]>
Commit | Line | Data |
---|---|---|
1 | /* crapto1.c | |
2 | ||
3 | This program is free software; you can redistribute it and/or | |
4 | modify it under the terms of the GNU General Public License | |
5 | as published by the Free Software Foundation; either version 2 | |
6 | of the License, or (at your option) any later version. | |
7 | ||
8 | This program is distributed in the hope that it will be useful, | |
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
11 | GNU General Public License for more details. | |
12 | ||
13 | You should have received a copy of the GNU General Public License | |
14 | along with this program; if not, write to the Free Software | |
15 | Foundation, Inc., 51 Franklin Street, Fifth Floor, | |
16 | Boston, MA 02110-1301, US$ | |
17 | ||
18 | Copyright (C) 2008-2008 bla <blapost@gmail.com> | |
19 | */ | |
20 | #include "crapto1.h" | |
21 | #include <stdlib.h> | |
22 | #include <stdbool.h> | |
23 | ||
24 | #if !defined LOWMEM && defined __GNUC__ | |
25 | static uint8_t filterlut[1 << 20]; | |
26 | static void __attribute__((constructor)) fill_lut() | |
27 | { | |
28 | uint32_t i; | |
29 | for(i = 0; i < 1 << 20; ++i) | |
30 | filterlut[i] = filter(i); | |
31 | } | |
32 | #define filter(x) (filterlut[(x) & 0xfffff]) | |
33 | #endif | |
34 | ||
35 | ||
36 | ||
37 | typedef struct bucket { | |
38 | uint32_t *head; | |
39 | uint32_t *bp; | |
40 | } bucket_t; | |
41 | ||
42 | typedef bucket_t bucket_array_t[2][0x100]; | |
43 | ||
44 | typedef struct bucket_info { | |
45 | struct { | |
46 | uint32_t *head, *tail; | |
47 | } bucket_info[2][0x100]; | |
48 | uint32_t numbuckets; | |
49 | } bucket_info_t; | |
50 | ||
51 | ||
52 | static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop, | |
53 | uint32_t* const ostart, uint32_t* const ostop, | |
54 | bucket_info_t *bucket_info, bucket_array_t bucket) | |
55 | { | |
56 | uint32_t *p1, *p2; | |
57 | uint32_t *start[2]; | |
58 | uint32_t *stop[2]; | |
59 | ||
60 | start[0] = estart; | |
61 | stop[0] = estop; | |
62 | start[1] = ostart; | |
63 | stop[1] = ostop; | |
64 | ||
65 | // init buckets to be empty | |
66 | for (uint32_t i = 0; i < 2; i++) { | |
67 | for (uint32_t j = 0x00; j <= 0xff; j++) { | |
68 | bucket[i][j].bp = bucket[i][j].head; | |
69 | } | |
70 | } | |
71 | ||
72 | // sort the lists into the buckets based on the MSB (contribution bits) | |
73 | for (uint32_t i = 0; i < 2; i++) { | |
74 | for (p1 = start[i]; p1 <= stop[i]; p1++) { | |
75 | uint32_t bucket_index = (*p1 & 0xff000000) >> 24; | |
76 | *(bucket[i][bucket_index].bp++) = *p1; | |
77 | } | |
78 | } | |
79 | ||
80 | ||
81 | // write back intersecting buckets as sorted list. | |
82 | // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets. | |
83 | uint32_t nonempty_bucket; | |
84 | for (uint32_t i = 0; i < 2; i++) { | |
85 | p1 = start[i]; | |
86 | nonempty_bucket = 0; | |
87 | for (uint32_t j = 0x00; j <= 0xff; j++) { | |
88 | if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only | |
89 | bucket_info->bucket_info[i][nonempty_bucket].head = p1; | |
90 | for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++); | |
91 | bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1; | |
92 | nonempty_bucket++; | |
93 | } | |
94 | } | |
95 | bucket_info->numbuckets = nonempty_bucket; | |
96 | } | |
97 | } | |
98 | ||
99 | /** binsearch | |
100 | * Binary search for the first occurence of *stop's MSB in sorted [start,stop] | |
101 | */ | |
102 | static inline uint32_t* | |
103 | binsearch(uint32_t *start, uint32_t *stop) | |
104 | { | |
105 | uint32_t mid, val = *stop & 0xff000000; | |
106 | while(start != stop) | |
107 | if(start[mid = (stop - start) >> 1] > val) | |
108 | stop = &start[mid]; | |
109 | else | |
110 | start += mid + 1; | |
111 | ||
112 | return start; | |
113 | } | |
114 | ||
115 | /** update_contribution | |
116 | * helper, calculates the partial linear feedback contributions and puts in MSB | |
117 | */ | |
118 | static inline void | |
119 | update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2) | |
120 | { | |
121 | uint32_t p = *item >> 25; | |
122 | ||
123 | p = p << 1 | parity(*item & mask1); | |
124 | p = p << 1 | parity(*item & mask2); | |
125 | *item = p << 24 | (*item & 0xffffff); | |
126 | } | |
127 | ||
128 | /** extend_table | |
129 | * using a bit of the keystream extend the table of possible lfsr states | |
130 | */ | |
131 | static inline void | |
132 | extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in) | |
133 | { | |
134 | in <<= 24; | |
135 | ||
136 | for(uint32_t *p = tbl; p <= *end; p++) { | |
137 | *p <<= 1; | |
138 | if(filter(*p) != filter(*p | 1)) { // replace | |
139 | *p |= filter(*p) ^ bit; | |
140 | update_contribution(p, m1, m2); | |
141 | *p ^= in; | |
142 | } else if(filter(*p) == bit) { // insert | |
143 | *++*end = p[1]; | |
144 | p[1] = p[0] | 1; | |
145 | update_contribution(p, m1, m2); | |
146 | *p++ ^= in; | |
147 | update_contribution(p, m1, m2); | |
148 | *p ^= in; | |
149 | } else { // drop | |
150 | *p-- = *(*end)--; | |
151 | } | |
152 | } | |
153 | ||
154 | } | |
155 | ||
156 | ||
157 | /** extend_table_simple | |
158 | * using a bit of the keystream extend the table of possible lfsr states | |
159 | */ | |
160 | static inline void | |
161 | extend_table_simple(uint32_t *tbl, uint32_t **end, int bit) | |
162 | { | |
163 | for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) | |
164 | if(filter(*tbl) ^ filter(*tbl | 1)) { // replace | |
165 | *tbl |= filter(*tbl) ^ bit; | |
166 | } else if(filter(*tbl) == bit) { // insert | |
167 | *++*end = *++tbl; | |
168 | *tbl = tbl[-1] | 1; | |
169 | } else // drop | |
170 | *tbl-- = *(*end)--; | |
171 | } | |
172 | ||
173 | ||
174 | /** recover | |
175 | * recursively narrow down the search space, 4 bits of keystream at a time | |
176 | */ | |
177 | static struct Crypto1State* | |
178 | recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks, | |
179 | uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem, | |
180 | struct Crypto1State *sl, uint32_t in, bucket_array_t bucket) | |
181 | { | |
182 | uint32_t *o, *e; | |
183 | bucket_info_t bucket_info; | |
184 | ||
185 | if(rem == -1) { | |
186 | for(e = e_head; e <= e_tail; ++e) { | |
187 | *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4); | |
188 | for(o = o_head; o <= o_tail; ++o, ++sl) { | |
189 | sl->even = *o; | |
190 | sl->odd = *e ^ parity(*o & LF_POLY_ODD); | |
191 | } | |
192 | } | |
193 | sl->odd = sl->even = 0; | |
194 | return sl; | |
195 | } | |
196 | ||
197 | for(uint32_t i = 0; i < 4 && rem--; i++) { | |
198 | extend_table(o_head, &o_tail, (oks >>= 1) & 1, | |
199 | LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0); | |
200 | if(o_head > o_tail) | |
201 | return sl; | |
202 | ||
203 | extend_table(e_head, &e_tail, (eks >>= 1) & 1, | |
204 | LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3); | |
205 | if(e_head > e_tail) | |
206 | return sl; | |
207 | } | |
208 | ||
209 | bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket); | |
210 | ||
211 | for (int i = bucket_info.numbuckets - 1; i >= 0; i--) { | |
212 | sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks, | |
213 | bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks, | |
214 | rem, sl, in, bucket); | |
215 | } | |
216 | ||
217 | return sl; | |
218 | } | |
219 | /** lfsr_recovery | |
220 | * recover the state of the lfsr given 32 bits of the keystream | |
221 | * additionally you can use the in parameter to specify the value | |
222 | * that was fed into the lfsr at the time the keystream was generated | |
223 | */ | |
224 | struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in) | |
225 | { | |
226 | struct Crypto1State *statelist; | |
227 | uint32_t *odd_head = 0, *odd_tail = 0, oks = 0; | |
228 | uint32_t *even_head = 0, *even_tail = 0, eks = 0; | |
229 | int i; | |
230 | ||
231 | // split the keystream into an odd and even part | |
232 | for(i = 31; i >= 0; i -= 2) | |
233 | oks = oks << 1 | BEBIT(ks2, i); | |
234 | for(i = 30; i >= 0; i -= 2) | |
235 | eks = eks << 1 | BEBIT(ks2, i); | |
236 | ||
237 | odd_head = odd_tail = malloc(sizeof(uint32_t) << 21); | |
238 | even_head = even_tail = malloc(sizeof(uint32_t) << 21); | |
239 | statelist = malloc(sizeof(struct Crypto1State) << 18); | |
240 | if(!odd_tail-- || !even_tail-- || !statelist) { | |
241 | goto out; | |
242 | } | |
243 | statelist->odd = statelist->even = 0; | |
244 | ||
245 | // allocate memory for out of place bucket_sort | |
246 | bucket_array_t bucket; | |
247 | for (uint32_t i = 0; i < 2; i++) | |
248 | for (uint32_t j = 0; j <= 0xff; j++) { | |
249 | bucket[i][j].head = malloc(sizeof(uint32_t)<<14); | |
250 | if (!bucket[i][j].head) { | |
251 | goto out; | |
252 | } | |
253 | } | |
254 | ||
255 | ||
256 | // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream | |
257 | for(i = 1 << 20; i >= 0; --i) { | |
258 | if(filter(i) == (oks & 1)) | |
259 | *++odd_tail = i; | |
260 | if(filter(i) == (eks & 1)) | |
261 | *++even_tail = i; | |
262 | } | |
263 | ||
264 | // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even): | |
265 | for(i = 0; i < 4; i++) { | |
266 | extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1); | |
267 | extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1); | |
268 | } | |
269 | ||
270 | // the statelists now contain all states which could have generated the last 10 Bits of the keystream. | |
271 | // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in" | |
272 | // parameter into account. | |
273 | ||
274 | in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping | |
275 | ||
276 | recover(odd_head, odd_tail, oks, | |
277 | even_head, even_tail, eks, 11, statelist, in << 1, bucket); | |
278 | ||
279 | ||
280 | out: | |
281 | free(odd_head); | |
282 | free(even_head); | |
283 | for (uint32_t i = 0; i < 2; i++) | |
284 | for (uint32_t j = 0; j <= 0xff; j++) | |
285 | free(bucket[i][j].head); | |
286 | ||
287 | return statelist; | |
288 | } | |
289 | ||
290 | static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214, | |
291 | 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83, | |
292 | 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA}; | |
293 | static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60, | |
294 | 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8, | |
295 | 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20, | |
296 | 0x7EC7EE90, 0x7F63F748, 0x79117020}; | |
297 | static const uint32_t T1[] = { | |
298 | 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66, | |
299 | 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B, | |
300 | 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615, | |
301 | 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C}; | |
302 | static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0, | |
303 | 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268, | |
304 | 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0, | |
305 | 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0, | |
306 | 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950, | |
307 | 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0}; | |
308 | static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD}; | |
309 | static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0}; | |
310 | /** Reverse 64 bits of keystream into possible cipher states | |
311 | * Variation mentioned in the paper. Somewhat optimized version | |
312 | */ | |
313 | struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3) | |
314 | { | |
315 | struct Crypto1State *statelist, *sl; | |
316 | uint8_t oks[32], eks[32], hi[32]; | |
317 | uint32_t low = 0, win = 0; | |
318 | uint32_t *tail, table[1 << 16]; | |
319 | int i, j; | |
320 | ||
321 | sl = statelist = malloc(sizeof(struct Crypto1State) << 4); | |
322 | if(!sl) | |
323 | return 0; | |
324 | sl->odd = sl->even = 0; | |
325 | ||
326 | for(i = 30; i >= 0; i -= 2) { | |
327 | oks[i >> 1] = BIT(ks2, i ^ 24); | |
328 | oks[16 + (i >> 1)] = BIT(ks3, i ^ 24); | |
329 | } | |
330 | for(i = 31; i >= 0; i -= 2) { | |
331 | eks[i >> 1] = BIT(ks2, i ^ 24); | |
332 | eks[16 + (i >> 1)] = BIT(ks3, i ^ 24); | |
333 | } | |
334 | ||
335 | for(i = 0xfffff; i >= 0; --i) { | |
336 | if (filter(i) != oks[0]) | |
337 | continue; | |
338 | ||
339 | *(tail = table) = i; | |
340 | for(j = 1; tail >= table && j < 29; ++j) | |
341 | extend_table_simple(table, &tail, oks[j]); | |
342 | ||
343 | if(tail < table) | |
344 | continue; | |
345 | ||
346 | for(j = 0; j < 19; ++j) | |
347 | low = low << 1 | parity(i & S1[j]); | |
348 | for(j = 0; j < 32; ++j) | |
349 | hi[j] = parity(i & T1[j]); | |
350 | ||
351 | for(; tail >= table; --tail) { | |
352 | for(j = 0; j < 3; ++j) { | |
353 | *tail = *tail << 1; | |
354 | *tail |= parity((i & C1[j]) ^ (*tail & C2[j])); | |
355 | if(filter(*tail) != oks[29 + j]) | |
356 | goto continue2; | |
357 | } | |
358 | ||
359 | for(j = 0; j < 19; ++j) | |
360 | win = win << 1 | parity(*tail & S2[j]); | |
361 | ||
362 | win ^= low; | |
363 | for(j = 0; j < 32; ++j) { | |
364 | win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]); | |
365 | if(filter(win) != eks[j]) | |
366 | goto continue2; | |
367 | } | |
368 | ||
369 | *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail); | |
370 | sl->odd = *tail ^ parity(LF_POLY_ODD & win); | |
371 | sl->even = win; | |
372 | ++sl; | |
373 | sl->odd = sl->even = 0; | |
374 | continue2:; | |
375 | } | |
376 | } | |
377 | return statelist; | |
378 | } | |
379 | ||
380 | /** lfsr_rollback_bit | |
381 | * Rollback the shift register in order to get previous states | |
382 | */ | |
383 | void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb) | |
384 | { | |
385 | int out; | |
386 | uint32_t tmp; | |
387 | ||
388 | s->odd &= 0xffffff; | |
389 | tmp = s->odd; | |
390 | s->odd = s->even; | |
391 | s->even = tmp; | |
392 | ||
393 | out = s->even & 1; | |
394 | out ^= LF_POLY_EVEN & (s->even >>= 1); | |
395 | out ^= LF_POLY_ODD & s->odd; | |
396 | out ^= !!in; | |
397 | out ^= filter(s->odd) & !!fb; | |
398 | ||
399 | s->even |= parity(out) << 23; | |
400 | } | |
401 | /** lfsr_rollback_byte | |
402 | * Rollback the shift register in order to get previous states | |
403 | */ | |
404 | void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb) | |
405 | { | |
406 | int i; | |
407 | for (i = 7; i >= 0; --i) | |
408 | lfsr_rollback_bit(s, BEBIT(in, i), fb); | |
409 | } | |
410 | /** lfsr_rollback_word | |
411 | * Rollback the shift register in order to get previous states | |
412 | */ | |
413 | void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb) | |
414 | { | |
415 | int i; | |
416 | for (i = 31; i >= 0; --i) | |
417 | lfsr_rollback_bit(s, BEBIT(in, i), fb); | |
418 | } | |
419 | ||
420 | /** nonce_distance | |
421 | * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y | |
422 | */ | |
423 | static uint16_t *dist = 0; | |
424 | int nonce_distance(uint32_t from, uint32_t to) | |
425 | { | |
426 | uint16_t x, i; | |
427 | if(!dist) { | |
428 | dist = malloc(2 << 16); | |
429 | if(!dist) | |
430 | return -1; | |
431 | for (x = i = 1; i; ++i) { | |
432 | dist[(x & 0xff) << 8 | x >> 8] = i; | |
433 | x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; | |
434 | } | |
435 | } | |
436 | return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535; | |
437 | } | |
438 | ||
439 | ||
440 | static uint32_t fastfwd[2][8] = { | |
441 | { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB}, | |
442 | { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}}; | |
443 | ||
444 | ||
445 | /** lfsr_prefix_ks | |
446 | * | |
447 | * Is an exported helper function from the common prefix attack | |
448 | * Described in the "dark side" paper. It returns an -1 terminated array | |
449 | * of possible partial(21 bit) secret state. | |
450 | * The required keystream(ks) needs to contain the keystream that was used to | |
451 | * encrypt the NACK which is observed when varying only the 4 last bits of Nr | |
452 | * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3 | |
453 | */ | |
454 | uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd) | |
455 | { | |
456 | uint32_t *candidates = malloc(4 << 21); | |
457 | uint32_t c, entry; | |
458 | int size, i; | |
459 | ||
460 | if(!candidates) | |
461 | return 0; | |
462 | ||
463 | size = (1 << 21) - 1; | |
464 | for(i = 0; i <= size; ++i) | |
465 | candidates[i] = i; | |
466 | ||
467 | for(c = 0; c < 8; ++c) | |
468 | for(i = 0;i <= size; ++i) { | |
469 | entry = candidates[i] ^ fastfwd[isodd][c]; | |
470 | ||
471 | if(filter(entry >> 1) == BIT(ks[c], isodd)) | |
472 | if(filter(entry) == BIT(ks[c], isodd + 2)) | |
473 | continue; | |
474 | ||
475 | candidates[i--] = candidates[size--]; | |
476 | } | |
477 | ||
478 | candidates[size + 1] = -1; | |
479 | ||
480 | return candidates; | |
481 | } | |
482 | ||
483 | /** brute_top | |
484 | * helper function which eliminates possible secret states using parity bits | |
485 | */ | |
486 | static struct Crypto1State* | |
487 | brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8], | |
488 | uint32_t odd, uint32_t even, struct Crypto1State* sl) | |
489 | { | |
490 | struct Crypto1State s; | |
491 | uint32_t ks1, nr, ks2, rr, ks3, good, c; | |
492 | ||
493 | bool no_par = true; | |
494 | for (int i = 0; i < 8; i++) { | |
495 | for (int j = 0; j < 8; j++) { | |
496 | if (parities[i][j] != 0) { | |
497 | no_par = false; | |
498 | break; | |
499 | } | |
500 | } | |
501 | } | |
502 | ||
503 | for(c = 0; c < 8; ++c) { | |
504 | s.odd = odd ^ fastfwd[1][c]; | |
505 | s.even = even ^ fastfwd[0][c]; | |
506 | ||
507 | lfsr_rollback_bit(&s, 0, 0); | |
508 | lfsr_rollback_bit(&s, 0, 0); | |
509 | lfsr_rollback_bit(&s, 0, 0); | |
510 | ||
511 | lfsr_rollback_word(&s, 0, 0); | |
512 | lfsr_rollback_word(&s, prefix | c << 5, 1); | |
513 | ||
514 | sl->odd = s.odd; | |
515 | sl->even = s.even; | |
516 | ||
517 | if (no_par) | |
518 | break; | |
519 | ||
520 | ks1 = crypto1_word(&s, prefix | c << 5, 1); | |
521 | ks2 = crypto1_word(&s,0,0); | |
522 | ks3 = crypto1_word(&s, 0,0); | |
523 | nr = ks1 ^ (prefix | c << 5); | |
524 | rr = ks2 ^ rresp; | |
525 | ||
526 | good = 1; | |
527 | good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24); | |
528 | good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16); | |
529 | good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8); | |
530 | good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0); | |
531 | good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24); | |
532 | ||
533 | if(!good) | |
534 | return sl; | |
535 | } | |
536 | ||
537 | return ++sl; | |
538 | } | |
539 | ||
540 | ||
541 | /** lfsr_common_prefix | |
542 | * Implentation of the common prefix attack. | |
543 | * Requires the 28 bit constant prefix used as reader nonce (pfx) | |
544 | * The reader response used (rr) | |
545 | * The keystream used to encrypt the observed NACK's (ks) | |
546 | * The parity bits (par) | |
547 | * It returns a zero terminated list of possible cipher states after the | |
548 | * tag nonce was fed in | |
549 | */ | |
550 | struct Crypto1State* | |
551 | lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]) | |
552 | { | |
553 | struct Crypto1State *statelist, *s; | |
554 | uint32_t *odd, *even, *o, *e, top; | |
555 | ||
556 | odd = lfsr_prefix_ks(ks, 1); | |
557 | even = lfsr_prefix_ks(ks, 0); | |
558 | ||
559 | statelist = malloc((sizeof *statelist) << 21); //how large should be? | |
560 | if(!statelist || !odd || !even) | |
561 | { | |
562 | free(statelist); | |
563 | free(odd); | |
564 | free(even); | |
565 | return 0; | |
566 | } | |
567 | ||
568 | s = statelist; | |
569 | for(o = odd; *o != -1; ++o) | |
570 | for(e = even; *e != -1; ++e) | |
571 | for(top = 0; top < 64; ++top) { | |
572 | *o = (*o & 0x1fffff) | (top << 21); | |
573 | *e = (*e & 0x1fffff) | (top >> 3) << 21; | |
574 | s = brute_top(pfx, rr, par, *o, *e, s); | |
575 | } | |
576 | ||
577 | s->odd = s->even = -1; | |
578 | //printf("state count = %d\n",s-statelist); | |
579 | ||
580 | free(odd); | |
581 | free(even); | |
582 | ||
583 | return statelist; | |
584 | } |