]>
Commit | Line | Data |
---|---|---|
f89c7050 M |
1 | //----------------------------------------------------------------------------- |
2 | // Merlok - June 2011 | |
3 | // Roel - Dec 2009 | |
4 | // Unknown author | |
5 | // | |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
9 | //----------------------------------------------------------------------------- | |
10 | // MIFARE Darkside hack | |
11 | //----------------------------------------------------------------------------- | |
f89c7050 | 12 | #include "nonce2key.h" |
f89c7050 | 13 | |
1c611bbd | 14 | int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) { |
0de8e387 | 15 | struct Crypto1State *state; |
a0f33b66 | 16 | uint32_t i, pos, rr = 0, nr_diff; |
0de8e387 | 17 | byte_t bt, ks3x[8], par[8][8]; |
b19bd5d6 | 18 | |
0de8e387 | 19 | // Reset the last three significant bits of the reader nonce |
20 | nr &= 0xffffff1f; | |
f89c7050 | 21 | |
cd91e41c | 22 | PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08"llx")\n", uid, nt, par_info, ks_info, nr); |
0de8e387 | 23 | |
738eeccd | 24 | for ( pos = 0; pos < 8; pos++ ) { |
0de8e387 | 25 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; |
26 | bt = (par_info >> (pos*8)) & 0xff; | |
738eeccd | 27 | |
28 | for ( i = 0; i < 8; i++) { | |
0de8e387 | 29 | par[7-pos][i] = (bt >> i) & 0x01; |
30 | } | |
31 | } | |
f89c7050 | 32 | |
cd91e41c | 33 | printf("+----+--------+---+-----+---------------+\n"); |
0de8e387 | 34 | printf("|diff|{nr} |ks3|ks3^5|parity |\n"); |
35 | printf("+----+--------+---+-----+---------------+\n"); | |
738eeccd | 36 | for ( i = 0; i < 8; i++) { |
0de8e387 | 37 | nr_diff = nr | i << 5; |
5fdf8672 | 38 | printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5); |
39 | ||
a0f33b66 | 40 | for (pos = 0; pos < 7; pos++) printf("%01x,", par[i][pos]); |
0de8e387 | 41 | printf("%01x|\n", par[i][7]); |
42 | } | |
43 | printf("+----+--------+---+-----+---------------+\n"); | |
f89c7050 | 44 | |
5fdf8672 | 45 | clock_t t1 = clock(); |
46 | ||
a0f33b66 | 47 | state = lfsr_common_prefix(nr, rr, ks3x, par); |
48 | lfsr_rollback_word(state, uid^nt, 0); | |
49 | crypto1_get_lfsr(state, key); | |
50 | crypto1_destroy(state); | |
5fdf8672 | 51 | |
52 | t1 = clock() - t1; | |
53 | if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks \n", (float)t1); | |
a0f33b66 | 54 | return 0; |
f89c7050 | 55 | } |
46cd801c | 56 | |
cd91e41c | 57 | // call when PAR == 0, special attack? |
58 | int nonce2key_ex(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) { | |
59 | struct Crypto1State *state; | |
60 | uint32_t i, pos, key_count; | |
61 | byte_t ks3x[8]; | |
62 | ||
63 | uint64_t key_recovered; | |
64 | int64_t *state_s; | |
65 | static uint32_t last_uid; | |
66 | static int64_t *last_keylist; | |
67 | ||
68 | if (last_uid != uid && last_keylist != NULL) { | |
69 | free(last_keylist); | |
70 | last_keylist = NULL; | |
71 | } | |
72 | last_uid = uid; | |
73 | ||
74 | // Reset the last three significant bits of the reader nonce | |
75 | nr &= 0xffffff1f; | |
76 | ||
77 | PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08"llx")\n", uid, nt, ks_info, nr); | |
78 | ||
79 | for (pos=0; pos<8; pos++) { | |
80 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; | |
81 | } | |
82 | ||
83 | PrintAndLog("parity is all zero,try special attack! just wait for few more seconds"); | |
84 | ||
85 | clock_t t1 = clock(); | |
86 | ||
87 | state = lfsr_common_prefix_ex(nr, ks3x); | |
88 | state_s = (int64_t*)state; | |
89 | ||
90 | //char filename[50] ; | |
91 | //sprintf(filename, "nt_%08x_%d.txt", nt, nr); | |
92 | //printf("name %s\n", filename); | |
93 | //FILE* fp = fopen(filename,"w"); | |
94 | for (i = 0; (state) && ((state + i)->odd != -1); i++) { | |
95 | lfsr_rollback_word(state+i, uid^nt, 0); | |
96 | crypto1_get_lfsr(state + i, &key_recovered); | |
97 | *(state_s + i) = key_recovered; | |
98 | //fprintf(fp, "%012llx\n",key_recovered); | |
99 | } | |
100 | //fclose(fp); | |
101 | ||
102 | if(!state) | |
103 | return 1; | |
104 | ||
105 | qsort(state_s, i, sizeof(*state_s), compar_int); | |
106 | *(state_s + i) = -1; | |
107 | ||
108 | //Create the intersection: | |
109 | if ( last_keylist != NULL) { | |
110 | int64_t *p1, *p2, *p3; | |
111 | p1 = p3 = last_keylist; | |
112 | p2 = state_s; | |
113 | while ( *p1 != -1 && *p2 != -1 ) { | |
114 | if (compar_int(p1, p2) == 0) { | |
115 | printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1); | |
116 | *p3++ = *p1++; | |
117 | p2++; | |
118 | } | |
119 | else { | |
120 | while (compar_int(p1, p2) == -1) ++p1; | |
121 | while (compar_int(p1, p2) == 1) ++p2; | |
122 | } | |
123 | } | |
124 | key_count = p3 - last_keylist;; | |
125 | } else { | |
126 | key_count = 0; | |
127 | } | |
128 | ||
129 | printf("key_count:%d\n", key_count); | |
130 | ||
131 | // The list may still contain several key candidates. Test each of them with mfCheckKeys | |
132 | uint8_t keyBlock[6]; | |
133 | uint64_t key64; | |
134 | for (i = 0; i < key_count; i++) { | |
135 | key64 = *(last_keylist + i); | |
136 | num_to_bytes(key64, 6, keyBlock); | |
137 | key64 = 0; | |
138 | if (!mfCheckKeys(0, 0, TRUE, 1, keyBlock, &key64)) { //block 0,A, | |
139 | *key = key64; | |
140 | free(last_keylist); | |
141 | last_keylist = NULL; | |
142 | free(state); | |
143 | return 0; | |
144 | } | |
145 | } | |
146 | ||
147 | t1 = clock() - t1; | |
148 | if ( t1 > 0 ) PrintAndLog("Time in nonce2key_special: %.0f ticks \n", (float)t1); | |
149 | ||
150 | free(last_keylist); | |
151 | last_keylist = state_s; | |
152 | return 1; | |
153 | } | |
46cd801c | 154 | |
f0e183ec | 155 | // 32 bit recover key from 2 nonces |
156 | bool tryMfk32(nonces_t data, uint64_t *outputkey) { | |
46cd801c | 157 | struct Crypto1State *s,*t; |
f0e183ec | 158 | uint64_t outkey = 0; |
159 | uint64_t key=0; // recovered key | |
160 | uint32_t uid = data.cuid; | |
161 | uint32_t nt = data.nonce; // first tag challenge (nonce) | |
162 | uint32_t nr0_enc = data.nr; // first encrypted reader challenge | |
163 | uint32_t ar0_enc = data.ar; // first encrypted reader response | |
164 | uint32_t nr1_enc = data.nr2; // second encrypted reader challenge | |
165 | uint32_t ar1_enc = data.ar2; // second encrypted reader response | |
166 | clock_t t1 = clock(); | |
46cd801c | 167 | bool isSuccess = FALSE; |
f0e183ec | 168 | uint8_t counter = 0; |
169 | ||
46cd801c | 170 | |
171 | s = lfsr_recovery32(ar0_enc ^ prng_successor(nt, 64), 0); | |
172 | ||
173 | for(t = s; t->odd | t->even; ++t) { | |
174 | lfsr_rollback_word(t, 0, 0); | |
175 | lfsr_rollback_word(t, nr0_enc, 1); | |
176 | lfsr_rollback_word(t, uid ^ nt, 0); | |
177 | crypto1_get_lfsr(t, &key); | |
178 | crypto1_word(t, uid ^ nt, 0); | |
179 | crypto1_word(t, nr1_enc, 1); | |
180 | if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt, 64))) { | |
f0e183ec | 181 | //PrintAndLog("Found Key: [%012"llx"]", key); |
182 | outkey = key; | |
46cd801c | 183 | ++counter; |
f0e183ec | 184 | if (counter==20) break; |
46cd801c | 185 | } |
186 | } | |
f0e183ec | 187 | isSuccess = (counter > 0); |
cd91e41c | 188 | t1 = clock() - t1; |
f0e183ec | 189 | if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d\n", (float)t1, counter); |
190 | *outputkey = ( isSuccess ) ? outkey : 0; | |
cd91e41c | 191 | crypto1_destroy(s); |
46cd801c | 192 | return isSuccess; |
193 | } | |
194 | ||
f0e183ec | 195 | bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey) { |
738eeccd | 196 | struct Crypto1State *s, *t; |
f0e183ec | 197 | uint64_t outkey = 0; |
cd91e41c | 198 | uint64_t key = 0; // recovered key |
f0e183ec | 199 | uint32_t uid = data.cuid; |
200 | uint32_t nt0 = data.nonce; // first tag challenge (nonce) | |
201 | uint32_t nr0_enc = data.nr; // first encrypted reader challenge | |
202 | uint32_t ar0_enc = data.ar; // first encrypted reader response | |
cd91e41c | 203 | //uint32_t uid1 = le32toh(data+16); |
f0e183ec | 204 | uint32_t nt1 = data.nonce2; // second tag challenge (nonce) |
205 | uint32_t nr1_enc = data.nr2; // second encrypted reader challenge | |
206 | uint32_t ar1_enc = data.ar2; // second encrypted reader response | |
d8af608f | 207 | bool isSuccess = FALSE; |
208 | int counter = 0; | |
209 | ||
f0e183ec | 210 | //PrintAndLog("Enter mfkey32_moebius"); |
cd91e41c | 211 | clock_t t1 = clock(); |
d8af608f | 212 | |
213 | s = lfsr_recovery32(ar0_enc ^ prng_successor(nt0, 64), 0); | |
214 | ||
215 | for(t = s; t->odd | t->even; ++t) { | |
216 | lfsr_rollback_word(t, 0, 0); | |
217 | lfsr_rollback_word(t, nr0_enc, 1); | |
218 | lfsr_rollback_word(t, uid ^ nt0, 0); | |
219 | crypto1_get_lfsr(t, &key); | |
220 | ||
221 | crypto1_word(t, uid ^ nt1, 0); | |
222 | crypto1_word(t, nr1_enc, 1); | |
223 | if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt1, 64))) { | |
f0e183ec | 224 | //PrintAndLog("Found Key: [%012"llx"]",key); |
225 | outkey=key; | |
d8af608f | 226 | ++counter; |
f0e183ec | 227 | if (counter==20) break; |
d8af608f | 228 | } |
229 | } | |
f0e183ec | 230 | isSuccess = (counter > 0); |
cd91e41c | 231 | t1 = clock() - t1; |
f0e183ec | 232 | if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d\n", (float)t1, counter); |
233 | *outputkey = ( isSuccess ) ? outkey : 0; | |
cd91e41c | 234 | crypto1_destroy(s); |
d8af608f | 235 | return isSuccess; |
236 | } | |
237 | ||
cd91e41c | 238 | int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){ |
239 | uint32_t uid = le32toh(data); | |
240 | uint32_t nt = le32toh(data+4); // tag challenge | |
241 | uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge | |
242 | uint32_t ar_enc = le32toh(data+12); // encrypted reader response | |
243 | uint32_t at_enc = le32toh(data+16); // encrypted tag response | |
244 | return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey); | |
245 | } | |
46cd801c | 246 | |
cd91e41c | 247 | int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){ |
248 | uint64_t key = 0; // recovered key | |
249 | uint32_t ks2; // keystream used to encrypt reader response | |
250 | uint32_t ks3; // keystream used to encrypt tag response | |
46cd801c | 251 | struct Crypto1State *revstate; |
46cd801c | 252 | |
cd91e41c | 253 | PrintAndLog("Enter mfkey64"); |
254 | clock_t t1 = clock(); | |
46cd801c | 255 | |
46cd801c | 256 | // Extract the keystream from the messages |
257 | ks2 = ar_enc ^ prng_successor(nt, 64); | |
258 | ks3 = at_enc ^ prng_successor(nt, 96); | |
46cd801c | 259 | revstate = lfsr_recovery64(ks2, ks3); |
260 | lfsr_rollback_word(revstate, 0, 0); | |
261 | lfsr_rollback_word(revstate, 0, 0); | |
262 | lfsr_rollback_word(revstate, nr_enc, 1); | |
263 | lfsr_rollback_word(revstate, uid ^ nt, 0); | |
264 | crypto1_get_lfsr(revstate, &key); | |
cd91e41c | 265 | PrintAndLog("Found Key: [%012"llx"]", key); |
46cd801c | 266 | crypto1_destroy(revstate); |
cd91e41c | 267 | *outputkey = key; |
268 | ||
269 | t1 = clock() - t1; | |
270 | if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1); | |
46cd801c | 271 | return 0; |
5fdf8672 | 272 | } |