | |
295 | if(bit) { | |
296 | // should have been high or at least (4 * 128) / fc | |
297 | // according to ISO this should be at least (9 * 128 + 20) / fc | |
298 | if(Uart.highCnt == 8) { | |
299 | // we went low, so this could be start of communication | |
300 | // it turns out to be safer to choose a less significant | |
301 | // syncbit... so we check whether the neighbour also represents the drop | |
302 | Uart.posCnt = 1; // apparently we are busy with our first half bit period | |
303 | Uart.syncBit = bit & 8; | |
304 | Uart.samples = 3; | |
305 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } | |
306 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } | |
307 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } | |
308 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } | |
309 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; | |
310 | if(Uart.syncBit && (Uart.bitBuffer & 8)) { | |
311 | Uart.syncBit = 8; | |
312 | ||
313 | // the first half bit period is expected in next sample | |
314 | Uart.posCnt = 0; | |
315 | Uart.samples = 3; | |
316 | } | |
317 | } | |
318 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } | |
319 | ||
320 | Uart.syncBit <<= 4; | |
321 | Uart.state = STATE_START_OF_COMMUNICATION; | |
322 | Uart.bitCnt = 0; | |
323 | Uart.byteCnt = 0; | |
324 | Uart.parityBits = 0; | |
325 | Uart.nOutOfCnt = 0; | |
326 | Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 | |
327 | Uart.dropPosition = 0; | |
328 | Uart.shiftReg = 0; | |
9f693930 | 329 | //error = 0; |
cee5a30d | 330 | } |
331 | else { | |
332 | Uart.highCnt = 0; | |
333 | } | |
334 | } | |
335 | else { | |
336 | if(Uart.highCnt < 8) { | |
337 | Uart.highCnt++; | |
338 | } | |
339 | } | |
340 | } | |
341 | ||
342 | return FALSE; | |
343 | } | |
344 | ||
345 | //============================================================================= | |
1e262141 | 346 | // Manchester |
cee5a30d | 347 | //============================================================================= |
348 | ||
349 | static struct { | |
350 | enum { | |
351 | DEMOD_UNSYNCD, | |
352 | DEMOD_START_OF_COMMUNICATION, | |
353 | DEMOD_START_OF_COMMUNICATION2, | |
354 | DEMOD_START_OF_COMMUNICATION3, | |
355 | DEMOD_SOF_COMPLETE, | |
356 | DEMOD_MANCHESTER_D, | |
357 | DEMOD_MANCHESTER_E, | |
358 | DEMOD_END_OF_COMMUNICATION, | |
359 | DEMOD_END_OF_COMMUNICATION2, | |
360 | DEMOD_MANCHESTER_F, | |
361 | DEMOD_ERROR_WAIT | |
362 | } state; | |
363 | int bitCount; | |
364 | int posCount; | |
365 | int syncBit; | |
366 | int parityBits; | |
367 | uint16_t shiftReg; | |
368 | int buffer; | |
369 | int buffer2; | |
370 | int buffer3; | |
371 | int buff; | |
372 | int samples; | |
373 | int len; | |
374 | enum { | |
375 | SUB_NONE, | |
376 | SUB_FIRST_HALF, | |
377 | SUB_SECOND_HALF, | |
378 | SUB_BOTH | |
379 | } sub; | |
380 | uint8_t *output; | |
381 | } Demod; | |
382 | ||
383 | static RAMFUNC int ManchesterDecoding(int v) | |
384 | { | |
385 | int bit; | |
386 | int modulation; | |
387 | int error = 0; | |
388 | ||
389 | bit = Demod.buffer; | |
390 | Demod.buffer = Demod.buffer2; | |
391 | Demod.buffer2 = Demod.buffer3; | |
392 | Demod.buffer3 = v; | |
393 | ||
394 | if(Demod.buff < 3) { | |
395 | Demod.buff++; | |
396 | return FALSE; | |
397 | } | |
398 | ||
399 | if(Demod.state==DEMOD_UNSYNCD) { | |
400 | Demod.output[Demod.len] = 0xfa; | |
401 | Demod.syncBit = 0; | |
402 | //Demod.samples = 0; | |
403 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part | |
cee5a30d | 404 | |
405 | if(bit & 0x08) { | |
406 | Demod.syncBit = 0x08; | |
407 | } | |
408 | ||
409 | if(bit & 0x04) { | |
410 | if(Demod.syncBit) { | |
411 | bit <<= 4; | |
412 | } | |
413 | Demod.syncBit = 0x04; | |
414 | } | |
415 | ||
416 | if(bit & 0x02) { | |
417 | if(Demod.syncBit) { | |
418 | bit <<= 2; | |
419 | } | |
420 | Demod.syncBit = 0x02; | |
421 | } | |
422 | ||
423 | if(bit & 0x01 && Demod.syncBit) { | |
424 | Demod.syncBit = 0x01; | |
425 | } | |
426 | ||
427 | if(Demod.syncBit) { | |
428 | Demod.len = 0; | |
429 | Demod.state = DEMOD_START_OF_COMMUNICATION; | |
430 | Demod.sub = SUB_FIRST_HALF; | |
431 | Demod.bitCount = 0; | |
432 | Demod.shiftReg = 0; | |
433 | Demod.parityBits = 0; | |
434 | Demod.samples = 0; | |
435 | if(Demod.posCount) { | |
436 | //if(trigger) LED_A_OFF(); // Not useful in this case... | |
437 | switch(Demod.syncBit) { | |
438 | case 0x08: Demod.samples = 3; break; | |
439 | case 0x04: Demod.samples = 2; break; | |
440 | case 0x02: Demod.samples = 1; break; | |
441 | case 0x01: Demod.samples = 0; break; | |
442 | } | |
443 | // SOF must be long burst... otherwise stay unsynced!!! | |
444 | if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { | |
445 | Demod.state = DEMOD_UNSYNCD; | |
446 | } | |
447 | } | |
448 | else { | |
449 | // SOF must be long burst... otherwise stay unsynced!!! | |
450 | if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { | |
451 | Demod.state = DEMOD_UNSYNCD; | |
452 | error = 0x88; | |
453 | } | |
454 | ||
455 | } | |
456 | error = 0; | |
457 | ||
458 | } | |
459 | } | |
460 | else { | |
461 | modulation = bit & Demod.syncBit; | |
462 | modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
463 | //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
464 | ||
465 | Demod.samples += 4; | |
466 | ||
467 | if(Demod.posCount==0) { | |
468 | Demod.posCount = 1; | |
469 | if(modulation) { | |
470 | Demod.sub = SUB_FIRST_HALF; | |
471 | } | |
472 | else { | |
473 | Demod.sub = SUB_NONE; | |
474 | } | |
475 | } | |
476 | else { | |
477 | Demod.posCount = 0; | |
478 | /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { | |
479 | if(Demod.state!=DEMOD_ERROR_WAIT) { | |
480 | Demod.state = DEMOD_ERROR_WAIT; | |
481 | Demod.output[Demod.len] = 0xaa; | |
482 | error = 0x01; | |
483 | } | |
484 | }*/ | |
485 | //else if(modulation) { | |
486 | if(modulation) { | |
487 | if(Demod.sub == SUB_FIRST_HALF) { | |
488 | Demod.sub = SUB_BOTH; | |
489 | } | |
490 | else { | |
491 | Demod.sub = SUB_SECOND_HALF; | |
492 | } | |
493 | } | |
494 | else if(Demod.sub == SUB_NONE) { | |
495 | if(Demod.state == DEMOD_SOF_COMPLETE) { | |
496 | Demod.output[Demod.len] = 0x0f; | |
497 | Demod.len++; | |
498 | Demod.parityBits <<= 1; | |
499 | Demod.parityBits ^= OddByteParity[0x0f]; | |
500 | Demod.state = DEMOD_UNSYNCD; | |
501 | // error = 0x0f; | |
502 | return TRUE; | |
503 | } | |
504 | else { | |
505 | Demod.state = DEMOD_ERROR_WAIT; | |
506 | error = 0x33; | |
507 | } | |
508 | /*if(Demod.state!=DEMOD_ERROR_WAIT) { | |
509 | Demod.state = DEMOD_ERROR_WAIT; | |
510 | Demod.output[Demod.len] = 0xaa; | |
511 | error = 0x01; | |
512 | }*/ | |
513 | } | |
514 | ||
515 | switch(Demod.state) { | |
516 | case DEMOD_START_OF_COMMUNICATION: | |
517 | if(Demod.sub == SUB_BOTH) { | |
518 | //Demod.state = DEMOD_MANCHESTER_D; | |
519 | Demod.state = DEMOD_START_OF_COMMUNICATION2; | |
520 | Demod.posCount = 1; | |
521 | Demod.sub = SUB_NONE; | |
522 | } | |
523 | else { | |
524 | Demod.output[Demod.len] = 0xab; | |
525 | Demod.state = DEMOD_ERROR_WAIT; | |
526 | error = 0xd2; | |
527 | } | |
528 | break; | |
529 | case DEMOD_START_OF_COMMUNICATION2: | |
530 | if(Demod.sub == SUB_SECOND_HALF) { | |
531 | Demod.state = DEMOD_START_OF_COMMUNICATION3; | |
532 | } | |
533 | else { | |
534 | Demod.output[Demod.len] = 0xab; | |
535 | Demod.state = DEMOD_ERROR_WAIT; | |
536 | error = 0xd3; | |
537 | } | |
538 | break; | |
539 | case DEMOD_START_OF_COMMUNICATION3: | |
540 | if(Demod.sub == SUB_SECOND_HALF) { | |
541 | // Demod.state = DEMOD_MANCHESTER_D; | |
542 | Demod.state = DEMOD_SOF_COMPLETE; | |
543 | //Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
544 | //Demod.len++; | |
545 | } | |
546 | else { | |
547 | Demod.output[Demod.len] = 0xab; | |
548 | Demod.state = DEMOD_ERROR_WAIT; | |
549 | error = 0xd4; | |
550 | } | |
551 | break; | |
552 | case DEMOD_SOF_COMPLETE: | |
553 | case DEMOD_MANCHESTER_D: | |
554 | case DEMOD_MANCHESTER_E: | |
555 | // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) | |
556 | // 00001111 = 1 (0 in 14443) | |
557 | if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF | |
558 | Demod.bitCount++; | |
559 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; | |
560 | Demod.state = DEMOD_MANCHESTER_D; | |
561 | } | |
562 | else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF | |
563 | Demod.bitCount++; | |
564 | Demod.shiftReg >>= 1; | |
565 | Demod.state = DEMOD_MANCHESTER_E; | |
566 | } | |
567 | else if(Demod.sub == SUB_BOTH) { | |
568 | Demod.state = DEMOD_MANCHESTER_F; | |
569 | } | |
570 | else { | |
571 | Demod.state = DEMOD_ERROR_WAIT; | |
572 | error = 0x55; | |
573 | } | |
574 | break; | |
575 | ||
576 | case DEMOD_MANCHESTER_F: | |
577 | // Tag response does not need to be a complete byte! | |
578 | if(Demod.len > 0 || Demod.bitCount > 0) { | |
579 | if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF | |
580 | Demod.shiftReg >>= (9 - Demod.bitCount); | |
581 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
582 | Demod.len++; | |
583 | // No parity bit, so just shift a 0 | |
584 | Demod.parityBits <<= 1; | |
585 | } | |
586 | ||
587 | Demod.state = DEMOD_UNSYNCD; | |
588 | return TRUE; | |
589 | } | |
590 | else { | |
591 | Demod.output[Demod.len] = 0xad; | |
592 | Demod.state = DEMOD_ERROR_WAIT; | |
593 | error = 0x03; | |
594 | } | |
595 | break; | |
596 | ||
597 | case DEMOD_ERROR_WAIT: | |
598 | Demod.state = DEMOD_UNSYNCD; | |
599 | break; | |
600 | ||
601 | default: | |
602 | Demod.output[Demod.len] = 0xdd; | |
603 | Demod.state = DEMOD_UNSYNCD; | |
604 | break; | |
605 | } | |
606 | ||
607 | /*if(Demod.bitCount>=9) { | |
608 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
609 | Demod.len++; | |
610 | ||
611 | Demod.parityBits <<= 1; | |
612 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); | |
613 | ||
614 | Demod.bitCount = 0; | |
615 | Demod.shiftReg = 0; | |
616 | }*/ | |
617 | if(Demod.bitCount>=8) { | |
618 | Demod.shiftReg >>= 1; | |
619 | Demod.output[Demod.len] = (Demod.shiftReg & 0xff); | |
620 | Demod.len++; | |
621 | ||
622 | // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT | |
623 | Demod.parityBits <<= 1; | |
624 | Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)]; | |
625 | ||
626 | Demod.bitCount = 0; | |
627 | Demod.shiftReg = 0; | |
628 | } | |
629 | ||
630 | if(error) { | |
631 | Demod.output[Demod.len] = 0xBB; | |
632 | Demod.len++; | |
633 | Demod.output[Demod.len] = error & 0xFF; | |
634 | Demod.len++; | |
635 | Demod.output[Demod.len] = 0xBB; | |
636 | Demod.len++; | |
637 | Demod.output[Demod.len] = bit & 0xFF; | |
638 | Demod.len++; | |
639 | Demod.output[Demod.len] = Demod.buffer & 0xFF; | |
640 | Demod.len++; | |
641 | // Look harder ;-) | |
642 | Demod.output[Demod.len] = Demod.buffer2 & 0xFF; | |
643 | Demod.len++; | |
644 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
645 | Demod.len++; | |
646 | Demod.output[Demod.len] = 0xBB; | |
647 | Demod.len++; | |
648 | return TRUE; | |
649 | } | |
650 | ||
651 | } | |
652 | ||
653 | } // end (state != UNSYNCED) | |
654 | ||
655 | return FALSE; | |
656 | } | |
657 | ||
658 | //============================================================================= | |
1e262141 | 659 | // Finally, a `sniffer' for iClass communication |
cee5a30d | 660 | // Both sides of communication! |
661 | //============================================================================= | |
662 | ||
663 | //----------------------------------------------------------------------------- | |
664 | // Record the sequence of commands sent by the reader to the tag, with | |
665 | // triggering so that we start recording at the point that the tag is moved | |
666 | // near the reader. | |
667 | //----------------------------------------------------------------------------- | |
668 | void RAMFUNC SnoopIClass(void) | |
669 | { | |
1e262141 | 670 | // DEFINED ABOVE |
671 | // #define RECV_CMD_OFFSET 3032 | |
672 | // #define RECV_RES_OFFSET 3096 | |
673 | // #define DMA_BUFFER_OFFSET 3160 | |
674 | // #define DMA_BUFFER_SIZE 4096 | |
81cd0474 | 675 | // #define TRACE_SIZE 3000 |
cee5a30d | 676 | |
677 | // We won't start recording the frames that we acquire until we trigger; | |
678 | // a good trigger condition to get started is probably when we see a | |
679 | // response from the tag. | |
9f693930 | 680 | //int triggered = FALSE; // FALSE to wait first for card |
cee5a30d | 681 | |
682 | // The command (reader -> tag) that we're receiving. | |
683 | // The length of a received command will in most cases be no more than 18 bytes. | |
684 | // So 32 should be enough! | |
685 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
686 | // The response (tag -> reader) that we're receiving. | |
687 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); | |
688 | ||
689 | // As we receive stuff, we copy it from receivedCmd or receivedResponse | |
690 | // into trace, along with its length and other annotations. | |
691 | //uint8_t *trace = (uint8_t *)BigBuf; | |
692 | ||
1e262141 | 693 | // reset traceLen to 0 |
694 | iso14a_set_tracing(TRUE); | |
d19929cb | 695 | iso14a_clear_trace(); |
1e262141 | 696 | iso14a_set_trigger(FALSE); |
cee5a30d | 697 | |
698 | // The DMA buffer, used to stream samples from the FPGA | |
699 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; | |
700 | int lastRxCounter; | |
701 | int8_t *upTo; | |
702 | int smpl; | |
703 | int maxBehindBy = 0; | |
704 | ||
705 | // Count of samples received so far, so that we can include timing | |
706 | // information in the trace buffer. | |
707 | int samples = 0; | |
708 | rsamples = 0; | |
709 | ||
710 | memset(trace, 0x44, RECV_CMD_OFFSET); | |
711 | ||
712 | // Set up the demodulator for tag -> reader responses. | |
713 | Demod.output = receivedResponse; | |
714 | Demod.len = 0; | |
715 | Demod.state = DEMOD_UNSYNCD; | |
716 | ||
717 | // Setup for the DMA. | |
718 | FpgaSetupSsc(); | |
719 | upTo = dmaBuf; | |
720 | lastRxCounter = DMA_BUFFER_SIZE; | |
721 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
722 | ||
723 | // And the reader -> tag commands | |
724 | memset(&Uart, 0, sizeof(Uart)); | |
725 | Uart.output = receivedCmd; | |
726 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// | |
727 | Uart.state = STATE_UNSYNCD; | |
728 | ||
729 | // And put the FPGA in the appropriate mode | |
730 | // Signal field is off with the appropriate LED | |
731 | LED_D_OFF(); | |
732 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
733 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
734 | ||
735 | int div = 0; | |
736 | //int div2 = 0; | |
737 | int decbyte = 0; | |
738 | int decbyter = 0; | |
739 | ||
740 | // And now we loop, receiving samples. | |
741 | for(;;) { | |
742 | LED_A_ON(); | |
743 | WDT_HIT(); | |
744 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & | |
745 | (DMA_BUFFER_SIZE-1); | |
746 | if(behindBy > maxBehindBy) { | |
747 | maxBehindBy = behindBy; | |
748 | if(behindBy > 400) { | |
749 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); | |
750 | goto done; | |
751 | } | |
752 | } | |
753 | if(behindBy < 1) continue; | |
754 | ||
755 | LED_A_OFF(); | |
756 | smpl = upTo[0]; | |
757 | upTo++; | |
758 | lastRxCounter -= 1; | |
759 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { | |
760 | upTo -= DMA_BUFFER_SIZE; | |
761 | lastRxCounter += DMA_BUFFER_SIZE; | |
762 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
763 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
764 | } | |
765 | ||
766 | //samples += 4; | |
767 | samples += 1; | |
768 | //div2++; | |
769 | ||
770 | //if(div2 > 3) { | |
771 | //div2 = 0; | |
772 | //decbyte ^= ((smpl & 0x01) << (3 - div)); | |
773 | //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1)) << (3 - div)); // better already... | |
774 | //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1) | ((smpl & 0x04) >> 2)) << (3 - div)); // even better... | |
775 | if(smpl & 0xF) { | |
776 | decbyte ^= (1 << (3 - div)); | |
777 | } | |
778 | //decbyte ^= (MajorityNibble[(smpl & 0x0F)] << (3 - div)); | |
779 | ||
780 | // FOR READER SIDE COMMUMICATION... | |
781 | //decbyte ^= ((smpl & 0x10) << (3 - div)); | |
782 | decbyter <<= 2; | |
783 | decbyter ^= (smpl & 0x30); | |
784 | ||
785 | div++; | |
786 | ||
787 | if((div + 1) % 2 == 0) { | |
788 | smpl = decbyter; | |
1e262141 | 789 | if(OutOfNDecoding((smpl & 0xF0) >> 4)) { |
cee5a30d | 790 | rsamples = samples - Uart.samples; |
791 | LED_C_ON(); | |
792 | //if(triggered) { | |
793 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
794 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
795 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
796 | trace[traceLen++] = ((rsamples >> 24) & 0xff); | |
797 | trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); | |
798 | trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); | |
799 | trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); | |
800 | trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); | |
801 | trace[traceLen++] = Uart.byteCnt; | |
802 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); | |
803 | traceLen += Uart.byteCnt; | |
81cd0474 | 804 | if(traceLen > TRACE_SIZE) break; |
cee5a30d | 805 | //} |
806 | /* And ready to receive another command. */ | |
807 | Uart.state = STATE_UNSYNCD; | |
808 | /* And also reset the demod code, which might have been */ | |
809 | /* false-triggered by the commands from the reader. */ | |
810 | Demod.state = DEMOD_UNSYNCD; | |
811 | LED_B_OFF(); | |
812 | Uart.byteCnt = 0; | |
813 | } | |
814 | decbyter = 0; | |
815 | } | |
816 | ||
817 | if(div > 3) { | |
818 | smpl = decbyte; | |
819 | if(ManchesterDecoding(smpl & 0x0F)) { | |
820 | rsamples = samples - Demod.samples; | |
821 | LED_B_ON(); | |
822 | ||
823 | // timestamp, as a count of samples | |
824 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
825 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
826 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
827 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); | |
828 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); | |
829 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); | |
830 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); | |
831 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); | |
832 | // length | |
833 | trace[traceLen++] = Demod.len; | |
834 | memcpy(trace+traceLen, receivedResponse, Demod.len); | |
835 | traceLen += Demod.len; | |
81cd0474 | 836 | if(traceLen > TRACE_SIZE) break; |
cee5a30d | 837 | |
9f693930 | 838 | //triggered = TRUE; |
cee5a30d | 839 | |
840 | // And ready to receive another response. | |
841 | memset(&Demod, 0, sizeof(Demod)); | |
842 | Demod.output = receivedResponse; | |
843 | Demod.state = DEMOD_UNSYNCD; | |
844 | LED_C_OFF(); | |
845 | } | |
846 | ||
847 | div = 0; | |
848 | decbyte = 0x00; | |
849 | } | |
850 | //} | |
851 | ||
852 | if(BUTTON_PRESS()) { | |
853 | DbpString("cancelled_a"); | |
854 | goto done; | |
855 | } | |
856 | } | |
857 | ||
858 | DbpString("COMMAND FINISHED"); | |
859 | ||
860 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
861 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
862 | ||
863 | done: | |
864 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
865 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
866 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
867 | LED_A_OFF(); | |
868 | LED_B_OFF(); | |
1e262141 | 869 | LED_C_OFF(); |
870 | LED_D_OFF(); | |
871 | } | |
872 | ||
912a3e94 | 873 | void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { |
874 | int i; | |
875 | for(i = 0; i < 8; i++) { | |
876 | rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); | |
1e262141 | 877 | } |
878 | } | |
879 | ||
880 | //----------------------------------------------------------------------------- | |
881 | // Wait for commands from reader | |
882 | // Stop when button is pressed | |
883 | // Or return TRUE when command is captured | |
884 | //----------------------------------------------------------------------------- | |
885 | static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) | |
886 | { | |
912a3e94 | 887 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen |
1e262141 | 888 | // only, since we are receiving, not transmitting). |
889 | // Signal field is off with the appropriate LED | |
890 | LED_D_OFF(); | |
891 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
892 | ||
893 | // Now run a `software UART' on the stream of incoming samples. | |
894 | Uart.output = received; | |
895 | Uart.byteCntMax = maxLen; | |
896 | Uart.state = STATE_UNSYNCD; | |
897 | ||
898 | for(;;) { | |
899 | WDT_HIT(); | |
900 | ||
901 | if(BUTTON_PRESS()) return FALSE; | |
902 | ||
903 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
904 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
905 | } | |
906 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
907 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
908 | /*if(OutOfNDecoding((b & 0xf0) >> 4)) { | |
909 | *len = Uart.byteCnt; | |
910 | return TRUE; | |
911 | }*/ | |
912 | if(OutOfNDecoding(b & 0x0f)) { | |
913 | *len = Uart.byteCnt; | |
914 | return TRUE; | |
915 | } | |
916 | } | |
917 | } | |
918 | } | |
919 | ||
920 | ||
921 | //----------------------------------------------------------------------------- | |
922 | // Prepare tag messages | |
923 | //----------------------------------------------------------------------------- | |
924 | static void CodeIClassTagAnswer(const uint8_t *cmd, int len) | |
925 | { | |
926 | int i; | |
927 | ||
928 | ToSendReset(); | |
929 | ||
930 | // Send SOF | |
931 | ToSend[++ToSendMax] = 0x00; | |
932 | ToSend[++ToSendMax] = 0x00; | |
933 | ToSend[++ToSendMax] = 0x00; | |
934 | ToSend[++ToSendMax] = 0xff; | |
935 | ToSend[++ToSendMax] = 0xff; | |
936 | ToSend[++ToSendMax] = 0xff; | |
937 | ToSend[++ToSendMax] = 0x00; | |
938 | ToSend[++ToSendMax] = 0xff; | |
939 | ||
940 | for(i = 0; i < len; i++) { | |
941 | int j; | |
942 | uint8_t b = cmd[i]; | |
943 | ||
944 | // Data bits | |
945 | for(j = 0; j < 8; j++) { | |
946 | if(b & 1) { | |
947 | ToSend[++ToSendMax] = 0x00; | |
948 | ToSend[++ToSendMax] = 0xff; | |
949 | } else { | |
950 | ToSend[++ToSendMax] = 0xff; | |
951 | ToSend[++ToSendMax] = 0x00; | |
952 | } | |
953 | b >>= 1; | |
954 | } | |
955 | } | |
956 | ||
957 | // Send EOF | |
958 | ToSend[++ToSendMax] = 0xff; | |
959 | ToSend[++ToSendMax] = 0x00; | |
960 | ToSend[++ToSendMax] = 0xff; | |
961 | ToSend[++ToSendMax] = 0xff; | |
962 | ToSend[++ToSendMax] = 0xff; | |
963 | ToSend[++ToSendMax] = 0x00; | |
964 | ToSend[++ToSendMax] = 0x00; | |
965 | ToSend[++ToSendMax] = 0x00; | |
966 | ||
967 | // Convert from last byte pos to length | |
968 | ToSendMax++; | |
969 | } | |
970 | ||
971 | // Only SOF | |
972 | static void CodeIClassTagSOF() | |
973 | { | |
974 | ToSendReset(); | |
975 | ||
976 | // Send SOF | |
977 | ToSend[++ToSendMax] = 0x00; | |
978 | ToSend[++ToSendMax] = 0x00; | |
979 | ToSend[++ToSendMax] = 0x00; | |
980 | ToSend[++ToSendMax] = 0xff; | |
981 | ToSend[++ToSendMax] = 0xff; | |
982 | ToSend[++ToSendMax] = 0xff; | |
983 | ToSend[++ToSendMax] = 0x00; | |
984 | ToSend[++ToSendMax] = 0xff; | |
985 | ||
986 | // Convert from last byte pos to length | |
987 | ToSendMax++; | |
988 | } | |
989 | ||
990 | //----------------------------------------------------------------------------- | |
991 | // Simulate iClass Card | |
992 | // Only CSN (Card Serial Number) | |
993 | // | |
994 | //----------------------------------------------------------------------------- | |
995 | void SimulateIClass(uint8_t arg0, uint8_t *datain) | |
996 | { | |
1e262141 | 997 | uint8_t simType = arg0; |
1e262141 | 998 | |
81cd0474 | 999 | // Enable and clear the trace |
1000 | tracing = TRUE; | |
1001 | traceLen = 0; | |
1002 | memset(trace, 0x44, TRACE_SIZE); | |
1003 | ||
1e262141 | 1004 | // CSN followed by two CRC bytes |
1e262141 | 1005 | uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
912a3e94 | 1006 | uint8_t response3[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; |
1e262141 | 1007 | |
1008 | // e-Purse | |
1009 | uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1e262141 | 1010 | |
1011 | if(simType == 0) { | |
1012 | // Use the CSN from commandline | |
1013 | memcpy(response3, datain, 8); | |
1014 | } | |
1015 | ||
1016 | // Construct anticollision-CSN | |
912a3e94 | 1017 | rotateCSN(response3,response2); |
1e262141 | 1018 | |
1019 | // Compute CRC on both CSNs | |
1020 | ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]); | |
1021 | ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]); | |
1022 | ||
1023 | // Reader 0a | |
1024 | // Tag 0f | |
1025 | // Reader 0c | |
1026 | // Tag anticoll. CSN | |
1027 | // Reader 81 anticoll. CSN | |
1028 | // Tag CSN | |
1029 | ||
81cd0474 | 1030 | uint8_t *resp; |
1031 | int respLen; | |
1032 | uint8_t* respdata = NULL; | |
1033 | int respsize = 0; | |
1034 | uint8_t sof = 0x0f; | |
1e262141 | 1035 | |
1036 | // Respond SOF -- takes 8 bytes | |
81cd0474 | 1037 | uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); |
1e262141 | 1038 | int resp1Len; |
1039 | ||
1040 | // Anticollision CSN (rotated CSN) | |
1041 | // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) | |
81cd0474 | 1042 | uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10); |
1e262141 | 1043 | int resp2Len; |
1044 | ||
1045 | // CSN | |
1046 | // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) | |
81cd0474 | 1047 | uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190); |
912a3e94 | 1048 | int resp3Len; |
1e262141 | 1049 | |
1050 | // e-Purse | |
1051 | // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit) | |
81cd0474 | 1052 | uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370); |
1e262141 | 1053 | int resp4Len; |
1054 | ||
1055 | // + 1720.. | |
81cd0474 | 1056 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); |
1057 | memset(receivedCmd, 0x44, RECV_CMD_SIZE); | |
1e262141 | 1058 | int len; |
1059 | ||
1e262141 | 1060 | // Prepare card messages |
1061 | ToSendMax = 0; | |
1062 | ||
1063 | // First card answer: SOF | |
1064 | CodeIClassTagSOF(); | |
1065 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; | |
1066 | ||
1067 | // Anticollision CSN | |
1068 | CodeIClassTagAnswer(response2, sizeof(response2)); | |
1069 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; | |
1070 | ||
1071 | // CSN | |
1072 | CodeIClassTagAnswer(response3, sizeof(response3)); | |
912a3e94 | 1073 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; |
1e262141 | 1074 | |
1075 | // e-Purse | |
1076 | CodeIClassTagAnswer(response4, sizeof(response4)); | |
1077 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; | |
1078 | ||
1079 | // We need to listen to the high-frequency, peak-detected path. | |
1080 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1081 | FpgaSetupSsc(); | |
1082 | ||
1083 | // To control where we are in the protocol | |
1e262141 | 1084 | int cmdsRecvd = 0; |
912a3e94 | 1085 | |
1e262141 | 1086 | LED_A_ON(); |
1087 | for(;;) { | |
1088 | LED_B_OFF(); | |
1089 | if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { | |
81cd0474 | 1090 | DbpString("button press"); |
1e262141 | 1091 | break; |
81cd0474 | 1092 | } |
1e262141 | 1093 | |
81cd0474 | 1094 | // Okay, look at the command now. |
1095 | if(receivedCmd[0] == 0x0a) { | |
1e262141 | 1096 | // Reader in anticollission phase |
1097 | resp = resp1; respLen = resp1Len; //order = 1; | |
81cd0474 | 1098 | respdata = &sof; |
1099 | respsize = sizeof(sof); | |
1e262141 | 1100 | //resp = resp2; respLen = resp2Len; order = 2; |
1101 | //DbpString("Hello request from reader:"); | |
1102 | } else if(receivedCmd[0] == 0x0c) { | |
1103 | // Reader asks for anticollission CSN | |
1104 | resp = resp2; respLen = resp2Len; //order = 2; | |
81cd0474 | 1105 | respdata = response2; |
1106 | respsize = sizeof(response2); | |
1e262141 | 1107 | //DbpString("Reader requests anticollission CSN:"); |
1108 | } else if(receivedCmd[0] == 0x81) { | |
1109 | // Reader selects anticollission CSN. | |
1110 | // Tag sends the corresponding real CSN | |
912a3e94 | 1111 | resp = resp3; respLen = resp3Len; //order = 3; |
81cd0474 | 1112 | respdata = response3; |
1113 | respsize = sizeof(response3); | |
1e262141 | 1114 | //DbpString("Reader selects anticollission CSN:"); |
1115 | } else if(receivedCmd[0] == 0x88) { | |
1116 | // Read e-purse (88 02) | |
1117 | resp = resp4; respLen = resp4Len; //order = 4; | |
81cd0474 | 1118 | respdata = response4; |
1119 | respsize = sizeof(response4); | |
1e262141 | 1120 | LED_B_ON(); |
1121 | } else if(receivedCmd[0] == 0x05) { | |
1122 | // Reader random and reader MAC!!! | |
1123 | // Lets store this ;-) | |
81cd0474 | 1124 | /* |
912a3e94 | 1125 | Dbprintf(" CSN: %02x %02x %02x %02x %02x %02x %02x %02x", |
1e262141 | 1126 | response3[0], response3[1], response3[2], |
1127 | response3[3], response3[4], response3[5], | |
1128 | response3[6], response3[7]); | |
81cd0474 | 1129 | */ |
1e262141 | 1130 | Dbprintf("READER AUTH (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x", |
1131 | len, | |
1132 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1133 | receivedCmd[3], receivedCmd[4], receivedCmd[5], | |
1134 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); | |
1135 | ||
1136 | // Do not respond | |
1137 | // We do not know what to answer, so lets keep quit | |
1138 | resp = resp1; respLen = 0; //order = 5; | |
81cd0474 | 1139 | respdata = NULL; |
1140 | respsize = 0; | |
1e262141 | 1141 | } else if(receivedCmd[0] == 0x00 && len == 1) { |
1142 | // Reader ends the session | |
1143 | resp = resp1; respLen = 0; //order = 0; | |
81cd0474 | 1144 | respdata = NULL; |
1145 | respsize = 0; | |
1146 | } else { | |
1e262141 | 1147 | // Never seen this command before |
1148 | Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", | |
1149 | len, | |
1150 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1151 | receivedCmd[3], receivedCmd[4], receivedCmd[5], | |
1152 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); | |
1153 | // Do not respond | |
1154 | resp = resp1; respLen = 0; //order = 0; | |
81cd0474 | 1155 | respdata = NULL; |
1156 | respsize = 0; | |
1e262141 | 1157 | } |
1158 | ||
1159 | if(cmdsRecvd > 999) { | |
1160 | DbpString("1000 commands later..."); | |
1161 | break; | |
1162 | } | |
1163 | else { | |
1164 | cmdsRecvd++; | |
1165 | } | |
1166 | ||
81cd0474 | 1167 | if(respLen > 0) { |
1168 | SendIClassAnswer(resp, respLen, 21); | |
1169 | } | |
1170 | ||
1171 | if (tracing) { | |
7bc95e2e | 1172 | LogTrace(receivedCmd,len, rsamples, Uart.parityBits, TRUE); |
81cd0474 | 1173 | if (respdata != NULL) { |
7bc95e2e | 1174 | LogTrace(respdata,respsize, rsamples, SwapBits(GetParity(respdata,respsize),respsize), FALSE); |
81cd0474 | 1175 | } |
4ab4336a | 1176 | if(traceLen > TRACE_SIZE) { |
1177 | DbpString("Trace full"); | |
1178 | break; | |
1179 | } | |
81cd0474 | 1180 | } |
1e262141 | 1181 | |
81cd0474 | 1182 | memset(receivedCmd, 0x44, RECV_CMD_SIZE); |
1183 | } | |
1e262141 | 1184 | |
912a3e94 | 1185 | Dbprintf("%x", cmdsRecvd); |
1e262141 | 1186 | LED_A_OFF(); |
1187 | LED_B_OFF(); | |
1188 | } | |
1189 | ||
1190 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) | |
1191 | { | |
1192 | int i = 0, u = 0, d = 0; | |
1193 | uint8_t b = 0; | |
912a3e94 | 1194 | // return 0; |
1195 | // Modulate Manchester | |
1196 | // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD424); | |
1e262141 | 1197 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); |
1198 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1199 | FpgaSetupSsc(); | |
1200 | ||
1201 | // send cycle | |
1202 | for(;;) { | |
1203 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1204 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1205 | (void)b; | |
1206 | } | |
1207 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1208 | if(d < delay) { | |
1209 | b = 0x00; | |
1210 | d++; | |
1211 | } | |
1212 | else if(i >= respLen) { | |
1213 | b = 0x00; | |
1214 | u++; | |
1215 | } else { | |
1216 | b = resp[i]; | |
1217 | u++; | |
1218 | if(u > 1) { i++; u = 0; } | |
1219 | } | |
1220 | AT91C_BASE_SSC->SSC_THR = b; | |
1221 | ||
1222 | if(u > 4) break; | |
1223 | } | |
1224 | if(BUTTON_PRESS()) { | |
1225 | break; | |
1226 | } | |
1227 | } | |
1228 | ||
1229 | return 0; | |
1230 | } | |
1231 | ||
1232 | /// THE READER CODE | |
1233 | ||
1234 | //----------------------------------------------------------------------------- | |
1235 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1236 | //----------------------------------------------------------------------------- | |
1237 | static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) | |
1238 | { | |
1239 | int c; | |
1240 | ||
1241 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1242 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1243 | FpgaSetupSsc(); | |
1244 | ||
1245 | if (wait) | |
1246 | if(*wait < 10) | |
1247 | *wait = 10; | |
1248 | ||
1249 | for(c = 0; c < *wait;) { | |
1250 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1251 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! | |
1252 | c++; | |
1253 | } | |
1254 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1255 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1256 | (void)r; | |
1257 | } | |
1258 | WDT_HIT(); | |
1259 | } | |
1260 | ||
1261 | uint8_t sendbyte; | |
1262 | bool firstpart = TRUE; | |
1263 | c = 0; | |
1264 | for(;;) { | |
1265 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1266 | ||
1267 | // DOUBLE THE SAMPLES! | |
1268 | if(firstpart) { | |
1269 | sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); | |
1270 | } | |
1271 | else { | |
1272 | sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); | |
1273 | c++; | |
1274 | } | |
1275 | if(sendbyte == 0xff) { | |
1276 | sendbyte = 0xfe; | |
1277 | } | |
1278 | AT91C_BASE_SSC->SSC_THR = sendbyte; | |
1279 | firstpart = !firstpart; | |
1280 | ||
1281 | if(c >= len) { | |
1282 | break; | |
1283 | } | |
1284 | } | |
1285 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1286 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1287 | (void)r; | |
1288 | } | |
1289 | WDT_HIT(); | |
1290 | } | |
1291 | if (samples) *samples = (c + *wait) << 3; | |
1292 | } | |
1293 | ||
1294 | ||
1295 | //----------------------------------------------------------------------------- | |
1296 | // Prepare iClass reader command to send to FPGA | |
1297 | //----------------------------------------------------------------------------- | |
1298 | void CodeIClassCommand(const uint8_t * cmd, int len) | |
1299 | { | |
1300 | int i, j, k; | |
1301 | uint8_t b; | |
1302 | ||
1303 | ToSendReset(); | |
1304 | ||
1305 | // Start of Communication: 1 out of 4 | |
1306 | ToSend[++ToSendMax] = 0xf0; | |
1307 | ToSend[++ToSendMax] = 0x00; | |
1308 | ToSend[++ToSendMax] = 0x0f; | |
1309 | ToSend[++ToSendMax] = 0x00; | |
1310 | ||
1311 | // Modulate the bytes | |
1312 | for (i = 0; i < len; i++) { | |
1313 | b = cmd[i]; | |
1314 | for(j = 0; j < 4; j++) { | |
1315 | for(k = 0; k < 4; k++) { | |
1316 | if(k == (b & 3)) { | |
1317 | ToSend[++ToSendMax] = 0x0f; | |
1318 | } | |
1319 | else { | |
1320 | ToSend[++ToSendMax] = 0x00; | |
1321 | } | |
1322 | } | |
1323 | b >>= 2; | |
1324 | } | |
1325 | } | |
1326 | ||
1327 | // End of Communication | |
1328 | ToSend[++ToSendMax] = 0x00; | |
1329 | ToSend[++ToSendMax] = 0x00; | |
1330 | ToSend[++ToSendMax] = 0xf0; | |
1331 | ToSend[++ToSendMax] = 0x00; | |
1332 | ||
1333 | // Convert from last character reference to length | |
1334 | ToSendMax++; | |
1335 | } | |
1336 | ||
1337 | void ReaderTransmitIClass(uint8_t* frame, int len) | |
1338 | { | |
1339 | int wait = 0; | |
1340 | int samples = 0; | |
1341 | int par = 0; | |
1342 | ||
1343 | // This is tied to other size changes | |
1344 | // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; | |
1345 | CodeIClassCommand(frame,len); | |
1346 | ||
1347 | // Select the card | |
1348 | TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); | |
1349 | if(trigger) | |
1350 | LED_A_ON(); | |
1351 | ||
1352 | // Store reader command in buffer | |
7bc95e2e | 1353 | if (tracing) LogTrace(frame,len,rsamples,par,TRUE); |
1e262141 | 1354 | } |
1355 | ||
1356 | //----------------------------------------------------------------------------- | |
1357 | // Wait a certain time for tag response | |
1358 | // If a response is captured return TRUE | |
1359 | // If it takes too long return FALSE | |
1360 | //----------------------------------------------------------------------------- | |
1361 | static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer | |
1362 | { | |
1363 | // buffer needs to be 512 bytes | |
1364 | int c; | |
1365 | ||
1366 | // Set FPGA mode to "reader listen mode", no modulation (listen | |
1367 | // only, since we are receiving, not transmitting). | |
1368 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1369 | ||
1370 | // Now get the answer from the card | |
1371 | Demod.output = receivedResponse; | |
1372 | Demod.len = 0; | |
1373 | Demod.state = DEMOD_UNSYNCD; | |
1374 | ||
1375 | uint8_t b; | |
1376 | if (elapsed) *elapsed = 0; | |
1377 | ||
1378 | bool skip = FALSE; | |
1379 | ||
1380 | c = 0; | |
1381 | for(;;) { | |
1382 | WDT_HIT(); | |
1383 | ||
1384 | if(BUTTON_PRESS()) return FALSE; | |
1385 | ||
1386 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1387 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! | |
1388 | if (elapsed) (*elapsed)++; | |
1389 | } | |
1390 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1391 | if(c < timeout) { c++; } else { return FALSE; } | |
1392 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1393 | skip = !skip; | |
1394 | if(skip) continue; | |
1395 | /*if(ManchesterDecoding((b>>4) & 0xf)) { | |
1396 | *samples = ((c - 1) << 3) + 4; | |
1397 | return TRUE; | |
1398 | }*/ | |
1399 | if(ManchesterDecoding(b & 0x0f)) { | |
1400 | *samples = c << 3; | |
1401 | return TRUE; | |
1402 | } | |
1403 | } | |
1404 | } | |
1405 | } | |
1406 | ||
1407 | int ReaderReceiveIClass(uint8_t* receivedAnswer) | |
1408 | { | |
1409 | int samples = 0; | |
1410 | if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; | |
7bc95e2e | 1411 | rsamples += samples; |
1412 | if (tracing) LogTrace(receivedAnswer,Demod.len,rsamples,Demod.parityBits,FALSE); | |
1e262141 | 1413 | if(samples == 0) return FALSE; |
1414 | return Demod.len; | |
1415 | } | |
1416 | ||
1417 | // Reader iClass Anticollission | |
1418 | void ReaderIClass(uint8_t arg0) { | |
1e262141 | 1419 | uint8_t act_all[] = { 0x0a }; |
1420 | uint8_t identify[] = { 0x0c }; | |
4ab4336a | 1421 | uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
1e262141 | 1422 | |
1423 | uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1424 | ||
1425 | // Reset trace buffer | |
1426 | memset(trace, 0x44, RECV_CMD_OFFSET); | |
1427 | traceLen = 0; | |
1428 | ||
1429 | // Setup SSC | |
1430 | FpgaSetupSsc(); | |
1431 | // Start from off (no field generated) | |
1432 | // Signal field is off with the appropriate LED | |
cee5a30d | 1433 | LED_D_OFF(); |
1e262141 | 1434 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1435 | SpinDelay(200); | |
1436 | ||
1437 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1438 | ||
1439 | // Now give it time to spin up. | |
1440 | // Signal field is on with the appropriate LED | |
1441 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1442 | SpinDelay(200); | |
1443 | ||
1444 | LED_A_ON(); | |
1445 | ||
1446 | for(;;) { | |
4ab4336a | 1447 | |
1448 | if(traceLen > TRACE_SIZE) { | |
1449 | DbpString("Trace full"); | |
1450 | break; | |
1451 | } | |
1452 | ||
1453 | if (BUTTON_PRESS()) break; | |
1e262141 | 1454 | |
1455 | // Send act_all | |
1456 | ReaderTransmitIClass(act_all, 1); | |
1457 | // Card present? | |
1458 | if(ReaderReceiveIClass(resp)) { | |
1459 | ReaderTransmitIClass(identify, 1); | |
4ab4336a | 1460 | if(ReaderReceiveIClass(resp) == 10) { |
1461 | // Select card | |
1462 | memcpy(&select[1],resp,8); | |
1463 | ReaderTransmitIClass(select, sizeof(select)); | |
1464 | ||
1465 | if(ReaderReceiveIClass(resp) == 10) { | |
1466 | Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1467 | resp[0], resp[1], resp[2], | |
1468 | resp[3], resp[4], resp[5], | |
1469 | resp[6], resp[7]); | |
1470 | } | |
1471 | // Card selected, whats next... ;-) | |
1e262141 | 1472 | } |
1473 | } | |
1474 | WDT_HIT(); | |
1475 | } | |
1476 | ||
1477 | LED_A_OFF(); | |
cee5a30d | 1478 | } |
1479 | ||
c3963755 | 1480 | void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { |
1481 | uint8_t act_all[] = { 0x0a }; | |
1482 | uint8_t identify[] = { 0x0c }; | |
1483 | uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1484 | uint8_t readcheck_cc[]= { 0x88, 0x02 }; | |
1485 | uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1486 | uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; | |
1487 | ||
1488 | uint16_t crc = 0; | |
1489 | uint8_t cardsize=0; | |
1490 | bool read_success=false; | |
1491 | uint8_t mem=0; | |
1492 | ||
1493 | static struct memory_t{ | |
1494 | int k16; | |
1495 | int book; | |
1496 | int k2; | |
1497 | int lockauth; | |
1498 | int keyaccess; | |
1499 | } memory; | |
1500 | ||
1501 | uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1502 | ||
1503 | // Reset trace buffer | |
1504 | memset(trace, 0x44, RECV_CMD_OFFSET); | |
1505 | traceLen = 0; | |
1506 | ||
1507 | // Setup SSC | |
1508 | FpgaSetupSsc(); | |
1509 | // Start from off (no field generated) | |
1510 | // Signal field is off with the appropriate LED | |
1511 | LED_D_OFF(); | |
1512 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1513 | SpinDelay(200); | |
1514 | ||
1515 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1516 | ||
1517 | // Now give it time to spin up. | |
1518 | // Signal field is on with the appropriate LED | |
1519 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1520 | SpinDelay(200); | |
1521 | ||
1522 | LED_A_ON(); | |
1523 | ||
1524 | for(int i=0;i<1;i++) { | |
1525 | ||
1526 | if(traceLen > TRACE_SIZE) { | |
1527 | DbpString("Trace full"); | |
1528 | break; | |
1529 | } | |
1530 | ||
1531 | if (BUTTON_PRESS()) break; | |
1532 | ||
1533 | // Send act_all | |
1534 | ReaderTransmitIClass(act_all, 1); | |
1535 | // Card present? | |
1536 | if(ReaderReceiveIClass(resp)) { | |
1537 | ReaderTransmitIClass(identify, 1); | |
1538 | if(ReaderReceiveIClass(resp) == 10) { | |
1539 | // Select card | |
1540 | memcpy(&select[1],resp,8); | |
1541 | ReaderTransmitIClass(select, sizeof(select)); | |
1542 | ||
1543 | if(ReaderReceiveIClass(resp) == 10) { | |
1544 | Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1545 | resp[0], resp[1], resp[2], | |
1546 | resp[3], resp[4], resp[5], | |
1547 | resp[6], resp[7]); | |
1548 | } | |
1549 | // Card selected | |
1550 | Dbprintf("Readcheck on Sector 2"); | |
1551 | ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); | |
1552 | if(ReaderReceiveIClass(resp) == 8) { | |
1553 | Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1554 | resp[0], resp[1], resp[2], | |
1555 | resp[3], resp[4], resp[5], | |
1556 | resp[6], resp[7]); | |
1557 | }else return; | |
1558 | Dbprintf("Authenticate"); | |
1559 | //for now replay captured auth (as cc not updated) | |
1560 | memcpy(check+5,MAC,4); | |
1561 | Dbprintf(" AA: %02x %02x %02x %02x", | |
1562 | check[5], check[6], check[7],check[8]); | |
1563 | ReaderTransmitIClass(check, sizeof(check)); | |
1564 | if(ReaderReceiveIClass(resp) == 4) { | |
1565 | Dbprintf(" AR: %02x %02x %02x %02x", | |
1566 | resp[0], resp[1], resp[2],resp[3]); | |
1567 | }else { | |
1568 | Dbprintf("Error: Authentication Fail!"); | |
1569 | return; | |
1570 | } | |
1571 | Dbprintf("Dump Contents"); | |
1572 | //first get configuration block | |
1573 | read_success=false; | |
1574 | read[1]=1; | |
1575 | uint8_t *blockno=&read[1]; | |
1576 | crc = iclass_crc16((char *)blockno,1); | |
1577 | read[2] = crc >> 8; | |
1578 | read[3] = crc & 0xff; | |
1579 | while(!read_success){ | |
1580 | ReaderTransmitIClass(read, sizeof(read)); | |
1581 | if(ReaderReceiveIClass(resp) == 10) { | |
1582 | read_success=true; | |
1583 | mem=resp[5]; | |
1584 | memory.k16= (mem & 0x80); | |
1585 | memory.book= (mem & 0x20); | |
1586 | memory.k2= (mem & 0x8); | |
1587 | memory.lockauth= (mem & 0x2); | |
1588 | memory.keyaccess= (mem & 0x1); | |
1589 | ||
1590 | } | |
1591 | } | |
1592 | if (memory.k16){ | |
1593 | cardsize=255; | |
1594 | }else cardsize=32; | |
1595 | //then loop around remaining blocks | |
1596 | for(uint8_t j=0; j<cardsize; j++){ | |
1597 | read_success=false; | |
1598 | uint8_t *blockno=&j; | |
1599 | //crc_data[0]=j; | |
1600 | read[1]=j; | |
1601 | crc = iclass_crc16((char *)blockno,1); | |
1602 | read[2] = crc >> 8; | |
1603 | read[3] = crc & 0xff; | |
1604 | while(!read_success){ | |
1605 | ReaderTransmitIClass(read, sizeof(read)); | |
1606 | if(ReaderReceiveIClass(resp) == 10) { | |
1607 | read_success=true; | |
1608 | Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1609 | j, resp[0], resp[1], resp[2], | |
1610 | resp[3], resp[4], resp[5], | |
1611 | resp[6], resp[7]); | |
1612 | } | |
1613 | } | |
1614 | } | |
1615 | } | |
1616 | } | |
1617 | WDT_HIT(); | |
1618 | } | |
1619 | ||
1620 | LED_A_OFF(); | |
1621 | } | |
1622 | ||
912a3e94 | 1623 |