1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
39 #include "proxmark3.h"
44 // Needed for CRC in emulation mode;
45 // same construction as in ISO 14443;
46 // different initial value (CRC_ICLASS)
47 #include "iso14443crc.h"
48 #include "iso15693tools.h"
50 static int timeout
= 4096;
53 // Sequence D: 11110000 modulation with subcarrier during first half
54 // Sequence E: 00001111 modulation with subcarrier during second half
55 // Sequence F: 00000000 no modulation with subcarrier
57 // Sequence X: 00001100 drop after half a period
58 // Sequence Y: 00000000 no drop
59 // Sequence Z: 11000000 drop at start
64 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
);
66 //-----------------------------------------------------------------------------
67 // The software UART that receives commands from the reader, and its state
69 //-----------------------------------------------------------------------------
73 STATE_START_OF_COMMUNICATION
,
94 static RAMFUNC
int OutOfNDecoding(int bit
)
100 Uart
.bitBuffer
= bit
^ 0xFF0;
104 Uart
.bitBuffer
<<= 4;
105 Uart
.bitBuffer
^= bit
;
109 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
112 if(Uart.byteCnt > 15) { return TRUE; }
118 if(Uart
.state
!= STATE_UNSYNCD
) {
121 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
127 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
133 if(bit
!= bitright
) { bit
= bitright
; }
136 // So, now we only have to deal with *bit*, lets see...
137 if(Uart
.posCnt
== 1) {
138 // measurement first half bitperiod
140 // Drop in first half means that we are either seeing
143 if(Uart
.nOutOfCnt
== 1) {
144 // End of Communication
145 Uart
.state
= STATE_UNSYNCD
;
147 if(Uart
.byteCnt
== 0) {
148 // Its not straightforward to show single EOFs
149 // So just leave it and do not return TRUE
150 Uart
.output
[Uart
.byteCnt
] = 0xf0;
153 // Calculate the parity bit for the client...
160 else if(Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
161 // When not part of SOF or EOF, it is an error
162 Uart
.state
= STATE_UNSYNCD
;
169 // measurement second half bitperiod
170 // Count the bitslot we are in... (ISO 15693)
174 if(Uart
.dropPosition
) {
175 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
181 // It is an error if we already have seen a drop in current frame
182 Uart
.state
= STATE_UNSYNCD
;
186 Uart
.dropPosition
= Uart
.nOutOfCnt
;
193 if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
196 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
197 if(Uart
.dropPosition
== 4) {
198 Uart
.state
= STATE_RECEIVING
;
201 else if(Uart
.dropPosition
== 3) {
202 Uart
.state
= STATE_RECEIVING
;
204 //Uart.output[Uart.byteCnt] = 0xdd;
208 Uart
.state
= STATE_UNSYNCD
;
211 Uart
.dropPosition
= 0;
216 if(!Uart
.dropPosition
) {
217 Uart
.state
= STATE_UNSYNCD
;
226 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
227 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
229 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
231 Uart
.dropPosition
= 0;
233 if(Uart
.bitCnt
== 8) {
234 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
237 // Calculate the parity bit for the client...
238 Uart
.parityBits
<<= 1;
239 Uart
.parityBits
^= OddByteParity
[(Uart
.shiftReg
& 0xff)];
247 else if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
250 if(!Uart
.dropPosition
) {
251 Uart
.state
= STATE_UNSYNCD
;
257 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
260 // Calculate the parity bit for the client...
261 Uart
.parityBits
<<= 1;
262 Uart
.parityBits
^= OddByteParity
[(Uart
.dropPosition
& 0xff)];
267 Uart
.dropPosition
= 0;
272 Uart.output[Uart.byteCnt] = 0xAA;
274 Uart.output[Uart.byteCnt] = error & 0xFF;
276 Uart.output[Uart.byteCnt] = 0xAA;
278 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
280 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
282 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
284 Uart.output[Uart.byteCnt] = 0xAA;
292 bit
= Uart
.bitBuffer
& 0xf0;
294 bit
^= 0x0F; // drops become 1s ;-)
296 // should have been high or at least (4 * 128) / fc
297 // according to ISO this should be at least (9 * 128 + 20) / fc
298 if(Uart
.highCnt
== 8) {
299 // we went low, so this could be start of communication
300 // it turns out to be safer to choose a less significant
301 // syncbit... so we check whether the neighbour also represents the drop
302 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
303 Uart
.syncBit
= bit
& 8;
305 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
306 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
307 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
308 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
309 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
310 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
313 // the first half bit period is expected in next sample
318 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
321 Uart
.state
= STATE_START_OF_COMMUNICATION
;
326 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
327 Uart
.dropPosition
= 0;
336 if(Uart
.highCnt
< 8) {
345 //=============================================================================
347 //=============================================================================
352 DEMOD_START_OF_COMMUNICATION
,
353 DEMOD_START_OF_COMMUNICATION2
,
354 DEMOD_START_OF_COMMUNICATION3
,
358 DEMOD_END_OF_COMMUNICATION
,
359 DEMOD_END_OF_COMMUNICATION2
,
383 static RAMFUNC
int ManchesterDecoding(int v
)
390 Demod
.buffer
= Demod
.buffer2
;
391 Demod
.buffer2
= Demod
.buffer3
;
399 if(Demod
.state
==DEMOD_UNSYNCD
) {
400 Demod
.output
[Demod
.len
] = 0xfa;
403 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
406 Demod
.syncBit
= 0x08;
413 Demod
.syncBit
= 0x04;
420 Demod
.syncBit
= 0x02;
423 if(bit
& 0x01 && Demod
.syncBit
) {
424 Demod
.syncBit
= 0x01;
429 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
430 Demod
.sub
= SUB_FIRST_HALF
;
433 Demod
.parityBits
= 0;
436 //if(trigger) LED_A_OFF(); // Not useful in this case...
437 switch(Demod
.syncBit
) {
438 case 0x08: Demod
.samples
= 3; break;
439 case 0x04: Demod
.samples
= 2; break;
440 case 0x02: Demod
.samples
= 1; break;
441 case 0x01: Demod
.samples
= 0; break;
443 // SOF must be long burst... otherwise stay unsynced!!!
444 if(!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
445 Demod
.state
= DEMOD_UNSYNCD
;
449 // SOF must be long burst... otherwise stay unsynced!!!
450 if(!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
451 Demod
.state
= DEMOD_UNSYNCD
;
461 modulation
= bit
& Demod
.syncBit
;
462 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
463 //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
467 if(Demod
.posCount
==0) {
470 Demod
.sub
= SUB_FIRST_HALF
;
473 Demod
.sub
= SUB_NONE
;
478 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
479 if(Demod.state!=DEMOD_ERROR_WAIT) {
480 Demod.state = DEMOD_ERROR_WAIT;
481 Demod.output[Demod.len] = 0xaa;
485 //else if(modulation) {
487 if(Demod
.sub
== SUB_FIRST_HALF
) {
488 Demod
.sub
= SUB_BOTH
;
491 Demod
.sub
= SUB_SECOND_HALF
;
494 else if(Demod
.sub
== SUB_NONE
) {
495 if(Demod
.state
== DEMOD_SOF_COMPLETE
) {
496 Demod
.output
[Demod
.len
] = 0x0f;
498 Demod
.parityBits
<<= 1;
499 Demod
.parityBits
^= OddByteParity
[0x0f];
500 Demod
.state
= DEMOD_UNSYNCD
;
505 Demod
.state
= DEMOD_ERROR_WAIT
;
508 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
509 Demod.state = DEMOD_ERROR_WAIT;
510 Demod.output[Demod.len] = 0xaa;
515 switch(Demod
.state
) {
516 case DEMOD_START_OF_COMMUNICATION
:
517 if(Demod
.sub
== SUB_BOTH
) {
518 //Demod.state = DEMOD_MANCHESTER_D;
519 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
521 Demod
.sub
= SUB_NONE
;
524 Demod
.output
[Demod
.len
] = 0xab;
525 Demod
.state
= DEMOD_ERROR_WAIT
;
529 case DEMOD_START_OF_COMMUNICATION2
:
530 if(Demod
.sub
== SUB_SECOND_HALF
) {
531 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
534 Demod
.output
[Demod
.len
] = 0xab;
535 Demod
.state
= DEMOD_ERROR_WAIT
;
539 case DEMOD_START_OF_COMMUNICATION3
:
540 if(Demod
.sub
== SUB_SECOND_HALF
) {
541 // Demod.state = DEMOD_MANCHESTER_D;
542 Demod
.state
= DEMOD_SOF_COMPLETE
;
543 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
547 Demod
.output
[Demod
.len
] = 0xab;
548 Demod
.state
= DEMOD_ERROR_WAIT
;
552 case DEMOD_SOF_COMPLETE
:
553 case DEMOD_MANCHESTER_D
:
554 case DEMOD_MANCHESTER_E
:
555 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
556 // 00001111 = 1 (0 in 14443)
557 if(Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
559 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
560 Demod
.state
= DEMOD_MANCHESTER_D
;
562 else if(Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
564 Demod
.shiftReg
>>= 1;
565 Demod
.state
= DEMOD_MANCHESTER_E
;
567 else if(Demod
.sub
== SUB_BOTH
) {
568 Demod
.state
= DEMOD_MANCHESTER_F
;
571 Demod
.state
= DEMOD_ERROR_WAIT
;
576 case DEMOD_MANCHESTER_F
:
577 // Tag response does not need to be a complete byte!
578 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
579 if(Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
580 Demod
.shiftReg
>>= (9 - Demod
.bitCount
);
581 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
583 // No parity bit, so just shift a 0
584 Demod
.parityBits
<<= 1;
587 Demod
.state
= DEMOD_UNSYNCD
;
591 Demod
.output
[Demod
.len
] = 0xad;
592 Demod
.state
= DEMOD_ERROR_WAIT
;
597 case DEMOD_ERROR_WAIT
:
598 Demod
.state
= DEMOD_UNSYNCD
;
602 Demod
.output
[Demod
.len
] = 0xdd;
603 Demod
.state
= DEMOD_UNSYNCD
;
607 /*if(Demod.bitCount>=9) {
608 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
611 Demod.parityBits <<= 1;
612 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
617 if(Demod
.bitCount
>=8) {
618 Demod
.shiftReg
>>= 1;
619 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
622 // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT
623 Demod
.parityBits
<<= 1;
624 Demod
.parityBits
^= OddByteParity
[(Demod
.shiftReg
& 0xff)];
631 Demod
.output
[Demod
.len
] = 0xBB;
633 Demod
.output
[Demod
.len
] = error
& 0xFF;
635 Demod
.output
[Demod
.len
] = 0xBB;
637 Demod
.output
[Demod
.len
] = bit
& 0xFF;
639 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
642 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
644 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
646 Demod
.output
[Demod
.len
] = 0xBB;
653 } // end (state != UNSYNCED)
658 //=============================================================================
659 // Finally, a `sniffer' for iClass communication
660 // Both sides of communication!
661 //=============================================================================
663 //-----------------------------------------------------------------------------
664 // Record the sequence of commands sent by the reader to the tag, with
665 // triggering so that we start recording at the point that the tag is moved
667 //-----------------------------------------------------------------------------
668 void RAMFUNC
SnoopIClass(void)
671 // #define RECV_CMD_OFFSET 3032
672 // #define RECV_RES_OFFSET 3096
673 // #define DMA_BUFFER_OFFSET 3160
674 // #define DMA_BUFFER_SIZE 4096
675 // #define TRACE_SIZE 3000
677 // We won't start recording the frames that we acquire until we trigger;
678 // a good trigger condition to get started is probably when we see a
679 // response from the tag.
680 //int triggered = FALSE; // FALSE to wait first for card
682 // The command (reader -> tag) that we're receiving.
683 // The length of a received command will in most cases be no more than 18 bytes.
684 // So 32 should be enough!
685 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
686 // The response (tag -> reader) that we're receiving.
687 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
689 // As we receive stuff, we copy it from receivedCmd or receivedResponse
690 // into trace, along with its length and other annotations.
691 //uint8_t *trace = (uint8_t *)BigBuf;
693 // reset traceLen to 0
694 iso14a_set_tracing(TRUE
);
695 iso14a_clear_trace();
696 iso14a_set_trigger(FALSE
);
698 // The DMA buffer, used to stream samples from the FPGA
699 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
705 // Count of samples received so far, so that we can include timing
706 // information in the trace buffer.
710 memset(trace
, 0x44, RECV_CMD_OFFSET
);
712 // Set up the demodulator for tag -> reader responses.
713 Demod
.output
= receivedResponse
;
715 Demod
.state
= DEMOD_UNSYNCD
;
717 // Setup for the DMA.
720 lastRxCounter
= DMA_BUFFER_SIZE
;
721 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
723 // And the reader -> tag commands
724 memset(&Uart
, 0, sizeof(Uart
));
725 Uart
.output
= receivedCmd
;
726 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
727 Uart
.state
= STATE_UNSYNCD
;
729 // And put the FPGA in the appropriate mode
730 // Signal field is off with the appropriate LED
732 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
733 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
740 // And now we loop, receiving samples.
744 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
746 if(behindBy
> maxBehindBy
) {
747 maxBehindBy
= behindBy
;
749 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
753 if(behindBy
< 1) continue;
759 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
760 upTo
-= DMA_BUFFER_SIZE
;
761 lastRxCounter
+= DMA_BUFFER_SIZE
;
762 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
763 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
772 //decbyte ^= ((smpl & 0x01) << (3 - div));
773 //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1)) << (3 - div)); // better already...
774 //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1) | ((smpl & 0x04) >> 2)) << (3 - div)); // even better...
776 decbyte
^= (1 << (3 - div
));
778 //decbyte ^= (MajorityNibble[(smpl & 0x0F)] << (3 - div));
780 // FOR READER SIDE COMMUMICATION...
781 //decbyte ^= ((smpl & 0x10) << (3 - div));
783 decbyter
^= (smpl
& 0x30);
787 if((div
+ 1) % 2 == 0) {
789 if(OutOfNDecoding((smpl
& 0xF0) >> 4)) {
790 rsamples
= samples
- Uart
.samples
;
793 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
794 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
795 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
796 trace
[traceLen
++] = ((rsamples
>> 24) & 0xff);
797 trace
[traceLen
++] = ((Uart
.parityBits
>> 0) & 0xff);
798 trace
[traceLen
++] = ((Uart
.parityBits
>> 8) & 0xff);
799 trace
[traceLen
++] = ((Uart
.parityBits
>> 16) & 0xff);
800 trace
[traceLen
++] = ((Uart
.parityBits
>> 24) & 0xff);
801 trace
[traceLen
++] = Uart
.byteCnt
;
802 memcpy(trace
+traceLen
, receivedCmd
, Uart
.byteCnt
);
803 traceLen
+= Uart
.byteCnt
;
804 if(traceLen
> TRACE_SIZE
) break;
806 /* And ready to receive another command. */
807 Uart
.state
= STATE_UNSYNCD
;
808 /* And also reset the demod code, which might have been */
809 /* false-triggered by the commands from the reader. */
810 Demod
.state
= DEMOD_UNSYNCD
;
819 if(ManchesterDecoding(smpl
& 0x0F)) {
820 rsamples
= samples
- Demod
.samples
;
823 // timestamp, as a count of samples
824 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
825 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
826 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
827 trace
[traceLen
++] = 0x80 | ((rsamples
>> 24) & 0xff);
828 trace
[traceLen
++] = ((Demod
.parityBits
>> 0) & 0xff);
829 trace
[traceLen
++] = ((Demod
.parityBits
>> 8) & 0xff);
830 trace
[traceLen
++] = ((Demod
.parityBits
>> 16) & 0xff);
831 trace
[traceLen
++] = ((Demod
.parityBits
>> 24) & 0xff);
833 trace
[traceLen
++] = Demod
.len
;
834 memcpy(trace
+traceLen
, receivedResponse
, Demod
.len
);
835 traceLen
+= Demod
.len
;
836 if(traceLen
> TRACE_SIZE
) break;
840 // And ready to receive another response.
841 memset(&Demod
, 0, sizeof(Demod
));
842 Demod
.output
= receivedResponse
;
843 Demod
.state
= DEMOD_UNSYNCD
;
853 DbpString("cancelled_a");
858 DbpString("COMMAND FINISHED");
860 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
861 Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
864 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
865 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
866 Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
873 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
875 for(i
= 0; i
< 8; i
++) {
876 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
880 //-----------------------------------------------------------------------------
881 // Wait for commands from reader
882 // Stop when button is pressed
883 // Or return TRUE when command is captured
884 //-----------------------------------------------------------------------------
885 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
887 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
888 // only, since we are receiving, not transmitting).
889 // Signal field is off with the appropriate LED
891 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
893 // Now run a `software UART' on the stream of incoming samples.
894 Uart
.output
= received
;
895 Uart
.byteCntMax
= maxLen
;
896 Uart
.state
= STATE_UNSYNCD
;
901 if(BUTTON_PRESS()) return FALSE
;
903 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
904 AT91C_BASE_SSC
->SSC_THR
= 0x00;
906 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
907 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
908 /*if(OutOfNDecoding((b & 0xf0) >> 4)) {
912 if(OutOfNDecoding(b
& 0x0f)) {
921 //-----------------------------------------------------------------------------
922 // Prepare tag messages
923 //-----------------------------------------------------------------------------
924 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
)
931 ToSend
[++ToSendMax
] = 0x00;
932 ToSend
[++ToSendMax
] = 0x00;
933 ToSend
[++ToSendMax
] = 0x00;
934 ToSend
[++ToSendMax
] = 0xff;
935 ToSend
[++ToSendMax
] = 0xff;
936 ToSend
[++ToSendMax
] = 0xff;
937 ToSend
[++ToSendMax
] = 0x00;
938 ToSend
[++ToSendMax
] = 0xff;
940 for(i
= 0; i
< len
; i
++) {
945 for(j
= 0; j
< 8; j
++) {
947 ToSend
[++ToSendMax
] = 0x00;
948 ToSend
[++ToSendMax
] = 0xff;
950 ToSend
[++ToSendMax
] = 0xff;
951 ToSend
[++ToSendMax
] = 0x00;
958 ToSend
[++ToSendMax
] = 0xff;
959 ToSend
[++ToSendMax
] = 0x00;
960 ToSend
[++ToSendMax
] = 0xff;
961 ToSend
[++ToSendMax
] = 0xff;
962 ToSend
[++ToSendMax
] = 0xff;
963 ToSend
[++ToSendMax
] = 0x00;
964 ToSend
[++ToSendMax
] = 0x00;
965 ToSend
[++ToSendMax
] = 0x00;
967 // Convert from last byte pos to length
972 static void CodeIClassTagSOF()
977 ToSend
[++ToSendMax
] = 0x00;
978 ToSend
[++ToSendMax
] = 0x00;
979 ToSend
[++ToSendMax
] = 0x00;
980 ToSend
[++ToSendMax
] = 0xff;
981 ToSend
[++ToSendMax
] = 0xff;
982 ToSend
[++ToSendMax
] = 0xff;
983 ToSend
[++ToSendMax
] = 0x00;
984 ToSend
[++ToSendMax
] = 0xff;
986 // Convert from last byte pos to length
990 //-----------------------------------------------------------------------------
991 // Simulate iClass Card
992 // Only CSN (Card Serial Number)
994 //-----------------------------------------------------------------------------
995 void SimulateIClass(uint8_t arg0
, uint8_t *datain
)
997 uint8_t simType
= arg0
;
999 // Enable and clear the trace
1002 memset(trace
, 0x44, TRACE_SIZE
);
1004 // CSN followed by two CRC bytes
1005 uint8_t response2
[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1006 uint8_t response3
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1009 uint8_t response4
[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1012 // Use the CSN from commandline
1013 memcpy(response3
, datain
, 8);
1016 // Construct anticollision-CSN
1017 rotateCSN(response3
,response2
);
1019 // Compute CRC on both CSNs
1020 ComputeCrc14443(CRC_ICLASS
, response2
, 8, &response2
[8], &response2
[9]);
1021 ComputeCrc14443(CRC_ICLASS
, response3
, 8, &response3
[8], &response3
[9]);
1026 // Tag anticoll. CSN
1027 // Reader 81 anticoll. CSN
1032 uint8_t* respdata
= NULL
;
1036 // Respond SOF -- takes 8 bytes
1037 uint8_t *resp1
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1040 // Anticollision CSN (rotated CSN)
1041 // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
1042 uint8_t *resp2
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ 10);
1046 // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
1047 uint8_t *resp3
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ 190);
1051 // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit)
1052 uint8_t *resp4
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ 370);
1056 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
1057 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
);
1060 // Prepare card messages
1063 // First card answer: SOF
1065 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
1067 // Anticollision CSN
1068 CodeIClassTagAnswer(response2
, sizeof(response2
));
1069 memcpy(resp2
, ToSend
, ToSendMax
); resp2Len
= ToSendMax
;
1072 CodeIClassTagAnswer(response3
, sizeof(response3
));
1073 memcpy(resp3
, ToSend
, ToSendMax
); resp3Len
= ToSendMax
;
1076 CodeIClassTagAnswer(response4
, sizeof(response4
));
1077 memcpy(resp4
, ToSend
, ToSendMax
); resp4Len
= ToSendMax
;
1079 // We need to listen to the high-frequency, peak-detected path.
1080 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1083 // To control where we are in the protocol
1089 if(!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) {
1090 DbpString("button press");
1094 // Okay, look at the command now.
1095 if(receivedCmd
[0] == 0x0a) {
1096 // Reader in anticollission phase
1097 resp
= resp1
; respLen
= resp1Len
; //order = 1;
1099 respsize
= sizeof(sof
);
1100 //resp = resp2; respLen = resp2Len; order = 2;
1101 //DbpString("Hello request from reader:");
1102 } else if(receivedCmd
[0] == 0x0c) {
1103 // Reader asks for anticollission CSN
1104 resp
= resp2
; respLen
= resp2Len
; //order = 2;
1105 respdata
= response2
;
1106 respsize
= sizeof(response2
);
1107 //DbpString("Reader requests anticollission CSN:");
1108 } else if(receivedCmd
[0] == 0x81) {
1109 // Reader selects anticollission CSN.
1110 // Tag sends the corresponding real CSN
1111 resp
= resp3
; respLen
= resp3Len
; //order = 3;
1112 respdata
= response3
;
1113 respsize
= sizeof(response3
);
1114 //DbpString("Reader selects anticollission CSN:");
1115 } else if(receivedCmd
[0] == 0x88) {
1116 // Read e-purse (88 02)
1117 resp
= resp4
; respLen
= resp4Len
; //order = 4;
1118 respdata
= response4
;
1119 respsize
= sizeof(response4
);
1121 } else if(receivedCmd
[0] == 0x05) {
1122 // Reader random and reader MAC!!!
1123 // Lets store this ;-)
1125 Dbprintf(" CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1126 response3[0], response3[1], response3[2],
1127 response3[3], response3[4], response3[5],
1128 response3[6], response3[7]);
1130 Dbprintf("READER AUTH (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1132 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1133 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1134 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1137 // We do not know what to answer, so lets keep quit
1138 resp
= resp1
; respLen
= 0; //order = 5;
1141 } else if(receivedCmd
[0] == 0x00 && len
== 1) {
1142 // Reader ends the session
1143 resp
= resp1
; respLen
= 0; //order = 0;
1147 // Never seen this command before
1148 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1150 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1151 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1152 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1154 resp
= resp1
; respLen
= 0; //order = 0;
1159 if(cmdsRecvd
> 999) {
1160 DbpString("1000 commands later...");
1168 SendIClassAnswer(resp
, respLen
, 21);
1172 LogTrace(receivedCmd
,len
, rsamples
, Uart
.parityBits
, TRUE
);
1173 if (respdata
!= NULL
) {
1174 LogTrace(respdata
,respsize
, rsamples
, SwapBits(GetParity(respdata
,respsize
),respsize
), FALSE
);
1176 if(traceLen
> TRACE_SIZE
) {
1177 DbpString("Trace full");
1182 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
);
1185 Dbprintf("%x", cmdsRecvd
);
1190 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
)
1192 int i
= 0, u
= 0, d
= 0;
1195 // Modulate Manchester
1196 // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD424);
1197 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1198 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1203 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1204 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1207 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1212 else if(i
>= respLen
) {
1218 if(u
> 1) { i
++; u
= 0; }
1220 AT91C_BASE_SSC
->SSC_THR
= b
;
1224 if(BUTTON_PRESS()) {
1234 //-----------------------------------------------------------------------------
1235 // Transmit the command (to the tag) that was placed in ToSend[].
1236 //-----------------------------------------------------------------------------
1237 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1241 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1242 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1249 for(c
= 0; c
< *wait
;) {
1250 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1251 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1254 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1255 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1262 bool firstpart
= TRUE
;
1265 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1267 // DOUBLE THE SAMPLES!
1269 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1272 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1275 if(sendbyte
== 0xff) {
1278 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1279 firstpart
= !firstpart
;
1285 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1286 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1291 if (samples
) *samples
= (c
+ *wait
) << 3;
1295 //-----------------------------------------------------------------------------
1296 // Prepare iClass reader command to send to FPGA
1297 //-----------------------------------------------------------------------------
1298 void CodeIClassCommand(const uint8_t * cmd
, int len
)
1305 // Start of Communication: 1 out of 4
1306 ToSend
[++ToSendMax
] = 0xf0;
1307 ToSend
[++ToSendMax
] = 0x00;
1308 ToSend
[++ToSendMax
] = 0x0f;
1309 ToSend
[++ToSendMax
] = 0x00;
1311 // Modulate the bytes
1312 for (i
= 0; i
< len
; i
++) {
1314 for(j
= 0; j
< 4; j
++) {
1315 for(k
= 0; k
< 4; k
++) {
1317 ToSend
[++ToSendMax
] = 0x0f;
1320 ToSend
[++ToSendMax
] = 0x00;
1327 // End of Communication
1328 ToSend
[++ToSendMax
] = 0x00;
1329 ToSend
[++ToSendMax
] = 0x00;
1330 ToSend
[++ToSendMax
] = 0xf0;
1331 ToSend
[++ToSendMax
] = 0x00;
1333 // Convert from last character reference to length
1337 void ReaderTransmitIClass(uint8_t* frame
, int len
)
1343 // This is tied to other size changes
1344 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1345 CodeIClassCommand(frame
,len
);
1348 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1352 // Store reader command in buffer
1353 if (tracing
) LogTrace(frame
,len
,rsamples
,par
,TRUE
);
1356 //-----------------------------------------------------------------------------
1357 // Wait a certain time for tag response
1358 // If a response is captured return TRUE
1359 // If it takes too long return FALSE
1360 //-----------------------------------------------------------------------------
1361 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1363 // buffer needs to be 512 bytes
1366 // Set FPGA mode to "reader listen mode", no modulation (listen
1367 // only, since we are receiving, not transmitting).
1368 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1370 // Now get the answer from the card
1371 Demod
.output
= receivedResponse
;
1373 Demod
.state
= DEMOD_UNSYNCD
;
1376 if (elapsed
) *elapsed
= 0;
1384 if(BUTTON_PRESS()) return FALSE
;
1386 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1387 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1388 if (elapsed
) (*elapsed
)++;
1390 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1391 if(c
< timeout
) { c
++; } else { return FALSE
; }
1392 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1395 /*if(ManchesterDecoding((b>>4) & 0xf)) {
1396 *samples = ((c - 1) << 3) + 4;
1399 if(ManchesterDecoding(b
& 0x0f)) {
1407 int ReaderReceiveIClass(uint8_t* receivedAnswer
)
1410 if (!GetIClassAnswer(receivedAnswer
,160,&samples
,0)) return FALSE
;
1411 rsamples
+= samples
;
1412 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,rsamples
,Demod
.parityBits
,FALSE
);
1413 if(samples
== 0) return FALSE
;
1417 // Reader iClass Anticollission
1418 void ReaderIClass(uint8_t arg0
) {
1419 uint8_t act_all
[] = { 0x0a };
1420 uint8_t identify
[] = { 0x0c };
1421 uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1423 uint8_t* resp
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1425 // Reset trace buffer
1426 memset(trace
, 0x44, RECV_CMD_OFFSET
);
1431 // Start from off (no field generated)
1432 // Signal field is off with the appropriate LED
1434 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1437 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1439 // Now give it time to spin up.
1440 // Signal field is on with the appropriate LED
1441 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1448 if(traceLen
> TRACE_SIZE
) {
1449 DbpString("Trace full");
1453 if (BUTTON_PRESS()) break;
1456 ReaderTransmitIClass(act_all
, 1);
1458 if(ReaderReceiveIClass(resp
)) {
1459 ReaderTransmitIClass(identify
, 1);
1460 if(ReaderReceiveIClass(resp
) == 10) {
1462 memcpy(&select
[1],resp
,8);
1463 ReaderTransmitIClass(select
, sizeof(select
));
1465 if(ReaderReceiveIClass(resp
) == 10) {
1466 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1467 resp
[0], resp
[1], resp
[2],
1468 resp
[3], resp
[4], resp
[5],
1471 // Card selected, whats next... ;-)
1480 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1481 uint8_t act_all
[] = { 0x0a };
1482 uint8_t identify
[] = { 0x0c };
1483 uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1484 uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1485 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1486 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1490 bool read_success
=false;
1493 static struct memory_t
{
1501 uint8_t* resp
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1503 // Reset trace buffer
1504 memset(trace
, 0x44, RECV_CMD_OFFSET
);
1509 // Start from off (no field generated)
1510 // Signal field is off with the appropriate LED
1512 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1515 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1517 // Now give it time to spin up.
1518 // Signal field is on with the appropriate LED
1519 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1524 for(int i
=0;i
<1;i
++) {
1526 if(traceLen
> TRACE_SIZE
) {
1527 DbpString("Trace full");
1531 if (BUTTON_PRESS()) break;
1534 ReaderTransmitIClass(act_all
, 1);
1536 if(ReaderReceiveIClass(resp
)) {
1537 ReaderTransmitIClass(identify
, 1);
1538 if(ReaderReceiveIClass(resp
) == 10) {
1540 memcpy(&select
[1],resp
,8);
1541 ReaderTransmitIClass(select
, sizeof(select
));
1543 if(ReaderReceiveIClass(resp
) == 10) {
1544 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1545 resp
[0], resp
[1], resp
[2],
1546 resp
[3], resp
[4], resp
[5],
1550 Dbprintf("Readcheck on Sector 2");
1551 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1552 if(ReaderReceiveIClass(resp
) == 8) {
1553 Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
1554 resp
[0], resp
[1], resp
[2],
1555 resp
[3], resp
[4], resp
[5],
1558 Dbprintf("Authenticate");
1559 //for now replay captured auth (as cc not updated)
1560 memcpy(check
+5,MAC
,4);
1561 Dbprintf(" AA: %02x %02x %02x %02x",
1562 check
[5], check
[6], check
[7],check
[8]);
1563 ReaderTransmitIClass(check
, sizeof(check
));
1564 if(ReaderReceiveIClass(resp
) == 4) {
1565 Dbprintf(" AR: %02x %02x %02x %02x",
1566 resp
[0], resp
[1], resp
[2],resp
[3]);
1568 Dbprintf("Error: Authentication Fail!");
1571 Dbprintf("Dump Contents");
1572 //first get configuration block
1575 uint8_t *blockno
=&read
[1];
1576 crc
= iclass_crc16((char *)blockno
,1);
1578 read
[3] = crc
& 0xff;
1579 while(!read_success
){
1580 ReaderTransmitIClass(read
, sizeof(read
));
1581 if(ReaderReceiveIClass(resp
) == 10) {
1584 memory
.k16
= (mem
& 0x80);
1585 memory
.book
= (mem
& 0x20);
1586 memory
.k2
= (mem
& 0x8);
1587 memory
.lockauth
= (mem
& 0x2);
1588 memory
.keyaccess
= (mem
& 0x1);
1595 //then loop around remaining blocks
1596 for(uint8_t j
=0; j
<cardsize
; j
++){
1598 uint8_t *blockno
=&j
;
1601 crc
= iclass_crc16((char *)blockno
,1);
1603 read
[3] = crc
& 0xff;
1604 while(!read_success
){
1605 ReaderTransmitIClass(read
, sizeof(read
));
1606 if(ReaderReceiveIClass(resp
) == 10) {
1608 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1609 j
, resp
[0], resp
[1], resp
[2],
1610 resp
[3], resp
[4], resp
[5],