]>
Commit | Line | Data |
---|---|---|
bd20f8f4 | 1 | //----------------------------------------------------------------------------- |
2 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // LEGIC RF simulation code | |
9 | //----------------------------------------------------------------------------- | |
a7247d85 | 10 | |
f7e3ed82 | 11 | #include "legicrf.h" |
8e220a91 | 12 | |
a7247d85 | 13 | static struct legic_frame { |
ccedd6ae | 14 | int bits; |
a2b1414f | 15 | uint32_t data; |
a7247d85 | 16 | } current_frame; |
8e220a91 | 17 | |
3612a8a8 | 18 | static enum { |
19 | STATE_DISCON, | |
20 | STATE_IV, | |
21 | STATE_CON, | |
22 | } legic_state; | |
23 | ||
24 | static crc_t legic_crc; | |
25 | static int legic_read_count; | |
26 | static uint32_t legic_prng_bc; | |
27 | static uint32_t legic_prng_iv; | |
28 | ||
29 | static int legic_phase_drift; | |
30 | static int legic_frame_drift; | |
31 | static int legic_reqresp_drift; | |
8e220a91 | 32 | |
c71c5ee1 | 33 | int timestamp; |
34 | ||
add16a62 | 35 | AT91PS_TC timer; |
3612a8a8 | 36 | AT91PS_TC prng_timer; |
add16a62 | 37 | |
ad5bc8cc | 38 | /* |
c71c5ee1 | 39 | static void setup_timer(void) { |
ad5bc8cc | 40 | // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging |
41 | // this it won't be terribly accurate but should be good enough. | |
42 | // | |
add16a62 | 43 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); |
44 | timer = AT91C_BASE_TC1; | |
45 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
0aa4cfc2 | 46 | timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; |
add16a62 | 47 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; |
48 | ||
ad5bc8cc | 49 | // |
50 | // Set up Timer 2 to use for measuring time between frames in | |
51 | // tag simulation mode. Runs 4x faster as Timer 1 | |
52 | // | |
3612a8a8 | 53 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); |
54 | prng_timer = AT91C_BASE_TC2; | |
55 | prng_timer->TC_CCR = AT91C_TC_CLKDIS; | |
56 | prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; | |
57 | prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
58 | } | |
ad5bc8cc | 59 | */ |
60 | ||
61 | // At TIMER_CLOCK3 (MCK/32) | |
62 | //#define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */ | |
63 | //#define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */ | |
64 | //#define RWD_TIME_PAUSE 30 /* 20us */ | |
db44e049 | 65 | #define US_CALIBRATION 4 |
66 | #define RWD_TIME_1 80-US_CALIBRATION /* READER_TIME_PAUSE off, 80us on = 100us */ | |
67 | #define RWD_TIME_0 40-US_CALIBRATION /* READER_TIME_PAUSE off, 40us on = 60us */ | |
68 | #define RWD_TIME_PAUSE 20-US_CALIBRATION /* 20us */ | |
ad5bc8cc | 69 | |
db44e049 | 70 | #define TAG_BIT_PERIOD 100-US_CALIBRATION // 100us for every bit |
3612a8a8 | 71 | |
add16a62 | 72 | #define RWD_TIME_FUZZ 20 /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */ |
ad5bc8cc | 73 | |
db44e049 | 74 | #define TAG_TIME_WAIT 330 - US_CALIBRATION // 330us from READER frame end to TAG frame start, experimentally determined (490) |
ad5bc8cc | 75 | #define RDW_TIME_WAIT 258 // |
76 | ||
add16a62 | 77 | |
3612a8a8 | 78 | #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */ |
79 | #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */ | |
80 | ||
3612a8a8 | 81 | #define OFFSET_LOG 1024 |
add16a62 | 82 | |
83 | #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) | |
aac23b24 | 84 | |
ad5bc8cc | 85 | #ifndef SHORT_COIL |
86 | //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x) | |
b4a6775b | 87 | # define SHORT_COIL LOW(GPIO_SSC_DOUT); |
ad5bc8cc | 88 | #endif |
89 | #ifndef OPEN_COIL | |
90 | //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x) | |
b4a6775b | 91 | # define OPEN_COIL HIGH(GPIO_SSC_DOUT); |
ad5bc8cc | 92 | #endif |
93 | ||
94 | uint32_t stop_send_frame_us = 0; | |
95 | ||
c71c5ee1 | 96 | // ~ 258us + 100us*delay |
b4a6775b | 97 | #define WAIT(delay) SpinDelayCountUs((delay)); |
98 | #define COIL_PULSE(x) { SHORT_COIL; WAIT(RWD_TIME_PAUSE); OPEN_COIL; WAIT((x)); } | |
99 | #define COIL_PULSE_PAUSE { SHORT_COIL; WAIT(RWD_TIME_PAUSE); OPEN_COIL; } | |
c71c5ee1 | 100 | |
101 | // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. | |
102 | // Historically it used to be FREE_BUFFER_SIZE, which was 2744. | |
103 | #define LEGIC_CARD_MEMSIZE 1024 | |
104 | static uint8_t* cardmem; | |
105 | ||
ad5bc8cc | 106 | // Starts Clock and waits until its reset |
107 | static void Reset(AT91PS_TC clock){ | |
108 | clock->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
109 | while(clock->TC_CV > 1) ; | |
110 | } | |
111 | ||
112 | // Starts Clock and waits until its reset | |
113 | static void ResetClock(void){ | |
114 | Reset(timer); | |
115 | } | |
116 | ||
b4a6775b | 117 | static void frame_append_bit(struct legic_frame * const f, int bit) { |
118 | // Overflow, won't happen | |
119 | if (f->bits >= 31) return; | |
120 | ||
121 | f->data |= (bit << f->bits); | |
122 | f->bits++; | |
123 | } | |
124 | ||
125 | static void frame_clean(struct legic_frame * const f) { | |
126 | f->data = 0; | |
127 | f->bits = 0; | |
128 | } | |
129 | ||
ad5bc8cc | 130 | // Prng works when waiting in 99.1us cycles. |
131 | // and while sending/receiving in bit frames (100, 60) | |
b4a6775b | 132 | /*static void CalibratePrng( uint32_t time){ |
ad5bc8cc | 133 | // Calculate Cycles based on timer 100us |
134 | uint32_t i = (time - stop_send_frame_us) / 100 ; | |
135 | ||
136 | // substract cycles of finished frames | |
137 | int k = i - legic_prng_count()+1; | |
138 | ||
139 | // substract current frame length, rewind to beginning | |
140 | if ( k > 0 ) | |
141 | legic_prng_forward(k); | |
142 | } | |
b4a6775b | 143 | */ |
ad5bc8cc | 144 | |
3612a8a8 | 145 | /* Generate Keystream */ |
146 | static uint32_t get_key_stream(int skip, int count) | |
147 | { | |
c71c5ee1 | 148 | uint32_t key = 0; |
149 | int i; | |
edaf10af | 150 | |
c71c5ee1 | 151 | // Use int to enlarge timer tc to 32bit |
edaf10af | 152 | legic_prng_bc += prng_timer->TC_CV; |
c71c5ee1 | 153 | |
154 | // reset the prng timer. | |
ad5bc8cc | 155 | Reset(prng_timer); |
edaf10af | 156 | |
157 | /* If skip == -1, forward prng time based */ | |
158 | if(skip == -1) { | |
c71c5ee1 | 159 | i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ |
edaf10af | 160 | i -= legic_prng_count(); /* substract cycles of finished frames */ |
c71c5ee1 | 161 | i -= count; /* substract current frame length, rewind to beginning */ |
edaf10af | 162 | legic_prng_forward(i); |
163 | } else { | |
164 | legic_prng_forward(skip); | |
165 | } | |
166 | ||
edaf10af | 167 | i = (count == 6) ? -1 : legic_read_count; |
168 | ||
c71c5ee1 | 169 | /* Write Time Data into LOG */ |
170 | // uint8_t *BigBuf = BigBuf_get_addr(); | |
171 | // BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); | |
172 | // BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff; | |
173 | // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; | |
174 | // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; | |
175 | // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; | |
176 | // BigBuf[OFFSET_LOG+384+i] = count; | |
edaf10af | 177 | |
178 | /* Generate KeyStream */ | |
179 | for(i=0; i<count; i++) { | |
180 | key |= legic_prng_get_bit() << i; | |
181 | legic_prng_forward(1); | |
182 | } | |
183 | return key; | |
3612a8a8 | 184 | } |
185 | ||
186 | /* Send a frame in tag mode, the FPGA must have been set up by | |
187 | * LegicRfSimulate | |
188 | */ | |
ad5bc8cc | 189 | static void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) { |
190 | /* Bitbang the response */ | |
191 | LOW(GPIO_SSC_DOUT); | |
192 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
193 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
3612a8a8 | 194 | |
ad5bc8cc | 195 | /* Use time to crypt frame */ |
196 | if(crypt) { | |
197 | legic_prng_forward(2); /* TAG_TIME_WAIT -> shift by 2 */ | |
198 | response ^= legic_prng_get_bits(bits); | |
199 | } | |
c71c5ee1 | 200 | |
ad5bc8cc | 201 | /* Wait for the frame start */ |
202 | WAIT( TAG_TIME_WAIT ) | |
e30c654b | 203 | |
ad5bc8cc | 204 | uint8_t bit = 0; |
f7b42573 | 205 | for(int i = 0; i < bits; i++) { |
c71c5ee1 | 206 | |
ad5bc8cc | 207 | bit = response & 1; |
208 | response >>= 1; | |
8e220a91 | 209 | |
ad5bc8cc | 210 | if (bit) |
211 | HIGH(GPIO_SSC_DOUT); | |
edaf10af | 212 | else |
ad5bc8cc | 213 | LOW(GPIO_SSC_DOUT); |
214 | ||
b4a6775b | 215 | WAIT(100) |
ad5bc8cc | 216 | } |
217 | LOW(GPIO_SSC_DOUT); | |
218 | } | |
c71c5ee1 | 219 | |
ad5bc8cc | 220 | /* Send a frame in reader mode, the FPGA must have been set up by |
221 | * LegicRfReader | |
222 | */ | |
223 | static void frame_sendAsReader(uint32_t data, uint8_t bits){ | |
c71c5ee1 | 224 | |
ad5bc8cc | 225 | uint32_t starttime = GetCountUS(); |
226 | uint32_t send = data; | |
227 | uint8_t prng1 = legic_prng_count() ; | |
228 | uint16_t mask = 1; | |
229 | uint16_t lfsr = legic_prng_get_bits(bits); | |
e30c654b | 230 | |
ad5bc8cc | 231 | // xor the lsfr onto data. |
232 | send ^= lfsr; | |
233 | ||
234 | for (; mask < BITMASK(bits); mask <<= 1) { | |
235 | if (send & mask) { | |
b4a6775b | 236 | COIL_PULSE(RWD_TIME_1); |
ad5bc8cc | 237 | } else { |
b4a6775b | 238 | COIL_PULSE(RWD_TIME_0); |
ad5bc8cc | 239 | } |
dcc10e5e | 240 | } |
e30c654b | 241 | |
f7b42573 | 242 | // One final pause to mark the end of the frame |
b4a6775b | 243 | COIL_PULSE_PAUSE; |
244 | ||
ad5bc8cc | 245 | stop_send_frame_us = GetCountUS(); |
246 | uint8_t cmdbytes[] = { | |
247 | data & 0xFF, | |
248 | (data >> 8) & 0xFF, | |
b4a6775b | 249 | bits, |
ad5bc8cc | 250 | lfsr & 0xFF, |
251 | (lfsr >> 8) & 0xFF, | |
252 | prng1, | |
253 | legic_prng_count() | |
254 | }; | |
255 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, stop_send_frame_us, NULL, TRUE); | |
dcc10e5e | 256 | } |
257 | ||
258 | /* Receive a frame from the card in reader emulation mode, the FPGA and | |
ad5bc8cc | 259 | * timer must have been set up by LegicRfReader and frame_sendAsReader. |
e30c654b | 260 | * |
dcc10e5e | 261 | * The LEGIC RF protocol from card to reader does not include explicit |
262 | * frame start/stop information or length information. The reader must | |
263 | * know beforehand how many bits it wants to receive. (Notably: a card | |
264 | * sending a stream of 0-bits is indistinguishable from no card present.) | |
e30c654b | 265 | * |
dcc10e5e | 266 | * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but |
267 | * I'm not smart enough to use it. Instead I have patched hi_read_tx to output | |
268 | * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look | |
269 | * for edges. Count the edges in each bit interval. If they are approximately | |
270 | * 0 this was a 0-bit, if they are approximately equal to the number of edges | |
271 | * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the | |
ad5bc8cc | 272 | * timer that's still running from frame_sendAsReader in order to get a synchronization |
dcc10e5e | 273 | * with the frame that we just sent. |
e30c654b | 274 | * |
275 | * FIXME: Because we're relying on the hysteresis to just do the right thing | |
dcc10e5e | 276 | * the range is severely reduced (and you'll probably also need a good antenna). |
e30c654b | 277 | * So this should be fixed some time in the future for a proper receiver. |
dcc10e5e | 278 | */ |
ad5bc8cc | 279 | static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits, uint8_t crypt) { |
280 | ||
db44e049 | 281 | uint32_t starttime = GetCountUS(); |
282 | ||
b4a6775b | 283 | frame_clean(f); |
3612a8a8 | 284 | |
b4a6775b | 285 | uint8_t i = 0, edges = 0; |
286 | uint16_t lsfr = 0; | |
db44e049 | 287 | uint32_t the_bit = 1, next_bit_at = 0, data; |
b4a6775b | 288 | int old_level = 0, level = 0; |
ad5bc8cc | 289 | |
c71c5ee1 | 290 | if(bits > 32) bits = 32; |
dcc10e5e | 291 | |
db44e049 | 292 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; |
293 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
294 | ||
b4a6775b | 295 | // calibrate the prng. |
296 | legic_prng_forward(2); | |
297 | //CalibratePrng( starttime ); | |
ad5bc8cc | 298 | |
299 | // precompute the cipher | |
b4a6775b | 300 | uint8_t prng_before = legic_prng_count() ; |
301 | ||
ad5bc8cc | 302 | if(crypt) |
b4a6775b | 303 | lsfr = legic_prng_get_bits(bits); |
e30c654b | 304 | |
b4a6775b | 305 | data = lsfr; |
306 | ||
b4a6775b | 307 | //FIXED time between sending frame and now listening frame. 330us |
308 | uint32_t icetime = TAG_TIME_WAIT - ( GetCountUS() - stop_send_frame_us ); | |
db44e049 | 309 | WAIT( icetime ); // 8-10us |
b4a6775b | 310 | |
db44e049 | 311 | next_bit_at = GetCountUS(); |
312 | next_bit_at += TAG_BIT_PERIOD; | |
ad5bc8cc | 313 | |
ad5bc8cc | 314 | for( i = 0; i < bits; i++) { |
dcc10e5e | 315 | edges = 0; |
ad5bc8cc | 316 | while ( GetCountUS() < next_bit_at) { |
317 | ||
b4a6775b | 318 | level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); |
ad5bc8cc | 319 | |
320 | if (level != old_level) | |
b4a6775b | 321 | ++edges; |
322 | ||
dcc10e5e | 323 | old_level = level; |
324 | } | |
ad5bc8cc | 325 | next_bit_at += TAG_BIT_PERIOD; |
3612a8a8 | 326 | |
ad5bc8cc | 327 | // We expect 42 edges == ONE |
b4a6775b | 328 | if(edges > 20 && edges < 60) |
8e220a91 | 329 | data ^= the_bit; |
b4a6775b | 330 | |
dcc10e5e | 331 | the_bit <<= 1; |
332 | } | |
e30c654b | 333 | |
b4a6775b | 334 | // output |
dcc10e5e | 335 | f->data = data; |
336 | f->bits = bits; | |
f7b42573 | 337 | |
338 | // log | |
db44e049 | 339 | stop_send_frame_us = GetCountUS(); |
340 | ||
ad5bc8cc | 341 | uint8_t cmdbytes[] = { |
342 | (data & 0xFF), | |
343 | (data >> 8) & 0xFF, | |
b4a6775b | 344 | bits, |
ad5bc8cc | 345 | (lsfr & 0xFF), |
346 | (lsfr >> 8) & 0xFF, | |
b4a6775b | 347 | prng_before, |
348 | legic_prng_count(), | |
349 | icetime & 0xff, | |
350 | (icetime >> 8) & 0xFF | |
ad5bc8cc | 351 | }; |
db44e049 | 352 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, stop_send_frame_us, NULL, FALSE); |
dcc10e5e | 353 | |
a7247d85 | 354 | } |
355 | ||
c71c5ee1 | 356 | // Setup pm3 as a Legic Reader |
f7b42573 | 357 | static uint32_t perform_setup_phase_rwd(uint8_t iv) { |
358 | ||
359 | // Switch on carrier and let the tag charge for 1ms | |
ad5bc8cc | 360 | HIGH(GPIO_SSC_DOUT); |
b4a6775b | 361 | SpinDelay(20); |
ad5bc8cc | 362 | |
363 | ResetUSClock(); | |
364 | ||
f7b42573 | 365 | // no keystream yet |
c71c5ee1 | 366 | legic_prng_init(0); |
f7b42573 | 367 | |
ad5bc8cc | 368 | // send IV handshake |
369 | frame_sendAsReader(iv, 7); | |
370 | ||
371 | // Now both tag and reader has same IV. Prng can start. | |
3612a8a8 | 372 | legic_prng_init(iv); |
e30c654b | 373 | |
ad5bc8cc | 374 | frame_receiveAsReader(¤t_frame, 6, 1); |
f7b42573 | 375 | |
ad5bc8cc | 376 | // fixed delay before sending ack. |
377 | WAIT(TAG_BIT_PERIOD); | |
378 | ||
f7b42573 | 379 | // Send obsfuscated acknowledgment frame. |
ad5bc8cc | 380 | // 0x19 = 0x18 MIM22, 0x01 LSB READCMD |
381 | // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD | |
382 | switch ( current_frame.data ) { | |
383 | case 0x0D: | |
384 | frame_sendAsReader(0x19, 6); | |
385 | break; | |
386 | case 0x1D: | |
387 | case 0x3D: | |
388 | frame_sendAsReader(0x39, 6); | |
389 | break; | |
390 | default: | |
391 | break; | |
f7b42573 | 392 | } |
8e220a91 | 393 | return current_frame.data; |
ad5bc8cc | 394 | |
395 | // End of Setup Phase. | |
2561caa2 | 396 | } |
397 | ||
ad5bc8cc | 398 | static void LegicCommonInit(void) { |
7cc204bf | 399 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
b4a6775b | 400 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); |
dcc10e5e | 401 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
402 | FpgaSetupSsc(); | |
e30c654b | 403 | |
dcc10e5e | 404 | /* Bitbang the transmitter */ |
ad5bc8cc | 405 | LOW(GPIO_SSC_DOUT); |
dcc10e5e | 406 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
407 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
e30c654b | 408 | |
c71c5ee1 | 409 | // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier. |
410 | cardmem = BigBuf_malloc(LEGIC_CARD_MEMSIZE); | |
411 | memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE); | |
412 | ||
413 | clear_trace(); | |
414 | set_tracing(TRUE); | |
e30c654b | 415 | |
8e220a91 | 416 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
ad5bc8cc | 417 | |
418 | StartCountUS(); | |
8e220a91 | 419 | } |
420 | ||
3e134b4c | 421 | /* Switch off carrier, make sure tag is reset */ |
c71c5ee1 | 422 | static void switch_off_tag_rwd(void) { |
ad5bc8cc | 423 | LOW(GPIO_SSC_DOUT); |
8e220a91 | 424 | SpinDelay(10); |
8e220a91 | 425 | WDT_HIT(); |
b4a6775b | 426 | set_tracing(FALSE); |
8e220a91 | 427 | } |
c71c5ee1 | 428 | |
f7b42573 | 429 | // calculate crc4 for a legic READ command |
430 | // 5,8,10 address size. | |
b4a6775b | 431 | static uint32_t LegicCRC(uint16_t byte_index, uint8_t value, uint8_t cmd_sz) { |
ad5bc8cc | 432 | crc_clear(&legic_crc); |
433 | uint32_t temp = (value << cmd_sz) | (byte_index << 1) | LEGIC_READ; | |
434 | crc_update(&legic_crc, temp, cmd_sz + 8 ); | |
435 | // crc_update(&legic_crc, LEGIC_READ, 1); | |
436 | // crc_update(&legic_crc, byte_index, cmd_sz-1); | |
437 | // crc_update(&legic_crc, value, 8); | |
8e220a91 | 438 | return crc_finish(&legic_crc); |
439 | } | |
440 | ||
f7b42573 | 441 | int legic_read_byte(int byte_index, int cmd_sz) { |
8e220a91 | 442 | |
ad5bc8cc | 443 | uint8_t byte = 0, crc = 0; |
b4a6775b | 444 | uint32_t calcCrc = 0; |
f7b42573 | 445 | uint32_t cmd = (byte_index << 1) | LEGIC_READ; |
c71c5ee1 | 446 | |
ad5bc8cc | 447 | legic_prng_forward(3); |
b4a6775b | 448 | WAIT(TAG_TIME_WAIT) |
449 | ||
ad5bc8cc | 450 | frame_sendAsReader(cmd, cmd_sz); |
c71c5ee1 | 451 | |
ad5bc8cc | 452 | frame_receiveAsReader(¤t_frame, 12, 1); |
8e220a91 | 453 | |
b4a6775b | 454 | byte = current_frame.data & 0xFF; |
455 | ||
c71c5ee1 | 456 | calcCrc = LegicCRC(byte_index, byte, cmd_sz); |
457 | crc = (current_frame.data >> 8); | |
65c2d21d | 458 | |
c71c5ee1 | 459 | if( calcCrc != crc ) { |
460 | Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc, crc); | |
a2b1414f | 461 | return -1; |
462 | } | |
8e220a91 | 463 | |
464 | return byte; | |
465 | } | |
466 | ||
c71c5ee1 | 467 | /* |
468 | * - assemble a write_cmd_frame with crc and send it | |
469 | * - wait until the tag sends back an ACK ('1' bit unencrypted) | |
470 | * - forward the prng based on the timing | |
8e220a91 | 471 | */ |
3e134b4c | 472 | //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) { |
3612a8a8 | 473 | int legic_write_byte(int byte, int addr, int addr_sz) { |
c71c5ee1 | 474 | |
475 | //do not write UID, CRC at offset 0-4. | |
476 | if(addr <= 0x04) return 0; | |
477 | ||
478 | // crc | |
3612a8a8 | 479 | crc_clear(&legic_crc); |
480 | crc_update(&legic_crc, 0, 1); /* CMD_WRITE */ | |
481 | crc_update(&legic_crc, addr, addr_sz); | |
482 | crc_update(&legic_crc, byte, 8); | |
3612a8a8 | 483 | uint32_t crc = crc_finish(&legic_crc); |
c71c5ee1 | 484 | |
485 | // send write command | |
3612a8a8 | 486 | uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC |
487 | |(byte <<(addr_sz+1)) //Data | |
488 | |(addr <<1) //Address | |
489 | |(0x00 <<0)); //CMD = W | |
490 | uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd | |
491 | ||
cc708897 | 492 | legic_prng_forward(2); /* we wait anyways */ |
c71c5ee1 | 493 | |
3612a8a8 | 494 | while(timer->TC_CV < 387) ; /* ~ 258us */ |
c71c5ee1 | 495 | |
ad5bc8cc | 496 | frame_sendAsReader(cmd, cmd_sz); |
c71c5ee1 | 497 | |
498 | // wllm-rbnt doesnt have these | |
499 | // AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
500 | // AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
3612a8a8 | 501 | |
c71c5ee1 | 502 | // wait for ack |
503 | int t, old_level = 0, edges = 0; | |
504 | int next_bit_at = 0; | |
3e134b4c | 505 | |
3612a8a8 | 506 | while(timer->TC_CV < 387) ; /* ~ 258us */ |
c71c5ee1 | 507 | |
508 | for( t = 0; t < 80; t++) { | |
3612a8a8 | 509 | edges = 0; |
ad5bc8cc | 510 | next_bit_at += TAG_BIT_PERIOD; |
3612a8a8 | 511 | while(timer->TC_CV < next_bit_at) { |
512 | int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
513 | if(level != old_level) { | |
514 | edges++; | |
515 | } | |
516 | old_level = level; | |
517 | } | |
518 | if(edges > 20 && edges < 60) { /* expected are 42 edges */ | |
519 | int t = timer->TC_CV; | |
ad5bc8cc | 520 | int c = t / TAG_BIT_PERIOD; |
c71c5ee1 | 521 | |
522 | ResetClock(); | |
cc708897 | 523 | legic_prng_forward(c); |
3612a8a8 | 524 | return 0; |
525 | } | |
526 | } | |
c71c5ee1 | 527 | |
528 | ResetClock(); | |
3612a8a8 | 529 | return -1; |
530 | } | |
8e220a91 | 531 | |
cc708897 | 532 | int LegicRfReader(int offset, int bytes, int iv) { |
3e134b4c | 533 | |
f7b42573 | 534 | int byte_index = 0, cmd_sz = 0, card_sz = 0; |
cc708897 | 535 | |
b4a6775b | 536 | if ( MF_DBGLEVEL >= 2) { |
537 | Dbprintf("setting up legic card, IV = %x", iv); | |
538 | ||
539 | Dbprintf("ONE %d ZERO %d PAUSE %d", RWD_TIME_1 , RWD_TIME_0 , RWD_TIME_PAUSE); | |
540 | Dbprintf("TAG BIT PERIOD %d FUZZ %d TAG WAIT TIME %d", TAG_BIT_PERIOD, RWD_TIME_FUZZ, TAG_TIME_WAIT); | |
541 | } | |
ad5bc8cc | 542 | |
8e220a91 | 543 | LegicCommonInit(); |
544 | ||
cc708897 | 545 | uint32_t tag_type = perform_setup_phase_rwd(iv); |
c71c5ee1 | 546 | |
547 | //we lose to mutch time with dprintf | |
548 | switch_off_tag_rwd(); | |
ad5bc8cc | 549 | |
a2b1414f | 550 | switch(tag_type) { |
3e134b4c | 551 | case 0x0d: |
c71c5ee1 | 552 | if ( MF_DBGLEVEL >= 2) DbpString("MIM22 card found, reading card ..."); |
3e134b4c | 553 | cmd_sz = 6; |
554 | card_sz = 22; | |
555 | break; | |
a2b1414f | 556 | case 0x1d: |
c71c5ee1 | 557 | if ( MF_DBGLEVEL >= 2) DbpString("MIM256 card found, reading card ..."); |
3612a8a8 | 558 | cmd_sz = 9; |
a2b1414f | 559 | card_sz = 256; |
560 | break; | |
561 | case 0x3d: | |
c71c5ee1 | 562 | if ( MF_DBGLEVEL >= 2) DbpString("MIM1024 card found, reading card ..."); |
3612a8a8 | 563 | cmd_sz = 11; |
a2b1414f | 564 | card_sz = 1024; |
565 | break; | |
566 | default: | |
c71c5ee1 | 567 | if ( MF_DBGLEVEL >= 1) Dbprintf("Unknown card format: %x",tag_type); |
ad5bc8cc | 568 | return 1; |
a2b1414f | 569 | } |
edaf10af | 570 | if(bytes == -1) |
a2b1414f | 571 | bytes = card_sz; |
edaf10af | 572 | |
573 | if(bytes+offset >= card_sz) | |
c71c5ee1 | 574 | bytes = card_sz - offset; |
a2b1414f | 575 | |
ad5bc8cc | 576 | // Start setup and read bytes. |
cc708897 | 577 | perform_setup_phase_rwd(iv); |
578 | ||
3612a8a8 | 579 | LED_B_ON(); |
ad5bc8cc | 580 | while (byte_index < bytes) { |
3612a8a8 | 581 | int r = legic_read_byte(byte_index+offset, cmd_sz); |
ad5bc8cc | 582 | |
583 | if (r == -1 || BUTTON_PRESS()) { | |
c71c5ee1 | 584 | switch_off_tag_rwd(); |
585 | LEDsoff(); | |
586 | if ( MF_DBGLEVEL >= 2) DbpString("operation aborted"); | |
ad5bc8cc | 587 | cmd_send(CMD_ACK,0,0,0,0,0); |
588 | return 1; | |
a2b1414f | 589 | } |
c71c5ee1 | 590 | cardmem[byte_index] = r; |
3612a8a8 | 591 | WDT_HIT(); |
c71c5ee1 | 592 | byte_index++; |
2561caa2 | 593 | } |
c71c5ee1 | 594 | |
3612a8a8 | 595 | switch_off_tag_rwd(); |
c71c5ee1 | 596 | LEDsoff(); |
ad5bc8cc | 597 | uint8_t len = (bytes & 0x3FF); |
598 | cmd_send(CMD_ACK,1,len,0,0,0); | |
3612a8a8 | 599 | return 0; |
600 | } | |
601 | ||
cc708897 | 602 | /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) { |
3e134b4c | 603 | int byte_index=0; |
604 | ||
605 | LED_B_ON(); | |
ad5bc8cc | 606 | perform_setup_phase_rwd(iv); |
3e134b4c | 607 | //legic_prng_forward(2); |
608 | while(byte_index < bytes) { | |
609 | int r; | |
610 | ||
611 | //check if the DCF should be changed | |
612 | if ( (offset == 0x05) && (bytes == 0x02) ) { | |
613 | //write DCF in reverse order (addr 0x06 before 0x05) | |
614 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
615 | //legic_prng_forward(1); | |
616 | if(r == 0) { | |
617 | byte_index++; | |
618 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
619 | } | |
620 | //legic_prng_forward(1); | |
621 | } | |
622 | else { | |
623 | r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue); | |
624 | } | |
625 | if((r != 0) || BUTTON_PRESS()) { | |
626 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); | |
627 | switch_off_tag_rwd(); | |
628 | LED_B_OFF(); | |
629 | LED_C_OFF(); | |
630 | return -1; | |
631 | } | |
632 | ||
633 | WDT_HIT(); | |
634 | byte_index++; | |
635 | if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); | |
636 | } | |
637 | LED_B_OFF(); | |
638 | LED_C_OFF(); | |
639 | DbpString("write successful"); | |
640 | return 0; | |
641 | }*/ | |
642 | ||
cc708897 | 643 | void LegicRfWriter(int offset, int bytes, int iv) { |
644 | ||
ad5bc8cc | 645 | int byte_index = 0, addr_sz = 0; |
117d9ec2 | 646 | |
3612a8a8 | 647 | LegicCommonInit(); |
648 | ||
c71c5ee1 | 649 | if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card"); |
650 | ||
cc708897 | 651 | uint32_t tag_type = perform_setup_phase_rwd(iv); |
c71c5ee1 | 652 | |
8e220a91 | 653 | switch_off_tag_rwd(); |
c71c5ee1 | 654 | |
3612a8a8 | 655 | switch(tag_type) { |
3e134b4c | 656 | case 0x0d: |
657 | if(offset+bytes > 22) { | |
658 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset+bytes); | |
659 | return; | |
660 | } | |
661 | addr_sz = 5; | |
c71c5ee1 | 662 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes); |
3e134b4c | 663 | break; |
3612a8a8 | 664 | case 0x1d: |
665 | if(offset+bytes > 0x100) { | |
3e134b4c | 666 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset+bytes); |
3612a8a8 | 667 | return; |
668 | } | |
669 | addr_sz = 8; | |
c71c5ee1 | 670 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes); |
3612a8a8 | 671 | break; |
672 | case 0x3d: | |
673 | if(offset+bytes > 0x400) { | |
3e134b4c | 674 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset+bytes); |
3612a8a8 | 675 | return; |
676 | } | |
677 | addr_sz = 10; | |
c71c5ee1 | 678 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset+bytes); |
3612a8a8 | 679 | break; |
680 | default: | |
681 | Dbprintf("No or unknown card found, aborting"); | |
682 | return; | |
683 | } | |
684 | ||
685 | LED_B_ON(); | |
cc708897 | 686 | perform_setup_phase_rwd(iv); |
3612a8a8 | 687 | while(byte_index < bytes) { |
3e134b4c | 688 | int r; |
689 | ||
690 | //check if the DCF should be changed | |
691 | if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) { | |
692 | //write DCF in reverse order (addr 0x06 before 0x05) | |
c71c5ee1 | 693 | r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz); |
3e134b4c | 694 | |
695 | // write second byte on success... | |
696 | if(r == 0) { | |
697 | byte_index++; | |
c71c5ee1 | 698 | r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz); |
3e134b4c | 699 | } |
700 | } | |
701 | else { | |
c71c5ee1 | 702 | r = legic_write_byte(cardmem[byte_index+offset], byte_index+offset, addr_sz); |
3e134b4c | 703 | } |
c71c5ee1 | 704 | |
3612a8a8 | 705 | if((r != 0) || BUTTON_PRESS()) { |
706 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); | |
707 | switch_off_tag_rwd(); | |
c71c5ee1 | 708 | LEDsoff(); |
3612a8a8 | 709 | return; |
710 | } | |
3e134b4c | 711 | |
712 | WDT_HIT(); | |
713 | byte_index++; | |
3e134b4c | 714 | } |
c71c5ee1 | 715 | LEDsoff(); |
716 | if ( MF_DBGLEVEL >= 1) DbpString("write successful"); | |
3e134b4c | 717 | } |
718 | ||
cc708897 | 719 | void LegicRfRawWriter(int address, int byte, int iv) { |
c71c5ee1 | 720 | |
721 | int byte_index = 0, addr_sz = 0; | |
3e134b4c | 722 | |
723 | LegicCommonInit(); | |
724 | ||
c71c5ee1 | 725 | if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card"); |
726 | ||
cc708897 | 727 | uint32_t tag_type = perform_setup_phase_rwd(iv); |
c71c5ee1 | 728 | |
3e134b4c | 729 | switch_off_tag_rwd(); |
c71c5ee1 | 730 | |
3e134b4c | 731 | switch(tag_type) { |
732 | case 0x0d: | |
cc708897 | 733 | if(address > 22) { |
734 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", address); | |
3e134b4c | 735 | return; |
736 | } | |
737 | addr_sz = 5; | |
c71c5ee1 | 738 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte); |
3e134b4c | 739 | break; |
740 | case 0x1d: | |
cc708897 | 741 | if(address > 0x100) { |
742 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", address); | |
3e134b4c | 743 | return; |
744 | } | |
745 | addr_sz = 8; | |
c71c5ee1 | 746 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte); |
3e134b4c | 747 | break; |
748 | case 0x3d: | |
cc708897 | 749 | if(address > 0x400) { |
750 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address); | |
3e134b4c | 751 | return; |
752 | } | |
753 | addr_sz = 10; | |
c71c5ee1 | 754 | if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte); |
3e134b4c | 755 | break; |
756 | default: | |
757 | Dbprintf("No or unknown card found, aborting"); | |
758 | return; | |
759 | } | |
c71c5ee1 | 760 | |
cc708897 | 761 | Dbprintf("integer value: %d address: %d addr_sz: %d", byte, address, addr_sz); |
3e134b4c | 762 | LED_B_ON(); |
c71c5ee1 | 763 | |
cc708897 | 764 | perform_setup_phase_rwd(iv); |
3e134b4c | 765 | //legic_prng_forward(2); |
766 | ||
cc708897 | 767 | int r = legic_write_byte(byte, address, addr_sz); |
3e134b4c | 768 | |
769 | if((r != 0) || BUTTON_PRESS()) { | |
770 | Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r); | |
771 | switch_off_tag_rwd(); | |
c71c5ee1 | 772 | LEDsoff(); |
3e134b4c | 773 | return; |
3612a8a8 | 774 | } |
3612a8a8 | 775 | |
c71c5ee1 | 776 | LEDsoff(); |
777 | if ( MF_DBGLEVEL >= 1) DbpString("write successful"); | |
778 | } | |
3612a8a8 | 779 | |
c71c5ee1 | 780 | /* Handle (whether to respond) a frame in tag mode |
781 | * Only called when simulating a tag. | |
782 | */ | |
3612a8a8 | 783 | static void frame_handle_tag(struct legic_frame const * const f) |
784 | { | |
117d9ec2 | 785 | uint8_t *BigBuf = BigBuf_get_addr(); |
786 | ||
3612a8a8 | 787 | /* First Part of Handshake (IV) */ |
788 | if(f->bits == 7) { | |
c71c5ee1 | 789 | |
3612a8a8 | 790 | LED_C_ON(); |
c71c5ee1 | 791 | |
ad5bc8cc | 792 | // Reset prng timer |
793 | Reset(prng_timer); | |
c71c5ee1 | 794 | |
3612a8a8 | 795 | legic_prng_init(f->data); |
ad5bc8cc | 796 | frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */ |
3612a8a8 | 797 | legic_state = STATE_IV; |
798 | legic_read_count = 0; | |
799 | legic_prng_bc = 0; | |
800 | legic_prng_iv = f->data; | |
801 | ||
802 | /* TIMEOUT */ | |
c71c5ee1 | 803 | ResetClock(); |
804 | ||
805 | //while(timer->TC_CV < 280); | |
806 | WAIT(280) | |
3612a8a8 | 807 | return; |
3612a8a8 | 808 | } |
809 | ||
810 | /* 0x19==??? */ | |
811 | if(legic_state == STATE_IV) { | |
cc708897 | 812 | int local_key = get_key_stream(3, 6); |
813 | int xored = 0x39 ^ local_key; | |
814 | if((f->bits == 6) && (f->data == xored)) { | |
3612a8a8 | 815 | legic_state = STATE_CON; |
816 | ||
817 | /* TIMEOUT */ | |
c71c5ee1 | 818 | ResetClock(); |
819 | ||
820 | //while(timer->TC_CV < 200); | |
821 | WAIT(200) | |
822 | ||
3612a8a8 | 823 | return; |
824 | } else { | |
825 | legic_state = STATE_DISCON; | |
826 | LED_C_OFF(); | |
cc708897 | 827 | Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored); |
3612a8a8 | 828 | return; |
829 | } | |
830 | } | |
831 | ||
832 | /* Read */ | |
833 | if(f->bits == 11) { | |
834 | if(legic_state == STATE_CON) { | |
cc708897 | 835 | int key = get_key_stream(2, 11); //legic_phase_drift, 11); |
3612a8a8 | 836 | int addr = f->data ^ key; addr = addr >> 1; |
117d9ec2 | 837 | int data = BigBuf[addr]; |
3612a8a8 | 838 | int hash = LegicCRC(addr, data, 11) << 8; |
117d9ec2 | 839 | BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr; |
3612a8a8 | 840 | legic_read_count++; |
841 | ||
842 | //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); | |
843 | legic_prng_forward(legic_reqresp_drift); | |
844 | ||
845 | frame_send_tag(hash | data, 12, 1); | |
846 | ||
c71c5ee1 | 847 | /* TIMEOUT */ |
848 | ResetClock(); | |
849 | ||
cc708897 | 850 | legic_prng_forward(2); |
c71c5ee1 | 851 | //while(timer->TC_CV < 180); |
852 | WAIT(180) | |
853 | ||
3612a8a8 | 854 | return; |
855 | } | |
856 | } | |
857 | ||
858 | /* Write */ | |
859 | if(f->bits == 23) { | |
860 | int key = get_key_stream(-1, 23); //legic_frame_drift, 23); | |
861 | int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff; | |
862 | int data = f->data ^ key; data = data >> 11; data = data & 0xff; | |
863 | ||
864 | /* write command */ | |
865 | legic_state = STATE_DISCON; | |
866 | LED_C_OFF(); | |
867 | Dbprintf("write - addr: %x, data: %x", addr, data); | |
868 | return; | |
869 | } | |
870 | ||
871 | if(legic_state != STATE_DISCON) { | |
872 | Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); | |
873 | int i; | |
874 | Dbprintf("IV: %03.3x", legic_prng_iv); | |
875 | for(i = 0; i<legic_read_count; i++) { | |
117d9ec2 | 876 | Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]); |
3612a8a8 | 877 | } |
878 | ||
879 | for(i = -1; i<legic_read_count; i++) { | |
880 | uint32_t t; | |
117d9ec2 | 881 | t = BigBuf[OFFSET_LOG+256+i*4]; |
882 | t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8; | |
883 | t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16; | |
884 | t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24; | |
3612a8a8 | 885 | |
886 | Dbprintf("Cycles: %u, Frame Length: %u, Time: %u", | |
117d9ec2 | 887 | BigBuf[OFFSET_LOG+128+i], |
888 | BigBuf[OFFSET_LOG+384+i], | |
3612a8a8 | 889 | t); |
890 | } | |
891 | } | |
892 | legic_state = STATE_DISCON; | |
893 | legic_read_count = 0; | |
894 | SpinDelay(10); | |
895 | LED_C_OFF(); | |
896 | return; | |
897 | } | |
898 | ||
899 | /* Read bit by bit untill full frame is received | |
900 | * Call to process frame end answer | |
901 | */ | |
c71c5ee1 | 902 | static void emit(int bit) { |
903 | ||
904 | switch (bit) { | |
905 | case 1: | |
906 | frame_append_bit(¤t_frame, 1); | |
907 | break; | |
908 | case 0: | |
909 | frame_append_bit(¤t_frame, 0); | |
910 | break; | |
911 | default: | |
912 | if(current_frame.bits <= 4) { | |
913 | frame_clean(¤t_frame); | |
914 | } else { | |
915 | frame_handle_tag(¤t_frame); | |
916 | frame_clean(¤t_frame); | |
917 | } | |
918 | WDT_HIT(); | |
919 | break; | |
920 | } | |
3612a8a8 | 921 | } |
922 | ||
923 | void LegicRfSimulate(int phase, int frame, int reqresp) | |
924 | { | |
925 | /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, | |
926 | * modulation mode set to 212kHz subcarrier. We are getting the incoming raw | |
927 | * envelope waveform on DIN and should send our response on DOUT. | |
928 | * | |
929 | * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll | |
930 | * measure the time between two rising edges on DIN, and no encoding on the | |
931 | * subcarrier from card to reader, so we'll just shift out our verbatim data | |
932 | * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, | |
933 | * seems to be 300us-ish. | |
934 | */ | |
935 | ||
c71c5ee1 | 936 | legic_phase_drift = phase; |
937 | legic_frame_drift = frame; | |
938 | legic_reqresp_drift = reqresp; | |
939 | ||
940 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
941 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
942 | FpgaSetupSsc(); | |
943 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K); | |
944 | ||
945 | /* Bitbang the receiver */ | |
946 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
947 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
948 | ||
ad5bc8cc | 949 | //setup_timer(); |
c71c5ee1 | 950 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); |
951 | ||
952 | int old_level = 0; | |
953 | int active = 0; | |
954 | legic_state = STATE_DISCON; | |
955 | ||
956 | LED_B_ON(); | |
957 | DbpString("Starting Legic emulator, press button to end"); | |
3612a8a8 | 958 | |
c71c5ee1 | 959 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
960 | int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
961 | int time = timer->TC_CV; | |
962 | ||
963 | if(level != old_level) { | |
964 | if(level == 1) { | |
965 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
966 | ||
967 | if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { | |
968 | /* 1 bit */ | |
969 | emit(1); | |
970 | active = 1; | |
971 | LED_A_ON(); | |
972 | } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { | |
973 | /* 0 bit */ | |
974 | emit(0); | |
975 | active = 1; | |
976 | LED_A_ON(); | |
977 | } else if (active) { | |
978 | /* invalid */ | |
979 | emit(-1); | |
980 | active = 0; | |
981 | LED_A_OFF(); | |
982 | } | |
983 | } | |
984 | } | |
3612a8a8 | 985 | |
c71c5ee1 | 986 | /* Frame end */ |
987 | if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) { | |
988 | emit(-1); | |
989 | active = 0; | |
990 | LED_A_OFF(); | |
991 | } | |
a2b1414f | 992 | |
c71c5ee1 | 993 | if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) { |
994 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
995 | } | |
996 | ||
997 | old_level = level; | |
998 | WDT_HIT(); | |
999 | } | |
1000 | if ( MF_DBGLEVEL >= 1) DbpString("Stopped"); | |
1001 | LEDsoff(); | |
1002 | } | |
3e134b4c | 1003 | |
1004 | //----------------------------------------------------------------------------- | |
1005 | //----------------------------------------------------------------------------- | |
1006 | ||
1007 | ||
1008 | //----------------------------------------------------------------------------- | |
1009 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
1010 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
1011 | // them yet, just leaves them ready to send in ToSend[]. | |
1012 | //----------------------------------------------------------------------------- | |
1013 | // static void CodeLegicAsTag(const uint8_t *cmd, int len) | |
1014 | // { | |
1015 | // int i; | |
1016 | ||
1017 | // ToSendReset(); | |
1018 | ||
1019 | // // Transmit a burst of ones, as the initial thing that lets the | |
1020 | // // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
1021 | // // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
1022 | // // so I will too. | |
1023 | // for(i = 0; i < 20; i++) { | |
1024 | // ToSendStuffBit(1); | |
1025 | // ToSendStuffBit(1); | |
1026 | // ToSendStuffBit(1); | |
1027 | // ToSendStuffBit(1); | |
1028 | // } | |
1029 | ||
1030 | // // Send SOF. | |
1031 | // for(i = 0; i < 10; i++) { | |
1032 | // ToSendStuffBit(0); | |
1033 | // ToSendStuffBit(0); | |
1034 | // ToSendStuffBit(0); | |
1035 | // ToSendStuffBit(0); | |
1036 | // } | |
1037 | // for(i = 0; i < 2; i++) { | |
1038 | // ToSendStuffBit(1); | |
1039 | // ToSendStuffBit(1); | |
1040 | // ToSendStuffBit(1); | |
1041 | // ToSendStuffBit(1); | |
1042 | // } | |
1043 | ||
1044 | // for(i = 0; i < len; i++) { | |
1045 | // int j; | |
1046 | // uint8_t b = cmd[i]; | |
1047 | ||
1048 | // // Start bit | |
1049 | // ToSendStuffBit(0); | |
1050 | // ToSendStuffBit(0); | |
1051 | // ToSendStuffBit(0); | |
1052 | // ToSendStuffBit(0); | |
1053 | ||
1054 | // // Data bits | |
1055 | // for(j = 0; j < 8; j++) { | |
1056 | // if(b & 1) { | |
1057 | // ToSendStuffBit(1); | |
1058 | // ToSendStuffBit(1); | |
1059 | // ToSendStuffBit(1); | |
1060 | // ToSendStuffBit(1); | |
1061 | // } else { | |
1062 | // ToSendStuffBit(0); | |
1063 | // ToSendStuffBit(0); | |
1064 | // ToSendStuffBit(0); | |
1065 | // ToSendStuffBit(0); | |
1066 | // } | |
1067 | // b >>= 1; | |
1068 | // } | |
1069 | ||
1070 | // // Stop bit | |
1071 | // ToSendStuffBit(1); | |
1072 | // ToSendStuffBit(1); | |
1073 | // ToSendStuffBit(1); | |
1074 | // ToSendStuffBit(1); | |
1075 | // } | |
1076 | ||
1077 | // // Send EOF. | |
1078 | // for(i = 0; i < 10; i++) { | |
1079 | // ToSendStuffBit(0); | |
1080 | // ToSendStuffBit(0); | |
1081 | // ToSendStuffBit(0); | |
1082 | // ToSendStuffBit(0); | |
1083 | // } | |
1084 | // for(i = 0; i < 2; i++) { | |
1085 | // ToSendStuffBit(1); | |
1086 | // ToSendStuffBit(1); | |
1087 | // ToSendStuffBit(1); | |
1088 | // ToSendStuffBit(1); | |
1089 | // } | |
1090 | ||
1091 | // // Convert from last byte pos to length | |
1092 | // ToSendMax++; | |
1093 | // } | |
1094 | ||
1095 | //----------------------------------------------------------------------------- | |
1096 | // The software UART that receives commands from the reader, and its state | |
1097 | // variables. | |
1098 | //----------------------------------------------------------------------------- | |
1099 | static struct { | |
1100 | enum { | |
1101 | STATE_UNSYNCD, | |
1102 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
1103 | STATE_AWAITING_START_BIT, | |
1104 | STATE_RECEIVING_DATA | |
1105 | } state; | |
1106 | uint16_t shiftReg; | |
1107 | int bitCnt; | |
1108 | int byteCnt; | |
1109 | int byteCntMax; | |
1110 | int posCnt; | |
1111 | uint8_t *output; | |
1112 | } Uart; | |
1113 | ||
1114 | /* Receive & handle a bit coming from the reader. | |
1115 | * | |
1116 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
1117 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1118 | * | |
1119 | * LED handling: | |
1120 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
1121 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
1122 | * | |
1123 | * Returns: true if we received a EOF | |
1124 | * false if we are still waiting for some more | |
1125 | */ | |
1126 | // static RAMFUNC int HandleLegicUartBit(uint8_t bit) | |
1127 | // { | |
1128 | // switch(Uart.state) { | |
1129 | // case STATE_UNSYNCD: | |
1130 | // if(!bit) { | |
1131 | // // we went low, so this could be the beginning of an SOF | |
1132 | // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
1133 | // Uart.posCnt = 0; | |
1134 | // Uart.bitCnt = 0; | |
1135 | // } | |
1136 | // break; | |
1137 | ||
1138 | // case STATE_GOT_FALLING_EDGE_OF_SOF: | |
1139 | // Uart.posCnt++; | |
1140 | // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
1141 | // if(bit) { | |
1142 | // if(Uart.bitCnt > 9) { | |
1143 | // // we've seen enough consecutive | |
1144 | // // zeros that it's a valid SOF | |
1145 | // Uart.posCnt = 0; | |
1146 | // Uart.byteCnt = 0; | |
1147 | // Uart.state = STATE_AWAITING_START_BIT; | |
1148 | // LED_A_ON(); // Indicate we got a valid SOF | |
1149 | // } else { | |
1150 | // // didn't stay down long enough | |
1151 | // // before going high, error | |
1152 | // Uart.state = STATE_UNSYNCD; | |
1153 | // } | |
1154 | // } else { | |
1155 | // // do nothing, keep waiting | |
1156 | // } | |
1157 | // Uart.bitCnt++; | |
1158 | // } | |
1159 | // if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
1160 | // if(Uart.bitCnt > 12) { | |
1161 | // // Give up if we see too many zeros without | |
1162 | // // a one, too. | |
1163 | // LED_A_OFF(); | |
1164 | // Uart.state = STATE_UNSYNCD; | |
1165 | // } | |
1166 | // break; | |
1167 | ||
1168 | // case STATE_AWAITING_START_BIT: | |
1169 | // Uart.posCnt++; | |
1170 | // if(bit) { | |
1171 | // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
1172 | // // stayed high for too long between | |
1173 | // // characters, error | |
1174 | // Uart.state = STATE_UNSYNCD; | |
1175 | // } | |
1176 | // } else { | |
1177 | // // falling edge, this starts the data byte | |
1178 | // Uart.posCnt = 0; | |
1179 | // Uart.bitCnt = 0; | |
1180 | // Uart.shiftReg = 0; | |
1181 | // Uart.state = STATE_RECEIVING_DATA; | |
1182 | // } | |
1183 | // break; | |
1184 | ||
1185 | // case STATE_RECEIVING_DATA: | |
1186 | // Uart.posCnt++; | |
1187 | // if(Uart.posCnt == 2) { | |
1188 | // // time to sample a bit | |
1189 | // Uart.shiftReg >>= 1; | |
1190 | // if(bit) { | |
1191 | // Uart.shiftReg |= 0x200; | |
1192 | // } | |
1193 | // Uart.bitCnt++; | |
1194 | // } | |
1195 | // if(Uart.posCnt >= 4) { | |
1196 | // Uart.posCnt = 0; | |
1197 | // } | |
1198 | // if(Uart.bitCnt == 10) { | |
1199 | // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
1200 | // { | |
1201 | // // this is a data byte, with correct | |
1202 | // // start and stop bits | |
1203 | // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
1204 | // Uart.byteCnt++; | |
1205 | ||
1206 | // if(Uart.byteCnt >= Uart.byteCntMax) { | |
1207 | // // Buffer overflowed, give up | |
1208 | // LED_A_OFF(); | |
1209 | // Uart.state = STATE_UNSYNCD; | |
1210 | // } else { | |
1211 | // // so get the next byte now | |
1212 | // Uart.posCnt = 0; | |
1213 | // Uart.state = STATE_AWAITING_START_BIT; | |
1214 | // } | |
1215 | // } else if (Uart.shiftReg == 0x000) { | |
1216 | // // this is an EOF byte | |
1217 | // LED_A_OFF(); // Finished receiving | |
1218 | // Uart.state = STATE_UNSYNCD; | |
1219 | // if (Uart.byteCnt != 0) { | |
1220 | // return TRUE; | |
1221 | // } | |
1222 | // } else { | |
1223 | // // this is an error | |
1224 | // LED_A_OFF(); | |
1225 | // Uart.state = STATE_UNSYNCD; | |
1226 | // } | |
1227 | // } | |
1228 | // break; | |
1229 | ||
1230 | // default: | |
1231 | // LED_A_OFF(); | |
1232 | // Uart.state = STATE_UNSYNCD; | |
1233 | // break; | |
1234 | // } | |
1235 | ||
1236 | // return FALSE; | |
1237 | // } | |
1238 | ||
1239 | ||
f7b42573 | 1240 | static void UartReset() { |
1241 | Uart.byteCntMax = 3; | |
3e134b4c | 1242 | Uart.state = STATE_UNSYNCD; |
1243 | Uart.byteCnt = 0; | |
1244 | Uart.bitCnt = 0; | |
1245 | Uart.posCnt = 0; | |
f7b42573 | 1246 | memset(Uart.output, 0x00, 3); |
3e134b4c | 1247 | } |
1248 | ||
f7b42573 | 1249 | // static void UartInit(uint8_t *data) { |
3e134b4c | 1250 | // Uart.output = data; |
1251 | // UartReset(); | |
1252 | // } | |
1253 | ||
1254 | //============================================================================= | |
1255 | // An LEGIC reader. We take layer two commands, code them | |
1256 | // appropriately, and then send them to the tag. We then listen for the | |
1257 | // tag's response, which we leave in the buffer to be demodulated on the | |
1258 | // PC side. | |
1259 | //============================================================================= | |
1260 | ||
1261 | static struct { | |
1262 | enum { | |
1263 | DEMOD_UNSYNCD, | |
1264 | DEMOD_PHASE_REF_TRAINING, | |
1265 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
1266 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
1267 | DEMOD_AWAITING_START_BIT, | |
1268 | DEMOD_RECEIVING_DATA | |
1269 | } state; | |
1270 | int bitCount; | |
1271 | int posCount; | |
1272 | int thisBit; | |
1273 | uint16_t shiftReg; | |
1274 | uint8_t *output; | |
1275 | int len; | |
1276 | int sumI; | |
1277 | int sumQ; | |
1278 | } Demod; | |
1279 | ||
1280 | /* | |
1281 | * Handles reception of a bit from the tag | |
1282 | * | |
1283 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
1284 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1285 | * | |
1286 | * LED handling: | |
1287 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
1288 | * LED C -> OFF once we have received EOF or are unsynced | |
1289 | * | |
1290 | * Returns: true if we received a EOF | |
1291 | * false if we are still waiting for some more | |
1292 | * | |
1293 | */ | |
1294 | ||
1295 | #ifndef SUBCARRIER_DETECT_THRESHOLD | |
1296 | # define SUBCARRIER_DETECT_THRESHOLD 8 | |
1297 | #endif | |
1298 | ||
1299 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
1300 | #ifndef CHECK_FOR_SUBCARRIER | |
1301 | # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); } | |
1302 | #endif | |
1303 | ||
1304 | // The soft decision on the bit uses an estimate of just the | |
1305 | // quadrant of the reference angle, not the exact angle. | |
1306 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
1307 | #define MAKE_SOFT_DECISION() { \ | |
1308 | if(Demod.sumI > 0) \ | |
1309 | v = ci; \ | |
1310 | else \ | |
1311 | v = -ci; \ | |
1312 | \ | |
1313 | if(Demod.sumQ > 0) \ | |
1314 | v += cq; \ | |
1315 | else \ | |
1316 | v -= cq; \ | |
1317 | \ | |
1318 | } | |
1319 | ||
1320 | static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) | |
1321 | { | |
1322 | int v = 0; | |
1323 | int ai = ABS(ci); | |
1324 | int aq = ABS(cq); | |
1325 | int halfci = (ai >> 1); | |
1326 | int halfcq = (aq >> 1); | |
1327 | ||
1328 | switch(Demod.state) { | |
1329 | case DEMOD_UNSYNCD: | |
1330 | ||
1331 | CHECK_FOR_SUBCARRIER() | |
1332 | ||
1333 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
1334 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
1335 | Demod.sumI = ci; | |
1336 | Demod.sumQ = cq; | |
1337 | Demod.posCount = 1; | |
1338 | } | |
1339 | break; | |
1340 | ||
1341 | case DEMOD_PHASE_REF_TRAINING: | |
1342 | if(Demod.posCount < 8) { | |
1343 | ||
1344 | CHECK_FOR_SUBCARRIER() | |
1345 | ||
1346 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
1347 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
1348 | // note: synchronization time > 80 1/fs | |
1349 | Demod.sumI += ci; | |
1350 | Demod.sumQ += cq; | |
1351 | ++Demod.posCount; | |
1352 | } else { | |
1353 | // subcarrier lost | |
1354 | Demod.state = DEMOD_UNSYNCD; | |
1355 | } | |
1356 | } else { | |
1357 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
1358 | } | |
1359 | break; | |
1360 | ||
1361 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
1362 | ||
1363 | MAKE_SOFT_DECISION() | |
1364 | ||
1365 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); | |
1366 | // logic '0' detected | |
1367 | if (v <= 0) { | |
1368 | ||
1369 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
1370 | ||
1371 | // start of SOF sequence | |
1372 | Demod.posCount = 0; | |
1373 | } else { | |
1374 | // maximum length of TR1 = 200 1/fs | |
1375 | if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; | |
1376 | } | |
1377 | ++Demod.posCount; | |
1378 | break; | |
1379 | ||
1380 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
1381 | ++Demod.posCount; | |
1382 | ||
1383 | MAKE_SOFT_DECISION() | |
1384 | ||
1385 | if(v > 0) { | |
1386 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
1387 | if(Demod.posCount < 10*2) { | |
1388 | Demod.state = DEMOD_UNSYNCD; | |
1389 | } else { | |
1390 | LED_C_ON(); // Got SOF | |
1391 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1392 | Demod.posCount = 0; | |
1393 | Demod.len = 0; | |
1394 | } | |
1395 | } else { | |
1396 | // low phase of SOF too long (> 12 etu) | |
1397 | if(Demod.posCount > 13*2) { | |
1398 | Demod.state = DEMOD_UNSYNCD; | |
1399 | LED_C_OFF(); | |
1400 | } | |
1401 | } | |
1402 | break; | |
1403 | ||
1404 | case DEMOD_AWAITING_START_BIT: | |
1405 | ++Demod.posCount; | |
1406 | ||
1407 | MAKE_SOFT_DECISION() | |
1408 | ||
1409 | if(v > 0) { | |
1410 | // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
1411 | if(Demod.posCount > 3*2) { | |
1412 | Demod.state = DEMOD_UNSYNCD; | |
1413 | LED_C_OFF(); | |
1414 | } | |
1415 | } else { | |
1416 | // start bit detected | |
1417 | Demod.bitCount = 0; | |
1418 | Demod.posCount = 1; // this was the first half | |
1419 | Demod.thisBit = v; | |
1420 | Demod.shiftReg = 0; | |
1421 | Demod.state = DEMOD_RECEIVING_DATA; | |
1422 | } | |
1423 | break; | |
1424 | ||
1425 | case DEMOD_RECEIVING_DATA: | |
1426 | ||
1427 | MAKE_SOFT_DECISION() | |
1428 | ||
1429 | if(Demod.posCount == 0) { | |
1430 | // first half of bit | |
1431 | Demod.thisBit = v; | |
1432 | Demod.posCount = 1; | |
1433 | } else { | |
1434 | // second half of bit | |
1435 | Demod.thisBit += v; | |
1436 | Demod.shiftReg >>= 1; | |
1437 | // logic '1' | |
1438 | if(Demod.thisBit > 0) | |
1439 | Demod.shiftReg |= 0x200; | |
1440 | ||
1441 | ++Demod.bitCount; | |
1442 | ||
1443 | if(Demod.bitCount == 10) { | |
1444 | ||
1445 | uint16_t s = Demod.shiftReg; | |
1446 | ||
1447 | if((s & 0x200) && !(s & 0x001)) { | |
1448 | // stop bit == '1', start bit == '0' | |
1449 | uint8_t b = (s >> 1); | |
1450 | Demod.output[Demod.len] = b; | |
1451 | ++Demod.len; | |
1452 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1453 | } else { | |
1454 | Demod.state = DEMOD_UNSYNCD; | |
1455 | LED_C_OFF(); | |
1456 | ||
1457 | if(s == 0x000) { | |
1458 | // This is EOF (start, stop and all data bits == '0' | |
1459 | return TRUE; | |
1460 | } | |
1461 | } | |
1462 | } | |
1463 | Demod.posCount = 0; | |
1464 | } | |
1465 | break; | |
1466 | ||
1467 | default: | |
1468 | Demod.state = DEMOD_UNSYNCD; | |
1469 | LED_C_OFF(); | |
1470 | break; | |
1471 | } | |
1472 | return FALSE; | |
1473 | } | |
1474 | ||
1475 | // Clear out the state of the "UART" that receives from the tag. | |
1476 | static void DemodReset() { | |
1477 | Demod.len = 0; | |
1478 | Demod.state = DEMOD_UNSYNCD; | |
1479 | Demod.posCount = 0; | |
1480 | Demod.sumI = 0; | |
1481 | Demod.sumQ = 0; | |
1482 | Demod.bitCount = 0; | |
1483 | Demod.thisBit = 0; | |
1484 | Demod.shiftReg = 0; | |
f7b42573 | 1485 | memset(Demod.output, 0x00, 3); |
3e134b4c | 1486 | } |
1487 | ||
1488 | static void DemodInit(uint8_t *data) { | |
1489 | Demod.output = data; | |
1490 | DemodReset(); | |
1491 | } | |
1492 | ||
1493 | /* | |
1494 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
1495 | * quiet: set to 'TRUE' to disable debug output | |
1496 | */ | |
1497 | #define LEGIC_DMA_BUFFER_SIZE 256 | |
1498 | static void GetSamplesForLegicDemod(int n, bool quiet) | |
1499 | { | |
1500 | int max = 0; | |
1501 | bool gotFrame = FALSE; | |
1502 | int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1503 | int ci, cq, samples = 0; | |
1504 | ||
1505 | BigBuf_free(); | |
1506 | ||
1507 | // And put the FPGA in the appropriate mode | |
1508 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); | |
1509 | ||
1510 | // The response (tag -> reader) that we're receiving. | |
1511 | // Set up the demodulator for tag -> reader responses. | |
1512 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1513 | ||
1514 | // The DMA buffer, used to stream samples from the FPGA | |
1515 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); | |
1516 | int8_t *upTo = dmaBuf; | |
1517 | ||
1518 | // Setup and start DMA. | |
1519 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ | |
1520 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); | |
1521 | return; | |
1522 | } | |
1523 | ||
1524 | // Signal field is ON with the appropriate LED: | |
1525 | LED_D_ON(); | |
1526 | for(;;) { | |
1527 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
1528 | if(behindBy > max) max = behindBy; | |
1529 | ||
1530 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { | |
1531 | ci = upTo[0]; | |
1532 | cq = upTo[1]; | |
1533 | upTo += 2; | |
1534 | if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { | |
1535 | upTo = dmaBuf; | |
1536 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
1537 | AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; | |
1538 | } | |
1539 | lastRxCounter -= 2; | |
1540 | if(lastRxCounter <= 0) | |
1541 | lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1542 | ||
1543 | samples += 2; | |
1544 | ||
1545 | gotFrame = HandleLegicSamplesDemod(ci , cq ); | |
1546 | if ( gotFrame ) | |
1547 | break; | |
1548 | } | |
1549 | ||
1550 | if(samples > n || gotFrame) | |
1551 | break; | |
1552 | } | |
1553 | ||
1554 | FpgaDisableSscDma(); | |
1555 | ||
1556 | if (!quiet && Demod.len == 0) { | |
1557 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", | |
1558 | max, | |
1559 | samples, | |
1560 | gotFrame, | |
1561 | Demod.len, | |
1562 | Demod.sumI, | |
1563 | Demod.sumQ | |
1564 | ); | |
1565 | } | |
1566 | ||
1567 | //Tracing | |
1568 | if (Demod.len > 0) { | |
1569 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; | |
1570 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); | |
1571 | } | |
1572 | } | |
1573 | //----------------------------------------------------------------------------- | |
1574 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1575 | //----------------------------------------------------------------------------- | |
1576 | static void TransmitForLegic(void) | |
1577 | { | |
1578 | int c; | |
1579 | ||
1580 | FpgaSetupSsc(); | |
1581 | ||
1582 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) | |
1583 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1584 | ||
1585 | // Signal field is ON with the appropriate Red LED | |
1586 | LED_D_ON(); | |
1587 | ||
1588 | // Signal we are transmitting with the Green LED | |
1589 | LED_B_ON(); | |
1590 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1591 | ||
1592 | for(c = 0; c < 10;) { | |
1593 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1594 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1595 | c++; | |
1596 | } | |
1597 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1598 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1599 | (void)r; | |
1600 | } | |
1601 | WDT_HIT(); | |
1602 | } | |
1603 | ||
1604 | c = 0; | |
1605 | for(;;) { | |
1606 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1607 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
1608 | legic_prng_forward(1); // forward the lfsr | |
1609 | c++; | |
1610 | if(c >= ToSendMax) { | |
1611 | break; | |
1612 | } | |
1613 | } | |
1614 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1615 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1616 | (void)r; | |
1617 | } | |
1618 | WDT_HIT(); | |
1619 | } | |
1620 | LED_B_OFF(); | |
1621 | } | |
1622 | ||
1623 | ||
1624 | //----------------------------------------------------------------------------- | |
1625 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
1626 | // so that it is ready to transmit to the tag using TransmitForLegic(). | |
1627 | //----------------------------------------------------------------------------- | |
bf2cd644 | 1628 | static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c | 1629 | { |
1630 | int i, j; | |
1631 | uint8_t b; | |
1632 | ||
1633 | ToSendReset(); | |
1634 | ||
1635 | // Send SOF | |
bf2cd644 | 1636 | for(i = 0; i < 7; i++) |
3e134b4c | 1637 | ToSendStuffBit(1); |
3e134b4c | 1638 | |
bf2cd644 | 1639 | |
1640 | for(i = 0; i < cmdlen; i++) { | |
3e134b4c | 1641 | // Start bit |
1642 | ToSendStuffBit(0); | |
1643 | ||
1644 | // Data bits | |
1645 | b = cmd[i]; | |
bf2cd644 | 1646 | for(j = 0; j < bits; j++) { |
3e134b4c | 1647 | if(b & 1) { |
1648 | ToSendStuffBit(1); | |
1649 | } else { | |
1650 | ToSendStuffBit(0); | |
1651 | } | |
1652 | b >>= 1; | |
1653 | } | |
1654 | } | |
1655 | ||
1656 | // Convert from last character reference to length | |
1657 | ++ToSendMax; | |
1658 | } | |
1659 | ||
1660 | /** | |
1661 | Convenience function to encode, transmit and trace Legic comms | |
1662 | **/ | |
bf2cd644 | 1663 | static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) |
3e134b4c | 1664 | { |
bf2cd644 | 1665 | CodeLegicBitsAsReader(cmd, cmdlen, bits); |
3e134b4c | 1666 | TransmitForLegic(); |
1667 | if (tracing) { | |
1668 | uint8_t parity[1] = {0x00}; | |
3e82f956 | 1669 | LogTrace(cmd, cmdlen, 0, 0, parity, TRUE); |
3e134b4c | 1670 | } |
1671 | } | |
1672 | ||
1673 | int ice_legic_select_card() | |
1674 | { | |
1675 | //int cmd_size=0, card_size=0; | |
bf2cd644 | 1676 | uint8_t wakeup[] = { 0x7F }; |
3e134b4c | 1677 | uint8_t getid[] = {0x19}; |
1678 | ||
ad5bc8cc | 1679 | //legic_prng_init(SESSION_IV); |
3e134b4c | 1680 | |
1681 | // first, wake up the tag, 7bits | |
bf2cd644 | 1682 | CodeAndTransmitLegicAsReader(wakeup, sizeof(wakeup), 7); |
3e134b4c | 1683 | |
1684 | GetSamplesForLegicDemod(1000, TRUE); | |
1685 | ||
ad5bc8cc | 1686 | //frame_receiveAsReader(¤t_frame, 6, 1); |
3e134b4c | 1687 | |
1688 | legic_prng_forward(1); /* we wait anyways */ | |
1689 | ||
1690 | //while(timer->TC_CV < 387) ; /* ~ 258us */ | |
ad5bc8cc | 1691 | //frame_sendAsReader(0x19, 6); |
bf2cd644 | 1692 | CodeAndTransmitLegicAsReader(getid, sizeof(getid), 8); |
3e134b4c | 1693 | GetSamplesForLegicDemod(1000, TRUE); |
1694 | ||
1695 | //if (Demod.len < 14) return 2; | |
1696 | Dbprintf("CARD TYPE: %02x LEN: %d", Demod.output[0], Demod.len); | |
1697 | ||
1698 | switch(Demod.output[0]) { | |
1699 | case 0x1d: | |
1700 | DbpString("MIM 256 card found"); | |
1701 | // cmd_size = 9; | |
1702 | // card_size = 256; | |
1703 | break; | |
1704 | case 0x3d: | |
1705 | DbpString("MIM 1024 card found"); | |
1706 | // cmd_size = 11; | |
1707 | // card_size = 1024; | |
1708 | break; | |
1709 | default: | |
1710 | return -1; | |
1711 | } | |
1712 | ||
1713 | // if(bytes == -1) | |
1714 | // bytes = card_size; | |
1715 | ||
1716 | // if(bytes + offset >= card_size) | |
1717 | // bytes = card_size - offset; | |
1718 | ||
1719 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1720 | set_tracing(FALSE); | |
1721 | return 1; | |
1722 | } | |
1723 | ||
1724 | // Set up LEGIC communication | |
1725 | void ice_legic_setup() { | |
1726 | ||
1727 | // standard things. | |
1728 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1729 | BigBuf_free(); BigBuf_Clear_ext(false); | |
1730 | clear_trace(); | |
1731 | set_tracing(TRUE); | |
1732 | DemodReset(); | |
1733 | UartReset(); | |
1734 | ||
1735 | // Set up the synchronous serial port | |
1736 | FpgaSetupSsc(); | |
1737 | ||
1738 | // connect Demodulated Signal to ADC: | |
1739 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1740 | ||
1741 | // Signal field is on with the appropriate LED | |
1742 | LED_D_ON(); | |
1743 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
f7b42573 | 1744 | SpinDelay(20); |
3e134b4c | 1745 | // Start the timer |
1746 | //StartCountSspClk(); | |
1747 | ||
1748 | // initalize CRC | |
1749 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
1750 | ||
1751 | // initalize prng | |
1752 | legic_prng_init(0); | |
1753 | } |