]>
Commit | Line | Data |
---|---|---|
489ef36c | 1 | //----------------------------------------------------------------------------- |
2 | // Jonathan Westhues, split Nov 2006 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
abb21530 | 8 | // Routines to support ISO 14443B. This includes both the reader software and |
9 | // the `fake tag' modes. | |
489ef36c | 10 | //----------------------------------------------------------------------------- |
11 | ||
12 | #include "proxmark3.h" | |
13 | #include "apps.h" | |
14 | #include "util.h" | |
15 | #include "string.h" | |
489ef36c | 16 | #include "iso14443crc.h" |
db25599d | 17 | #include "common.h" |
18 | #define RECEIVE_SAMPLES_TIMEOUT 800000 | |
a62bf3af | 19 | #define ISO14443B_DMA_BUFFER_SIZE 256 |
489ef36c | 20 | |
db25599d | 21 | |
a62bf3af | 22 | // PCB Block number for APDUs |
23 | static uint8_t pcb_blocknum = 0; | |
24 | ||
489ef36c | 25 | //============================================================================= |
26 | // An ISO 14443 Type B tag. We listen for commands from the reader, using | |
27 | // a UART kind of thing that's implemented in software. When we get a | |
28 | // frame (i.e., a group of bytes between SOF and EOF), we check the CRC. | |
29 | // If it's good, then we can do something appropriate with it, and send | |
30 | // a response. | |
31 | //============================================================================= | |
32 | ||
33 | //----------------------------------------------------------------------------- | |
34 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
35 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
36 | // them yet, just leaves them ready to send in ToSend[]. | |
37 | //----------------------------------------------------------------------------- | |
38 | static void CodeIso14443bAsTag(const uint8_t *cmd, int len) | |
39 | { | |
40 | int i; | |
41 | ||
42 | ToSendReset(); | |
43 | ||
44 | // Transmit a burst of ones, as the initial thing that lets the | |
45 | // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
46 | // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
47 | // so I will too. | |
48 | for(i = 0; i < 20; i++) { | |
49 | ToSendStuffBit(1); | |
50 | ToSendStuffBit(1); | |
51 | ToSendStuffBit(1); | |
52 | ToSendStuffBit(1); | |
53 | } | |
54 | ||
55 | // Send SOF. | |
56 | for(i = 0; i < 10; i++) { | |
57 | ToSendStuffBit(0); | |
58 | ToSendStuffBit(0); | |
59 | ToSendStuffBit(0); | |
60 | ToSendStuffBit(0); | |
61 | } | |
62 | for(i = 0; i < 2; i++) { | |
63 | ToSendStuffBit(1); | |
64 | ToSendStuffBit(1); | |
65 | ToSendStuffBit(1); | |
66 | ToSendStuffBit(1); | |
67 | } | |
68 | ||
69 | for(i = 0; i < len; i++) { | |
70 | int j; | |
71 | uint8_t b = cmd[i]; | |
72 | ||
73 | // Start bit | |
74 | ToSendStuffBit(0); | |
75 | ToSendStuffBit(0); | |
76 | ToSendStuffBit(0); | |
77 | ToSendStuffBit(0); | |
78 | ||
79 | // Data bits | |
80 | for(j = 0; j < 8; j++) { | |
81 | if(b & 1) { | |
82 | ToSendStuffBit(1); | |
83 | ToSendStuffBit(1); | |
84 | ToSendStuffBit(1); | |
85 | ToSendStuffBit(1); | |
86 | } else { | |
87 | ToSendStuffBit(0); | |
88 | ToSendStuffBit(0); | |
89 | ToSendStuffBit(0); | |
90 | ToSendStuffBit(0); | |
91 | } | |
92 | b >>= 1; | |
93 | } | |
94 | ||
95 | // Stop bit | |
96 | ToSendStuffBit(1); | |
97 | ToSendStuffBit(1); | |
98 | ToSendStuffBit(1); | |
99 | ToSendStuffBit(1); | |
100 | } | |
101 | ||
abb21530 | 102 | // Send EOF. |
489ef36c | 103 | for(i = 0; i < 10; i++) { |
104 | ToSendStuffBit(0); | |
105 | ToSendStuffBit(0); | |
106 | ToSendStuffBit(0); | |
107 | ToSendStuffBit(0); | |
108 | } | |
db25599d | 109 | for(i = 0; i < 10; i++) { |
489ef36c | 110 | ToSendStuffBit(1); |
111 | ToSendStuffBit(1); | |
112 | ToSendStuffBit(1); | |
113 | ToSendStuffBit(1); | |
114 | } | |
115 | ||
116 | // Convert from last byte pos to length | |
117 | ToSendMax++; | |
489ef36c | 118 | } |
119 | ||
120 | //----------------------------------------------------------------------------- | |
121 | // The software UART that receives commands from the reader, and its state | |
122 | // variables. | |
123 | //----------------------------------------------------------------------------- | |
124 | static struct { | |
125 | enum { | |
126 | STATE_UNSYNCD, | |
127 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
128 | STATE_AWAITING_START_BIT, | |
36f84d47 | 129 | STATE_RECEIVING_DATA |
489ef36c | 130 | } state; |
131 | uint16_t shiftReg; | |
132 | int bitCnt; | |
133 | int byteCnt; | |
134 | int byteCntMax; | |
135 | int posCnt; | |
136 | uint8_t *output; | |
137 | } Uart; | |
138 | ||
139 | /* Receive & handle a bit coming from the reader. | |
abb21530 | 140 | * |
141 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
142 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us | |
489ef36c | 143 | * |
144 | * LED handling: | |
145 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
146 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
147 | * | |
148 | * Returns: true if we received a EOF | |
149 | * false if we are still waiting for some more | |
150 | */ | |
36f84d47 | 151 | static RAMFUNC int Handle14443bUartBit(uint8_t bit) |
489ef36c | 152 | { |
153 | switch(Uart.state) { | |
154 | case STATE_UNSYNCD: | |
489ef36c | 155 | if(!bit) { |
156 | // we went low, so this could be the beginning | |
157 | // of an SOF | |
158 | Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
159 | Uart.posCnt = 0; | |
160 | Uart.bitCnt = 0; | |
161 | } | |
162 | break; | |
163 | ||
164 | case STATE_GOT_FALLING_EDGE_OF_SOF: | |
165 | Uart.posCnt++; | |
abb21530 | 166 | if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit |
489ef36c | 167 | if(bit) { |
abb21530 | 168 | if(Uart.bitCnt > 9) { |
489ef36c | 169 | // we've seen enough consecutive |
170 | // zeros that it's a valid SOF | |
171 | Uart.posCnt = 0; | |
172 | Uart.byteCnt = 0; | |
173 | Uart.state = STATE_AWAITING_START_BIT; | |
174 | LED_A_ON(); // Indicate we got a valid SOF | |
175 | } else { | |
176 | // didn't stay down long enough | |
177 | // before going high, error | |
36f84d47 | 178 | Uart.state = STATE_UNSYNCD; |
489ef36c | 179 | } |
180 | } else { | |
181 | // do nothing, keep waiting | |
182 | } | |
183 | Uart.bitCnt++; | |
184 | } | |
185 | if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
abb21530 | 186 | if(Uart.bitCnt > 12) { |
489ef36c | 187 | // Give up if we see too many zeros without |
188 | // a one, too. | |
36f84d47 | 189 | LED_A_OFF(); |
190 | Uart.state = STATE_UNSYNCD; | |
489ef36c | 191 | } |
192 | break; | |
193 | ||
194 | case STATE_AWAITING_START_BIT: | |
195 | Uart.posCnt++; | |
196 | if(bit) { | |
abb21530 | 197 | if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs |
489ef36c | 198 | // stayed high for too long between |
199 | // characters, error | |
36f84d47 | 200 | Uart.state = STATE_UNSYNCD; |
489ef36c | 201 | } |
202 | } else { | |
203 | // falling edge, this starts the data byte | |
204 | Uart.posCnt = 0; | |
205 | Uart.bitCnt = 0; | |
206 | Uart.shiftReg = 0; | |
207 | Uart.state = STATE_RECEIVING_DATA; | |
489ef36c | 208 | } |
209 | break; | |
210 | ||
211 | case STATE_RECEIVING_DATA: | |
212 | Uart.posCnt++; | |
213 | if(Uart.posCnt == 2) { | |
214 | // time to sample a bit | |
215 | Uart.shiftReg >>= 1; | |
216 | if(bit) { | |
217 | Uart.shiftReg |= 0x200; | |
218 | } | |
219 | Uart.bitCnt++; | |
220 | } | |
221 | if(Uart.posCnt >= 4) { | |
222 | Uart.posCnt = 0; | |
223 | } | |
224 | if(Uart.bitCnt == 10) { | |
225 | if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
226 | { | |
227 | // this is a data byte, with correct | |
228 | // start and stop bits | |
229 | Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
230 | Uart.byteCnt++; | |
231 | ||
232 | if(Uart.byteCnt >= Uart.byteCntMax) { | |
233 | // Buffer overflowed, give up | |
36f84d47 | 234 | LED_A_OFF(); |
235 | Uart.state = STATE_UNSYNCD; | |
489ef36c | 236 | } else { |
237 | // so get the next byte now | |
238 | Uart.posCnt = 0; | |
239 | Uart.state = STATE_AWAITING_START_BIT; | |
240 | } | |
46734099 | 241 | } else if (Uart.shiftReg == 0x000) { |
489ef36c | 242 | // this is an EOF byte |
243 | LED_A_OFF(); // Finished receiving | |
36f84d47 | 244 | Uart.state = STATE_UNSYNCD; |
22e24700 | 245 | if (Uart.byteCnt != 0) { |
489ef36c | 246 | return TRUE; |
22e24700 | 247 | } |
489ef36c | 248 | } else { |
249 | // this is an error | |
36f84d47 | 250 | LED_A_OFF(); |
46734099 | 251 | Uart.state = STATE_UNSYNCD; |
36f84d47 | 252 | } |
489ef36c | 253 | } |
254 | break; | |
255 | ||
256 | default: | |
36f84d47 | 257 | LED_A_OFF(); |
489ef36c | 258 | Uart.state = STATE_UNSYNCD; |
259 | break; | |
260 | } | |
261 | ||
489ef36c | 262 | return FALSE; |
263 | } | |
264 | ||
36f84d47 | 265 | |
266 | static void UartReset() | |
267 | { | |
268 | Uart.byteCntMax = MAX_FRAME_SIZE; | |
269 | Uart.state = STATE_UNSYNCD; | |
270 | Uart.byteCnt = 0; | |
271 | Uart.bitCnt = 0; | |
db25599d | 272 | Uart.posCnt = 0; |
b10a759f | 273 | memset(Uart.output, 0x00, MAX_FRAME_SIZE); |
36f84d47 | 274 | } |
275 | ||
276 | ||
277 | static void UartInit(uint8_t *data) | |
278 | { | |
279 | Uart.output = data; | |
280 | UartReset(); | |
281 | } | |
282 | ||
283 | ||
489ef36c | 284 | //----------------------------------------------------------------------------- |
285 | // Receive a command (from the reader to us, where we are the simulated tag), | |
286 | // and store it in the given buffer, up to the given maximum length. Keeps | |
287 | // spinning, waiting for a well-framed command, until either we get one | |
288 | // (returns TRUE) or someone presses the pushbutton on the board (FALSE). | |
289 | // | |
290 | // Assume that we're called with the SSC (to the FPGA) and ADC path set | |
291 | // correctly. | |
292 | //----------------------------------------------------------------------------- | |
36f84d47 | 293 | static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) |
489ef36c | 294 | { |
abb21530 | 295 | // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen |
489ef36c | 296 | // only, since we are receiving, not transmitting). |
297 | // Signal field is off with the appropriate LED | |
298 | LED_D_OFF(); | |
299 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
300 | ||
489ef36c | 301 | // Now run a `software UART' on the stream of incoming samples. |
36f84d47 | 302 | UartInit(received); |
489ef36c | 303 | |
304 | for(;;) { | |
305 | WDT_HIT(); | |
306 | ||
307 | if(BUTTON_PRESS()) return FALSE; | |
308 | ||
489ef36c | 309 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
310 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
36f84d47 | 311 | for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) { |
312 | if(Handle14443bUartBit(b & mask)) { | |
489ef36c | 313 | *len = Uart.byteCnt; |
314 | return TRUE; | |
315 | } | |
316 | } | |
317 | } | |
318 | } | |
36f84d47 | 319 | |
320 | return FALSE; | |
489ef36c | 321 | } |
322 | ||
323 | //----------------------------------------------------------------------------- | |
324 | // Main loop of simulated tag: receive commands from reader, decide what | |
325 | // response to send, and send it. | |
326 | //----------------------------------------------------------------------------- | |
abb21530 | 327 | void SimulateIso14443bTag(void) |
489ef36c | 328 | { |
b10a759f | 329 | // the only commands we understand is WUPB, AFI=0, Select All, N=1: |
330 | static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB | |
331 | // ... and REQB, AFI=0, Normal Request, N=1: | |
332 | static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB | |
333 | // ... and HLTB | |
334 | static const uint8_t cmd3[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB | |
335 | // ... and ATTRIB | |
336 | static const uint8_t cmd4[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB | |
36f84d47 | 337 | |
338 | // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922, | |
abb21530 | 339 | // supports only 106kBit/s in both directions, max frame size = 32Bytes, |
340 | // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported: | |
489ef36c | 341 | static const uint8_t response1[] = { |
342 | 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22, | |
343 | 0x00, 0x21, 0x85, 0x5e, 0xd7 | |
344 | }; | |
b10a759f | 345 | // response to HLTB and ATTRIB |
346 | static const uint8_t response2[] = {0x00, 0x78, 0xF0}; | |
489ef36c | 347 | |
99cf19d9 | 348 | uint8_t parity[MAX_PARITY_SIZE]; |
349 | ||
350 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
351 | ||
36f84d47 | 352 | clear_trace(); |
353 | set_tracing(TRUE); | |
354 | ||
355 | const uint8_t *resp; | |
356 | uint8_t *respCode; | |
357 | uint16_t respLen, respCodeLen; | |
17ad0e09 | 358 | |
359 | // allocate command receive buffer | |
99cf19d9 | 360 | BigBuf_free(); |
17ad0e09 | 361 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); |
489ef36c | 362 | |
99cf19d9 | 363 | uint16_t len; |
364 | uint16_t cmdsRecvd = 0; | |
365 | ||
abb21530 | 366 | // prepare the (only one) tag answer: |
489ef36c | 367 | CodeIso14443bAsTag(response1, sizeof(response1)); |
36f84d47 | 368 | uint8_t *resp1Code = BigBuf_malloc(ToSendMax); |
369 | memcpy(resp1Code, ToSend, ToSendMax); | |
370 | uint16_t resp1CodeLen = ToSendMax; | |
489ef36c | 371 | |
b10a759f | 372 | // prepare the (other) tag answer: |
373 | CodeIso14443bAsTag(response2, sizeof(response2)); | |
374 | uint8_t *resp2Code = BigBuf_malloc(ToSendMax); | |
375 | memcpy(resp2Code, ToSend, ToSendMax); | |
376 | uint16_t resp2CodeLen = ToSendMax; | |
377 | ||
489ef36c | 378 | // We need to listen to the high-frequency, peak-detected path. |
379 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
380 | FpgaSetupSsc(); | |
381 | ||
382 | cmdsRecvd = 0; | |
383 | ||
384 | for(;;) { | |
489ef36c | 385 | |
36f84d47 | 386 | if(!GetIso14443bCommandFromReader(receivedCmd, &len)) { |
489ef36c | 387 | Dbprintf("button pressed, received %d commands", cmdsRecvd); |
388 | break; | |
389 | } | |
390 | ||
36f84d47 | 391 | if (tracing) { |
36f84d47 | 392 | LogTrace(receivedCmd, len, 0, 0, parity, TRUE); |
393 | } | |
489ef36c | 394 | |
36f84d47 | 395 | // Good, look at the command now. |
396 | if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0) | |
397 | || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) { | |
398 | resp = response1; | |
399 | respLen = sizeof(response1); | |
400 | respCode = resp1Code; | |
401 | respCodeLen = resp1CodeLen; | |
b10a759f | 402 | } else if ( (len == sizeof(cmd3) && receivedCmd[0] == cmd3[0]) |
403 | || (len == sizeof(cmd4) && receivedCmd[0] == cmd4[0]) ) { | |
404 | resp = response2; | |
405 | respLen = sizeof(response2); | |
406 | respCode = resp2Code; | |
407 | respCodeLen = resp2CodeLen; | |
489ef36c | 408 | } else { |
409 | Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd); | |
410 | // And print whether the CRC fails, just for good measure | |
36f84d47 | 411 | uint8_t b1, b2; |
b10a759f | 412 | if (len >= 3){ // if crc exists |
489ef36c | 413 | ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2); |
414 | if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) { | |
415 | // Not so good, try again. | |
416 | DbpString("+++CRC fail"); | |
b10a759f | 417 | |
489ef36c | 418 | } else { |
419 | DbpString("CRC passes"); | |
420 | } | |
b10a759f | 421 | } |
422 | //get rid of compiler warning | |
423 | respCodeLen = 0; | |
424 | resp = response1; | |
425 | respLen = 0; | |
426 | respCode = resp1Code; | |
427 | //don't crash at new command just wait and see if reader will send other new cmds. | |
428 | //break; | |
489ef36c | 429 | } |
430 | ||
489ef36c | 431 | cmdsRecvd++; |
432 | ||
433 | if(cmdsRecvd > 0x30) { | |
434 | DbpString("many commands later..."); | |
435 | break; | |
436 | } | |
437 | ||
36f84d47 | 438 | if(respCodeLen <= 0) continue; |
489ef36c | 439 | |
440 | // Modulate BPSK | |
441 | // Signal field is off with the appropriate LED | |
442 | LED_D_OFF(); | |
443 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK); | |
444 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
445 | FpgaSetupSsc(); | |
446 | ||
17ad0e09 | 447 | uint8_t c; |
448 | // clear receiving shift register and holding register | |
449 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
450 | c = AT91C_BASE_SSC->SSC_RHR; (void) c; | |
451 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
452 | c = AT91C_BASE_SSC->SSC_RHR; (void) c; | |
453 | ||
454 | // Clear TXRDY: | |
455 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
456 | ||
489ef36c | 457 | // Transmit the response. |
17ad0e09 | 458 | uint16_t FpgaSendQueueDelay = 0; |
36f84d47 | 459 | uint16_t i = 0; |
17ad0e09 | 460 | for(;i < respCodeLen; ) { |
489ef36c | 461 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
17ad0e09 | 462 | AT91C_BASE_SSC->SSC_THR = respCode[i++]; |
463 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
489ef36c | 464 | } |
17ad0e09 | 465 | if(BUTTON_PRESS()) break; |
466 | } | |
467 | ||
468 | // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: | |
469 | uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; | |
470 | for (i = 0; i <= fpga_queued_bits/8 + 1; ) { | |
471 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
472 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
473 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
474 | i++; | |
489ef36c | 475 | } |
476 | } | |
36f84d47 | 477 | |
478 | // trace the response: | |
99cf19d9 | 479 | if (tracing) LogTrace(resp, respLen, 0, 0, parity, FALSE); |
489ef36c | 480 | } |
b10a759f | 481 | FpgaDisableSscDma(); |
489ef36c | 482 | } |
483 | ||
484 | //============================================================================= | |
485 | // An ISO 14443 Type B reader. We take layer two commands, code them | |
486 | // appropriately, and then send them to the tag. We then listen for the | |
487 | // tag's response, which we leave in the buffer to be demodulated on the | |
488 | // PC side. | |
489 | //============================================================================= | |
490 | ||
491 | static struct { | |
492 | enum { | |
493 | DEMOD_UNSYNCD, | |
494 | DEMOD_PHASE_REF_TRAINING, | |
495 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
496 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
497 | DEMOD_AWAITING_START_BIT, | |
36f84d47 | 498 | DEMOD_RECEIVING_DATA |
489ef36c | 499 | } state; |
500 | int bitCount; | |
501 | int posCount; | |
502 | int thisBit; | |
abb21530 | 503 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. |
489ef36c | 504 | int metric; |
505 | int metricN; | |
abb21530 | 506 | */ |
489ef36c | 507 | uint16_t shiftReg; |
508 | uint8_t *output; | |
509 | int len; | |
510 | int sumI; | |
511 | int sumQ; | |
512 | } Demod; | |
513 | ||
514 | /* | |
515 | * Handles reception of a bit from the tag | |
516 | * | |
abb21530 | 517 | * This function is called 2 times per bit (every 4 subcarrier cycles). |
518 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us | |
519 | * | |
489ef36c | 520 | * LED handling: |
521 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
522 | * LED C -> OFF once we have received EOF or are unsynced | |
523 | * | |
524 | * Returns: true if we received a EOF | |
525 | * false if we are still waiting for some more | |
526 | * | |
527 | */ | |
abb21530 | 528 | static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq) |
489ef36c | 529 | { |
530 | int v; | |
db25599d | 531 | int ai, aq; |
489ef36c | 532 | |
51d4f6f1 | 533 | // The soft decision on the bit uses an estimate of just the |
534 | // quadrant of the reference angle, not the exact angle. | |
489ef36c | 535 | #define MAKE_SOFT_DECISION() { \ |
db25599d | 536 | v = (Demod.sumI > 0) ? ci : -ci;\ |
489ef36c | 537 | if(Demod.sumQ > 0) { \ |
538 | v += cq; \ | |
539 | } else { \ | |
540 | v -= cq; \ | |
541 | } \ | |
542 | } | |
543 | ||
abb21530 | 544 | #define SUBCARRIER_DETECT_THRESHOLD 8 |
545 | ||
546 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq) | |
547 | /* #define CHECK_FOR_SUBCARRIER() { \ | |
548 | v = ci; \ | |
549 | if(v < 0) v = -v; \ | |
550 | if(cq > 0) { \ | |
551 | v += cq; \ | |
552 | } else { \ | |
553 | v -= cq; \ | |
554 | } \ | |
555 | } | |
556 | */ | |
db25599d | 557 | |
abb21530 | 558 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) |
559 | #define CHECK_FOR_SUBCARRIER() { \ | |
db25599d | 560 | ai = (abs(ci) >> 1); \ |
561 | aq = (abs(cq) >> 1); \ | |
562 | v = MAX(abs(ci), abs(cq)) + MIN(ai, aq); \ | |
563 | } | |
564 | ||
565 | ||
489ef36c | 566 | switch(Demod.state) { |
567 | case DEMOD_UNSYNCD: | |
abb21530 | 568 | CHECK_FOR_SUBCARRIER(); |
569 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
489ef36c | 570 | Demod.state = DEMOD_PHASE_REF_TRAINING; |
abb21530 | 571 | Demod.sumI = ci; |
572 | Demod.sumQ = cq; | |
573 | Demod.posCount = 1; | |
489ef36c | 574 | } |
575 | break; | |
576 | ||
577 | case DEMOD_PHASE_REF_TRAINING: | |
b10a759f | 578 | if(Demod.posCount < 10*2) { |
abb21530 | 579 | CHECK_FOR_SUBCARRIER(); |
580 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
581 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
582 | // note: synchronization time > 80 1/fs | |
b10a759f | 583 | Demod.sumI += ci; |
584 | Demod.sumQ += cq; | |
abb21530 | 585 | Demod.posCount++; |
586 | } else { // subcarrier lost | |
b10a759f | 587 | Demod.state = DEMOD_UNSYNCD; |
abb21530 | 588 | } |
489ef36c | 589 | } else { |
b10a759f | 590 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; |
489ef36c | 591 | } |
489ef36c | 592 | break; |
593 | ||
594 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
595 | MAKE_SOFT_DECISION(); | |
db25599d | 596 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); |
abb21530 | 597 | if(v < 0) { // logic '0' detected |
489ef36c | 598 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; |
abb21530 | 599 | Demod.posCount = 0; // start of SOF sequence |
489ef36c | 600 | } else { |
b10a759f | 601 | if(Demod.posCount > 25*2) { // maximum length of TR1 = 200 1/fs |
489ef36c | 602 | Demod.state = DEMOD_UNSYNCD; |
603 | } | |
604 | } | |
605 | Demod.posCount++; | |
606 | break; | |
607 | ||
608 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
abb21530 | 609 | Demod.posCount++; |
489ef36c | 610 | MAKE_SOFT_DECISION(); |
611 | if(v > 0) { | |
b10a759f | 612 | if(Demod.posCount < 10*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges |
489ef36c | 613 | Demod.state = DEMOD_UNSYNCD; |
614 | } else { | |
a62bf3af | 615 | LED_C_ON(); // Got SOF |
489ef36c | 616 | Demod.state = DEMOD_AWAITING_START_BIT; |
617 | Demod.posCount = 0; | |
618 | Demod.len = 0; | |
abb21530 | 619 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. |
489ef36c | 620 | Demod.metricN = 0; |
621 | Demod.metric = 0; | |
abb21530 | 622 | */ |
489ef36c | 623 | } |
624 | } else { | |
b10a759f | 625 | if(Demod.posCount > 13*2) { // low phase of SOF too long (> 12 etu) |
489ef36c | 626 | Demod.state = DEMOD_UNSYNCD; |
47286d89 | 627 | LED_C_OFF(); |
489ef36c | 628 | } |
629 | } | |
489ef36c | 630 | break; |
631 | ||
632 | case DEMOD_AWAITING_START_BIT: | |
abb21530 | 633 | Demod.posCount++; |
489ef36c | 634 | MAKE_SOFT_DECISION(); |
635 | if(v > 0) { | |
abb21530 | 636 | if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs |
489ef36c | 637 | Demod.state = DEMOD_UNSYNCD; |
47286d89 | 638 | LED_C_OFF(); |
489ef36c | 639 | } |
abb21530 | 640 | } else { // start bit detected |
489ef36c | 641 | Demod.bitCount = 0; |
abb21530 | 642 | Demod.posCount = 1; // this was the first half |
489ef36c | 643 | Demod.thisBit = v; |
644 | Demod.shiftReg = 0; | |
645 | Demod.state = DEMOD_RECEIVING_DATA; | |
646 | } | |
647 | break; | |
648 | ||
649 | case DEMOD_RECEIVING_DATA: | |
650 | MAKE_SOFT_DECISION(); | |
abb21530 | 651 | if(Demod.posCount == 0) { // first half of bit |
489ef36c | 652 | Demod.thisBit = v; |
653 | Demod.posCount = 1; | |
abb21530 | 654 | } else { // second half of bit |
489ef36c | 655 | Demod.thisBit += v; |
656 | ||
abb21530 | 657 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. |
489ef36c | 658 | if(Demod.thisBit > 0) { |
659 | Demod.metric += Demod.thisBit; | |
660 | } else { | |
661 | Demod.metric -= Demod.thisBit; | |
662 | } | |
663 | (Demod.metricN)++; | |
abb21530 | 664 | */ |
489ef36c | 665 | |
666 | Demod.shiftReg >>= 1; | |
abb21530 | 667 | if(Demod.thisBit > 0) { // logic '1' |
489ef36c | 668 | Demod.shiftReg |= 0x200; |
669 | } | |
670 | ||
671 | Demod.bitCount++; | |
672 | if(Demod.bitCount == 10) { | |
673 | uint16_t s = Demod.shiftReg; | |
abb21530 | 674 | if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0' |
489ef36c | 675 | uint8_t b = (s >> 1); |
676 | Demod.output[Demod.len] = b; | |
677 | Demod.len++; | |
678 | Demod.state = DEMOD_AWAITING_START_BIT; | |
489ef36c | 679 | } else { |
680 | Demod.state = DEMOD_UNSYNCD; | |
47286d89 | 681 | LED_C_OFF(); |
682 | if(s == 0x000) { | |
abb21530 | 683 | // This is EOF (start, stop and all data bits == '0' |
b10a759f | 684 | return TRUE; |
47286d89 | 685 | } |
489ef36c | 686 | } |
687 | } | |
688 | Demod.posCount = 0; | |
689 | } | |
690 | break; | |
691 | ||
692 | default: | |
693 | Demod.state = DEMOD_UNSYNCD; | |
47286d89 | 694 | LED_C_OFF(); |
489ef36c | 695 | break; |
696 | } | |
489ef36c | 697 | return FALSE; |
698 | } | |
699 | ||
700 | ||
701 | static void DemodReset() | |
702 | { | |
703 | // Clear out the state of the "UART" that receives from the tag. | |
704 | Demod.len = 0; | |
705 | Demod.state = DEMOD_UNSYNCD; | |
abb21530 | 706 | Demod.posCount = 0; |
db25599d | 707 | Demod.sumI = 0; |
708 | Demod.sumQ = 0; | |
709 | Demod.bitCount = 0; | |
710 | Demod.thisBit = 0; | |
711 | Demod.shiftReg = 0; | |
489ef36c | 712 | memset(Demod.output, 0x00, MAX_FRAME_SIZE); |
713 | } | |
714 | ||
715 | ||
716 | static void DemodInit(uint8_t *data) | |
717 | { | |
718 | Demod.output = data; | |
719 | DemodReset(); | |
720 | } | |
721 | ||
722 | ||
489ef36c | 723 | /* |
724 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
489ef36c | 725 | * quiet: set to 'TRUE' to disable debug output |
726 | */ | |
abb21530 | 727 | static void GetSamplesFor14443bDemod(int n, bool quiet) |
489ef36c | 728 | { |
729 | int max = 0; | |
abb21530 | 730 | bool gotFrame = FALSE; |
489ef36c | 731 | int lastRxCounter, ci, cq, samples = 0; |
732 | ||
733 | // Allocate memory from BigBuf for some buffers | |
734 | // free all previous allocations first | |
735 | BigBuf_free(); | |
b10a759f | 736 | |
737 | // And put the FPGA in the appropriate mode | |
738 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); | |
739 | ||
489ef36c | 740 | // The response (tag -> reader) that we're receiving. |
489ef36c | 741 | // Set up the demodulator for tag -> reader responses. |
db25599d | 742 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); |
b10a759f | 743 | |
744 | // The DMA buffer, used to stream samples from the FPGA | |
745 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE); | |
489ef36c | 746 | |
db25599d | 747 | // Setup and start DMA. |
748 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE); | |
749 | ||
489ef36c | 750 | int8_t *upTo = dmaBuf; |
705bfa10 | 751 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; |
489ef36c | 752 | |
753 | // Signal field is ON with the appropriate LED: | |
abb21530 | 754 | LED_D_ON(); |
489ef36c | 755 | for(;;) { |
756 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
757 | if(behindBy > max) max = behindBy; | |
758 | ||
705bfa10 | 759 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) { |
489ef36c | 760 | ci = upTo[0]; |
761 | cq = upTo[1]; | |
762 | upTo += 2; | |
705bfa10 | 763 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { |
489ef36c | 764 | upTo = dmaBuf; |
765 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
705bfa10 | 766 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; |
489ef36c | 767 | } |
768 | lastRxCounter -= 2; | |
769 | if(lastRxCounter <= 0) { | |
705bfa10 | 770 | lastRxCounter += ISO14443B_DMA_BUFFER_SIZE; |
489ef36c | 771 | } |
772 | ||
773 | samples += 2; | |
774 | ||
db25599d | 775 | // |
776 | gotFrame = Handle14443bSamplesDemod(ci , cq ); | |
777 | if ( gotFrame ) | |
51d4f6f1 | 778 | break; |
489ef36c | 779 | } |
780 | ||
abb21530 | 781 | if(samples > n || gotFrame) { |
489ef36c | 782 | break; |
783 | } | |
784 | } | |
abb21530 | 785 | |
489ef36c | 786 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
abb21530 | 787 | |
a62bf3af | 788 | if (!quiet && Demod.len == 0) { |
b10a759f | 789 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", |
790 | max, | |
791 | samples, | |
792 | gotFrame, | |
793 | Demod.len, | |
794 | Demod.sumI, | |
795 | Demod.sumQ | |
796 | ); | |
797 | } | |
798 | ||
489ef36c | 799 | //Tracing |
800 | if (tracing && Demod.len > 0) { | |
801 | uint8_t parity[MAX_PARITY_SIZE]; | |
489ef36c | 802 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); |
803 | } | |
804 | } | |
805 | ||
806 | ||
489ef36c | 807 | //----------------------------------------------------------------------------- |
808 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
809 | //----------------------------------------------------------------------------- | |
abb21530 | 810 | static void TransmitFor14443b(void) |
489ef36c | 811 | { |
812 | int c; | |
813 | ||
814 | FpgaSetupSsc(); | |
a62bf3af | 815 | |
489ef36c | 816 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
817 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
818 | } | |
819 | ||
820 | // Signal field is ON with the appropriate Red LED | |
821 | LED_D_ON(); | |
822 | // Signal we are transmitting with the Green LED | |
823 | LED_B_ON(); | |
abb21530 | 824 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); |
b10a759f | 825 | |
489ef36c | 826 | for(c = 0; c < 10;) { |
827 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
828 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
829 | c++; | |
830 | } | |
831 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
832 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
833 | (void)r; | |
834 | } | |
835 | WDT_HIT(); | |
836 | } | |
837 | ||
838 | c = 0; | |
839 | for(;;) { | |
840 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
841 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
842 | c++; | |
843 | if(c >= ToSendMax) { | |
844 | break; | |
845 | } | |
846 | } | |
847 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
848 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
849 | (void)r; | |
850 | } | |
851 | WDT_HIT(); | |
852 | } | |
853 | LED_B_OFF(); // Finished sending | |
854 | } | |
855 | ||
856 | ||
857 | //----------------------------------------------------------------------------- | |
858 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
abb21530 | 859 | // so that it is ready to transmit to the tag using TransmitFor14443b(). |
489ef36c | 860 | //----------------------------------------------------------------------------- |
861 | static void CodeIso14443bAsReader(const uint8_t *cmd, int len) | |
862 | { | |
863 | int i, j; | |
864 | uint8_t b; | |
865 | ||
866 | ToSendReset(); | |
867 | ||
868 | // Establish initial reference level | |
db25599d | 869 | for(i = 0; i < 40; i++) { |
489ef36c | 870 | ToSendStuffBit(1); |
871 | } | |
872 | // Send SOF | |
b10a759f | 873 | for(i = 0; i < 11; i++) { |
489ef36c | 874 | ToSendStuffBit(0); |
875 | } | |
876 | ||
877 | for(i = 0; i < len; i++) { | |
878 | // Stop bits/EGT | |
879 | ToSendStuffBit(1); | |
880 | ToSendStuffBit(1); | |
881 | // Start bit | |
882 | ToSendStuffBit(0); | |
883 | // Data bits | |
884 | b = cmd[i]; | |
885 | for(j = 0; j < 8; j++) { | |
886 | if(b & 1) { | |
887 | ToSendStuffBit(1); | |
888 | } else { | |
889 | ToSendStuffBit(0); | |
890 | } | |
891 | b >>= 1; | |
892 | } | |
893 | } | |
894 | // Send EOF | |
895 | ToSendStuffBit(1); | |
b10a759f | 896 | for(i = 0; i < 11; i++) { |
489ef36c | 897 | ToSendStuffBit(0); |
898 | } | |
899 | for(i = 0; i < 8; i++) { | |
900 | ToSendStuffBit(1); | |
901 | } | |
902 | ||
903 | // And then a little more, to make sure that the last character makes | |
904 | // it out before we switch to rx mode. | |
b10a759f | 905 | for(i = 0; i < 10; i++) { |
489ef36c | 906 | ToSendStuffBit(1); |
907 | } | |
908 | ||
909 | // Convert from last character reference to length | |
910 | ToSendMax++; | |
911 | } | |
912 | ||
913 | ||
489ef36c | 914 | /** |
915 | Convenience function to encode, transmit and trace iso 14443b comms | |
916 | **/ | |
917 | static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len) | |
918 | { | |
919 | CodeIso14443bAsReader(cmd, len); | |
abb21530 | 920 | TransmitFor14443b(); |
489ef36c | 921 | if (tracing) { |
922 | uint8_t parity[MAX_PARITY_SIZE]; | |
489ef36c | 923 | LogTrace(cmd,len, 0, 0, parity, TRUE); |
924 | } | |
925 | } | |
926 | ||
a62bf3af | 927 | /* Sends an APDU to the tag |
928 | * TODO: check CRC and preamble | |
929 | */ | |
930 | int iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response) | |
931 | { | |
932 | uint8_t message_frame[message_length + 4]; | |
933 | // PCB | |
934 | message_frame[0] = 0x0A | pcb_blocknum; | |
935 | pcb_blocknum ^= 1; | |
936 | // CID | |
937 | message_frame[1] = 0; | |
938 | // INF | |
939 | memcpy(message_frame + 2, message, message_length); | |
940 | // EDC (CRC) | |
941 | ComputeCrc14443(CRC_14443_B, message_frame, message_length + 2, &message_frame[message_length + 2], &message_frame[message_length + 3]); | |
942 | // send | |
943 | CodeAndTransmit14443bAsReader(message_frame, message_length + 4); | |
944 | // get response | |
945 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT*100, TRUE); | |
946 | if(Demod.len < 3) | |
947 | { | |
948 | return 0; | |
949 | } | |
950 | // TODO: Check CRC | |
951 | // copy response contents | |
952 | if(response != NULL) | |
953 | { | |
954 | memcpy(response, Demod.output, Demod.len); | |
955 | } | |
956 | return Demod.len; | |
957 | } | |
958 | ||
959 | /* Perform the ISO 14443 B Card Selection procedure | |
960 | * Currently does NOT do any collision handling. | |
961 | * It expects 0-1 cards in the device's range. | |
962 | * TODO: Support multiple cards (perform anticollision) | |
963 | * TODO: Verify CRC checksums | |
964 | */ | |
965 | int iso14443b_select_card() | |
966 | { | |
967 | // WUPB command (including CRC) | |
968 | // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state | |
969 | static const uint8_t wupb[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; | |
970 | // ATTRIB command (with space for CRC) | |
971 | uint8_t attrib[] = { 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00}; | |
972 | ||
973 | // first, wake up the tag | |
974 | CodeAndTransmit14443bAsReader(wupb, sizeof(wupb)); | |
975 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
976 | // ATQB too short? | |
977 | if (Demod.len < 14) | |
978 | { | |
979 | return 2; | |
980 | } | |
981 | ||
982 | // select the tag | |
983 | // copy the PUPI to ATTRIB | |
984 | memcpy(attrib + 1, Demod.output + 1, 4); | |
985 | /* copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into | |
986 | ATTRIB (Param 3) */ | |
987 | attrib[7] = Demod.output[10] & 0x0F; | |
988 | ComputeCrc14443(CRC_14443_B, attrib, 9, attrib + 9, attrib + 10); | |
989 | CodeAndTransmit14443bAsReader(attrib, sizeof(attrib)); | |
990 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
991 | // Answer to ATTRIB too short? | |
992 | if(Demod.len < 3) | |
993 | { | |
994 | return 2; | |
995 | } | |
996 | // reset PCB block number | |
997 | pcb_blocknum = 0; | |
998 | return 1; | |
999 | } | |
1000 | ||
1001 | // Set up ISO 14443 Type B communication (similar to iso14443a_setup) | |
1002 | void iso14443b_setup() { | |
db25599d | 1003 | |
a62bf3af | 1004 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
db25599d | 1005 | |
a62bf3af | 1006 | BigBuf_free(); |
1007 | // Set up the synchronous serial port | |
1008 | FpgaSetupSsc(); | |
1009 | // connect Demodulated Signal to ADC: | |
1010 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1011 | ||
1012 | // Signal field is on with the appropriate LED | |
1013 | LED_D_ON(); | |
1014 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1015 | ||
1016 | // Start the timer | |
db25599d | 1017 | //StartCountSspClk(); |
a62bf3af | 1018 | |
1019 | DemodReset(); | |
1020 | UartReset(); | |
1021 | } | |
489ef36c | 1022 | |
1023 | //----------------------------------------------------------------------------- | |
abb21530 | 1024 | // Read a SRI512 ISO 14443B tag. |
489ef36c | 1025 | // |
1026 | // SRI512 tags are just simple memory tags, here we're looking at making a dump | |
1027 | // of the contents of the memory. No anticollision algorithm is done, we assume | |
1028 | // we have a single tag in the field. | |
1029 | // | |
1030 | // I tried to be systematic and check every answer of the tag, every CRC, etc... | |
1031 | //----------------------------------------------------------------------------- | |
abb21530 | 1032 | void ReadSTMemoryIso14443b(uint32_t dwLast) |
489ef36c | 1033 | { |
17ad0e09 | 1034 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
99cf19d9 | 1035 | BigBuf_free(); |
1036 | ||
489ef36c | 1037 | clear_trace(); |
1038 | set_tracing(TRUE); | |
1039 | ||
1040 | uint8_t i = 0x00; | |
1041 | ||
489ef36c | 1042 | // Make sure that we start from off, since the tags are stateful; |
1043 | // confusing things will happen if we don't reset them between reads. | |
1044 | LED_D_OFF(); | |
1045 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
99cf19d9 | 1046 | SpinDelay(200); |
1047 | ||
489ef36c | 1048 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1049 | FpgaSetupSsc(); | |
1050 | ||
1051 | // Now give it time to spin up. | |
1052 | // Signal field is on with the appropriate LED | |
1053 | LED_D_ON(); | |
22e24700 | 1054 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); |
489ef36c | 1055 | SpinDelay(200); |
1056 | ||
1057 | // First command: wake up the tag using the INITIATE command | |
51d4f6f1 | 1058 | uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b}; |
489ef36c | 1059 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); |
abb21530 | 1060 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
489ef36c | 1061 | |
1062 | if (Demod.len == 0) { | |
22e24700 | 1063 | DbpString("No response from tag"); |
1064 | return; | |
489ef36c | 1065 | } else { |
705bfa10 | 1066 | Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x", |
1067 | Demod.output[0], Demod.output[1], Demod.output[2]); | |
489ef36c | 1068 | } |
705bfa10 | 1069 | |
489ef36c | 1070 | // There is a response, SELECT the uid |
1071 | DbpString("Now SELECT tag:"); | |
1072 | cmd1[0] = 0x0E; // 0x0E is SELECT | |
1073 | cmd1[1] = Demod.output[0]; | |
1074 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
1075 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
abb21530 | 1076 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
489ef36c | 1077 | if (Demod.len != 3) { |
22e24700 | 1078 | Dbprintf("Expected 3 bytes from tag, got %d", Demod.len); |
1079 | return; | |
489ef36c | 1080 | } |
1081 | // Check the CRC of the answer: | |
1082 | ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]); | |
1083 | if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) { | |
22e24700 | 1084 | DbpString("CRC Error reading select response."); |
1085 | return; | |
489ef36c | 1086 | } |
1087 | // Check response from the tag: should be the same UID as the command we just sent: | |
1088 | if (cmd1[1] != Demod.output[0]) { | |
22e24700 | 1089 | Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]); |
1090 | return; | |
489ef36c | 1091 | } |
705bfa10 | 1092 | |
489ef36c | 1093 | // Tag is now selected, |
1094 | // First get the tag's UID: | |
1095 | cmd1[0] = 0x0B; | |
1096 | ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]); | |
1097 | CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one | |
abb21530 | 1098 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
489ef36c | 1099 | if (Demod.len != 10) { |
22e24700 | 1100 | Dbprintf("Expected 10 bytes from tag, got %d", Demod.len); |
1101 | return; | |
489ef36c | 1102 | } |
1103 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1104 | ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]); | |
51d4f6f1 | 1105 | if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) { |
22e24700 | 1106 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", |
705bfa10 | 1107 | (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]); |
489ef36c | 1108 | // Do not return;, let's go on... (we should retry, maybe ?) |
1109 | } | |
1110 | Dbprintf("Tag UID (64 bits): %08x %08x", | |
705bfa10 | 1111 | (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4], |
1112 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]); | |
489ef36c | 1113 | |
1114 | // Now loop to read all 16 blocks, address from 0 to last block | |
132a0217 | 1115 | Dbprintf("Tag memory dump, block 0 to %d", dwLast); |
489ef36c | 1116 | cmd1[0] = 0x08; |
1117 | i = 0x00; | |
1118 | dwLast++; | |
1119 | for (;;) { | |
1120 | if (i == dwLast) { | |
1121 | DbpString("System area block (0xff):"); | |
1122 | i = 0xff; | |
1123 | } | |
1124 | cmd1[1] = i; | |
1125 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
1126 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
abb21530 | 1127 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); |
489ef36c | 1128 | if (Demod.len != 6) { // Check if we got an answer from the tag |
1129 | DbpString("Expected 6 bytes from tag, got less..."); | |
1130 | return; | |
1131 | } | |
1132 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1133 | ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]); | |
1134 | if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) { | |
132a0217 | 1135 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", |
705bfa10 | 1136 | (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]); |
489ef36c | 1137 | // Do not return;, let's go on... (we should retry, maybe ?) |
1138 | } | |
1139 | // Now print out the memory location: | |
22e24700 | 1140 | Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i, |
705bfa10 | 1141 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0], |
17ad0e09 | 1142 | (Demod.output[4]<<8)+Demod.output[5]); |
1143 | if (i == 0xff) { | |
1144 | break; | |
1145 | } | |
489ef36c | 1146 | i++; |
1147 | } | |
1148 | } | |
1149 | ||
1150 | ||
1151 | //============================================================================= | |
1152 | // Finally, the `sniffer' combines elements from both the reader and | |
1153 | // simulated tag, to show both sides of the conversation. | |
1154 | //============================================================================= | |
1155 | ||
1156 | //----------------------------------------------------------------------------- | |
1157 | // Record the sequence of commands sent by the reader to the tag, with | |
1158 | // triggering so that we start recording at the point that the tag is moved | |
1159 | // near the reader. | |
1160 | //----------------------------------------------------------------------------- | |
1161 | /* | |
1162 | * Memory usage for this function, (within BigBuf) | |
47286d89 | 1163 | * Last Received command (reader->tag) - MAX_FRAME_SIZE |
1164 | * Last Received command (tag->reader) - MAX_FRAME_SIZE | |
705bfa10 | 1165 | * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE |
47286d89 | 1166 | * Demodulated samples received - all the rest |
489ef36c | 1167 | */ |
abb21530 | 1168 | void RAMFUNC SnoopIso14443b(void) |
489ef36c | 1169 | { |
1170 | // We won't start recording the frames that we acquire until we trigger; | |
1171 | // a good trigger condition to get started is probably when we see a | |
1172 | // response from the tag. | |
47286d89 | 1173 | int triggered = TRUE; // TODO: set and evaluate trigger condition |
489ef36c | 1174 | |
1175 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1176 | BigBuf_free(); | |
1177 | ||
1178 | clear_trace(); | |
1179 | set_tracing(TRUE); | |
1180 | ||
1181 | // The DMA buffer, used to stream samples from the FPGA | |
705bfa10 | 1182 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE); |
489ef36c | 1183 | int lastRxCounter; |
1184 | int8_t *upTo; | |
1185 | int ci, cq; | |
1186 | int maxBehindBy = 0; | |
1187 | ||
1188 | // Count of samples received so far, so that we can include timing | |
1189 | // information in the trace buffer. | |
1190 | int samples = 0; | |
1191 | ||
1192 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1193 | UartInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1194 | ||
1195 | // Print some debug information about the buffer sizes | |
1196 | Dbprintf("Snooping buffers initialized:"); | |
1197 | Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); | |
1198 | Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE); | |
1199 | Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE); | |
705bfa10 | 1200 | Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE); |
489ef36c | 1201 | |
abb21530 | 1202 | // Signal field is off, no reader signal, no tag signal |
1203 | LEDsoff(); | |
489ef36c | 1204 | |
1205 | // And put the FPGA in the appropriate mode | |
22e24700 | 1206 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); |
489ef36c | 1207 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1208 | ||
1209 | // Setup for the DMA. | |
1210 | FpgaSetupSsc(); | |
1211 | upTo = dmaBuf; | |
705bfa10 | 1212 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; |
1213 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE); | |
489ef36c | 1214 | uint8_t parity[MAX_PARITY_SIZE]; |
5b95953d | 1215 | |
f53020e7 | 1216 | bool TagIsActive = FALSE; |
1217 | bool ReaderIsActive = FALSE; | |
489ef36c | 1218 | |
1219 | // And now we loop, receiving samples. | |
1220 | for(;;) { | |
1221 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & | |
705bfa10 | 1222 | (ISO14443B_DMA_BUFFER_SIZE-1); |
489ef36c | 1223 | if(behindBy > maxBehindBy) { |
1224 | maxBehindBy = behindBy; | |
489ef36c | 1225 | } |
abb21530 | 1226 | |
489ef36c | 1227 | if(behindBy < 2) continue; |
1228 | ||
1229 | ci = upTo[0]; | |
1230 | cq = upTo[1]; | |
1231 | upTo += 2; | |
1232 | lastRxCounter -= 2; | |
705bfa10 | 1233 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { |
489ef36c | 1234 | upTo = dmaBuf; |
705bfa10 | 1235 | lastRxCounter += ISO14443B_DMA_BUFFER_SIZE; |
489ef36c | 1236 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; |
705bfa10 | 1237 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; |
51d4f6f1 | 1238 | WDT_HIT(); |
705bfa10 | 1239 | if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not? |
132a0217 | 1240 | Dbprintf("blew circular buffer! behindBy=%d", behindBy); |
51d4f6f1 | 1241 | break; |
abb21530 | 1242 | } |
1243 | if(!tracing) { | |
1244 | DbpString("Reached trace limit"); | |
1245 | break; | |
1246 | } | |
1247 | if(BUTTON_PRESS()) { | |
1248 | DbpString("cancelled"); | |
1249 | break; | |
1250 | } | |
489ef36c | 1251 | } |
1252 | ||
1253 | samples += 2; | |
1254 | ||
47286d89 | 1255 | if (!TagIsActive) { // no need to try decoding reader data if the tag is sending |
abb21530 | 1256 | if(Handle14443bUartBit(ci & 0x01)) { |
489ef36c | 1257 | if(triggered && tracing) { |
51d4f6f1 | 1258 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE); |
489ef36c | 1259 | } |
489ef36c | 1260 | /* And ready to receive another command. */ |
1261 | UartReset(); | |
1262 | /* And also reset the demod code, which might have been */ | |
1263 | /* false-triggered by the commands from the reader. */ | |
1264 | DemodReset(); | |
1265 | } | |
abb21530 | 1266 | if(Handle14443bUartBit(cq & 0x01)) { |
489ef36c | 1267 | if(triggered && tracing) { |
51d4f6f1 | 1268 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE); |
489ef36c | 1269 | } |
489ef36c | 1270 | /* And ready to receive another command. */ |
1271 | UartReset(); | |
1272 | /* And also reset the demod code, which might have been */ | |
1273 | /* false-triggered by the commands from the reader. */ | |
1274 | DemodReset(); | |
1275 | } | |
36f84d47 | 1276 | ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF); |
47286d89 | 1277 | } |
489ef36c | 1278 | |
47286d89 | 1279 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time |
d8af608f | 1280 | // is this | 0x01 the error? & 0xfe in https://github.com/Proxmark/proxmark3/issues/103 |
36f84d47 | 1281 | if(Handle14443bSamplesDemod(ci | 0x01, cq | 0x01)) { |
489ef36c | 1282 | |
1283 | //Use samples as a time measurement | |
1284 | if(tracing) | |
1285 | { | |
99cf19d9 | 1286 | //uint8_t parity[MAX_PARITY_SIZE]; |
1287 | LogTrace(Demod.output, Demod.len, samples, samples, parity, FALSE); | |
489ef36c | 1288 | } |
1289 | triggered = TRUE; | |
489ef36c | 1290 | |
1291 | // And ready to receive another response. | |
1292 | DemodReset(); | |
1293 | } | |
22e24700 | 1294 | TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF); |
47286d89 | 1295 | } |
1296 | ||
489ef36c | 1297 | } |
abb21530 | 1298 | |
489ef36c | 1299 | FpgaDisableSscDma(); |
abb21530 | 1300 | LEDsoff(); |
489ef36c | 1301 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
1302 | DbpString("Snoop statistics:"); | |
1303 | Dbprintf(" Max behind by: %i", maxBehindBy); | |
1304 | Dbprintf(" Uart State: %x", Uart.state); | |
1305 | Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt); | |
1306 | Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax); | |
1307 | Dbprintf(" Trace length: %i", BigBuf_get_traceLen()); | |
1308 | } | |
1309 | ||
1310 | ||
1311 | /* | |
1312 | * Send raw command to tag ISO14443B | |
1313 | * @Input | |
1314 | * datalen len of buffer data | |
1315 | * recv bool when true wait for data from tag and send to client | |
1316 | * powerfield bool leave the field on when true | |
1317 | * data buffer with byte to send | |
1318 | * | |
1319 | * @Output | |
1320 | * none | |
1321 | * | |
1322 | */ | |
abb21530 | 1323 | void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[]) |
489ef36c | 1324 | { |
a62bf3af | 1325 | iso14443b_setup(); |
b10a759f | 1326 | |
99cf19d9 | 1327 | if ( datalen == 0 && recv == 0 && powerfield == 0){ |
db25599d | 1328 | |
1329 | } else { | |
99cf19d9 | 1330 | set_tracing(TRUE); |
1331 | CodeAndTransmit14443bAsReader(data, datalen); | |
1332 | } | |
489ef36c | 1333 | |
abb21530 | 1334 | if(recv) { |
b10a759f | 1335 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, FALSE); |
51d4f6f1 | 1336 | uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE); |
1337 | cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen); | |
489ef36c | 1338 | } |
abb21530 | 1339 | |
1340 | if(!powerfield) { | |
489ef36c | 1341 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
b10a759f | 1342 | FpgaDisableSscDma(); |
489ef36c | 1343 | LED_D_OFF(); |
1344 | } | |
1345 | } | |
1346 |