3         This program is free software; you can redistribute it and/or 
   4         modify it under the terms of the GNU General Public License 
   5         as published by the Free Software Foundation; either version 2 
   6         of the License, or (at your option) any later version. 
   8         This program is distributed in the hope that it will be useful, 
   9         but WITHOUT ANY WARRANTY; without even the implied warranty of 
  10         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
  11         GNU General Public License for more details. 
  13         You should have received a copy of the GNU General Public License 
  14         along with this program; if not, write to the Free Software 
  15         Foundation, Inc., 51 Franklin Street, Fifth Floor, 
  16         Boston, MA  02110-1301, US$ 
  18         Copyright (C) 2008-2008 bla <blapost@gmail.com> 
  24 #if !defined LOWMEM && defined __GNUC__ 
  25 static uint8_t filterlut
[1 << 20]; 
  26 static void __attribute__((constructor
)) fill_lut() 
  29                 for(i 
= 0; i 
< 1 << 20; ++i
) 
  30                                 filterlut
[i
] = filter(i
); 
  32 #define filter(x) (filterlut[(x) & 0xfffff]) 
  37 typedef struct bucket 
{ 
  42 typedef bucket_t bucket_array_t
[2][0x100]; 
  44 typedef struct bucket_info 
{ 
  46                 uint32_t *head
, *tail
; 
  47                 } bucket_info
[2][0x100]; 
  52 static void bucket_sort_intersect(uint32_t* const estart
, uint32_t* const estop
, 
  53                                                                   uint32_t* const ostart
, uint32_t* const ostop
, 
  54                                                                   bucket_info_t 
*bucket_info
, bucket_array_t bucket
) 
  65         // init buckets to be empty 
  66         for (uint32_t i 
= 0; i 
< 2; i
++) { 
  67                 for (uint32_t j 
= 0x00; j 
<= 0xff; j
++) { 
  68                         bucket
[i
][j
].bp 
= bucket
[i
][j
].head
; 
  72         // sort the lists into the buckets based on the MSB (contribution bits) 
  73         for (uint32_t i 
= 0; i 
< 2; i
++) { 
  74                 for (p1 
= start
[i
]; p1 
<= stop
[i
]; p1
++) { 
  75                         uint32_t bucket_index 
= (*p1 
& 0xff000000) >> 24; 
  76                         *(bucket
[i
][bucket_index
].bp
++) = *p1
; 
  81         // write back intersecting buckets as sorted list. 
  82         // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets. 
  83         uint32_t nonempty_bucket
; 
  84         for (uint32_t i 
= 0; i 
< 2; i
++) { 
  87                 for (uint32_t j 
= 0x00; j 
<= 0xff; j
++) { 
  88                         if (bucket
[0][j
].bp 
!= bucket
[0][j
].head 
&& bucket
[1][j
].bp 
!= bucket
[1][j
].head
) { // non-empty intersecting buckets only 
  89                                 bucket_info
->bucket_info
[i
][nonempty_bucket
].head 
= p1
; 
  90                                 for (p2 
= bucket
[i
][j
].head
; p2 
< bucket
[i
][j
].bp
; *p1
++ = *p2
++); 
  91                                 bucket_info
->bucket_info
[i
][nonempty_bucket
].tail 
= p1 
- 1; 
  95                 bucket_info
->numbuckets 
= nonempty_bucket
; 
 100  * Binary search for the first occurence of *stop's MSB in sorted [start,stop] 
 102 static inline uint32_t* 
 103 binsearch(uint32_t *start
, uint32_t *stop
) 
 105         uint32_t mid
, val 
= *stop 
& 0xff000000; 
 107                 if(start
[mid 
= (stop 
- start
) >> 1] > val
) 
 115 /** update_contribution 
 116  * helper, calculates the partial linear feedback contributions and puts in MSB 
 119 update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
) 
 121         uint32_t p 
= *item 
>> 25; 
 123         p 
= p 
<< 1 | parity(*item 
& mask1
); 
 124         p 
= p 
<< 1 | parity(*item 
& mask2
); 
 125         *item 
= p 
<< 24 | (*item 
& 0xffffff); 
 129  * using a bit of the keystream extend the table of possible lfsr states 
 132 extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
) 
 136         for(uint32_t *p 
= tbl
; p 
<= *end
; p
++) { 
 138                 if(filter(*p
) != filter(*p 
| 1)) {                              // replace 
 139                         *p 
|= filter(*p
) ^ bit
; 
 140                         update_contribution(p
, m1
, m2
); 
 142                 } else if(filter(*p
) == bit
) {                                  // insert 
 145                         update_contribution(p
, m1
, m2
); 
 147                         update_contribution(p
, m1
, m2
); 
 157 /** extend_table_simple 
 158  * using a bit of the keystream extend the table of possible lfsr states 
 161 extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
) 
 163         for(*tbl 
<<= 1; tbl 
<= *end
; *++tbl 
<<= 1) 
 164                 if(filter(*tbl
) ^ filter(*tbl 
| 1)) {   // replace 
 165                         *tbl 
|= filter(*tbl
) ^ bit
; 
 166                 } else if(filter(*tbl
) == bit
) {                // insert 
 175  * recursively narrow down the search space, 4 bits of keystream at a time 
 177 static struct Crypto1State
* 
 178 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
, 
 179         uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
, 
 180         struct Crypto1State 
*sl
, uint32_t in
, bucket_array_t bucket
) 
 183         bucket_info_t bucket_info
; 
 186                 for(e 
= e_head
; e 
<= e_tail
; ++e
) { 
 187                         *e 
= *e 
<< 1 ^ parity(*e 
& LF_POLY_EVEN
) ^ !!(in 
& 4); 
 188                         for(o 
= o_head
; o 
<= o_tail
; ++o
, ++sl
) { 
 190                                 sl
->odd 
= *e 
^ parity(*o 
& LF_POLY_ODD
); 
 193                 sl
->odd 
= sl
->even 
= 0; 
 197         for(uint32_t i 
= 0; i 
< 4 && rem
--; i
++) { 
 198                 extend_table(o_head
, &o_tail
, (oks 
>>= 1) & 1, 
 199                         LF_POLY_EVEN 
<< 1 | 1, LF_POLY_ODD 
<< 1, 0); 
 203                 extend_table(e_head
, &e_tail
, (eks 
>>= 1) & 1, 
 204                         LF_POLY_ODD
, LF_POLY_EVEN 
<< 1 | 1, (in 
>>= 2) & 3); 
 209         bucket_sort_intersect(e_head
, e_tail
, o_head
, o_tail
, &bucket_info
, bucket
); 
 211         for (int i 
= bucket_info
.numbuckets 
- 1; i 
>= 0; i
--) { 
 212                 sl 
= recover(bucket_info
.bucket_info
[1][i
].head
, bucket_info
.bucket_info
[1][i
].tail
, oks
, 
 213                                          bucket_info
.bucket_info
[0][i
].head
, bucket_info
.bucket_info
[0][i
].tail
, eks
, 
 214                                          rem
, sl
, in
, bucket
); 
 220  * recover the state of the lfsr given 32 bits of the keystream 
 221  * additionally you can use the in parameter to specify the value 
 222  * that was fed into the lfsr at the time the keystream was generated 
 224 struct Crypto1State
* lfsr_recovery32(uint32_t ks2
, uint32_t in
) 
 226         struct Crypto1State 
*statelist
; 
 227         uint32_t *odd_head 
= 0, *odd_tail 
= 0, oks 
= 0; 
 228         uint32_t *even_head 
= 0, *even_tail 
= 0, eks 
= 0; 
 231         // split the keystream into an odd and even part 
 232         for(i 
= 31; i 
>= 0; i 
-= 2) 
 233                 oks 
= oks 
<< 1 | BEBIT(ks2
, i
); 
 234         for(i 
= 30; i 
>= 0; i 
-= 2) 
 235                 eks 
= eks 
<< 1 | BEBIT(ks2
, i
); 
 237         odd_head 
= odd_tail 
= malloc(sizeof(uint32_t) << 21); 
 238         even_head 
= even_tail 
= malloc(sizeof(uint32_t) << 21); 
 239         statelist 
=  malloc(sizeof(struct Crypto1State
) << 18); 
 240         if(!odd_tail
-- || !even_tail
-- || !statelist
) { 
 243         statelist
->odd 
= statelist
->even 
= 0; 
 245         // allocate memory for out of place bucket_sort 
 246         bucket_array_t bucket
; 
 247         for (uint32_t i 
= 0; i 
< 2; i
++) 
 248                 for (uint32_t j 
= 0; j 
<= 0xff; j
++) { 
 249                         bucket
[i
][j
].head 
= malloc(sizeof(uint32_t)<<14); 
 250                         if (!bucket
[i
][j
].head
) { 
 256         // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream 
 257         for(i 
= 1 << 20; i 
>= 0; --i
) { 
 258                 if(filter(i
) == (oks 
& 1)) 
 260                 if(filter(i
) == (eks 
& 1)) 
 264         // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even): 
 265         for(i 
= 0; i 
< 4; i
++) { 
 266                 extend_table_simple(odd_head
,  &odd_tail
, (oks 
>>= 1) & 1); 
 267                 extend_table_simple(even_head
, &even_tail
, (eks 
>>= 1) & 1); 
 270         // the statelists now contain all states which could have generated the last 10 Bits of the keystream. 
 271         // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in" 
 272         // parameter into account. 
 274         in 
= (in 
>> 16 & 0xff) | (in 
<< 16) | (in 
& 0xff00);            // Byte swapping 
 276         recover(odd_head
, odd_tail
, oks
, 
 277                 even_head
, even_tail
, eks
, 11, statelist
, in 
<< 1, bucket
); 
 283         for (uint32_t i 
= 0; i 
< 2; i
++) 
 284                 for (uint32_t j 
= 0; j 
<= 0xff; j
++) 
 285                         free(bucket
[i
][j
].head
); 
 290 static const uint32_t S1
[] = {     0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214, 
 291         0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83, 
 292         0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA}; 
 293 static const uint32_t S2
[] = {  0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60, 
 294         0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8, 
 295         0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20, 
 296         0x7EC7EE90, 0x7F63F748, 0x79117020}; 
 297 static const uint32_t T1
[] = { 
 298         0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66, 
 299         0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B, 
 300         0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615, 
 301         0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C}; 
 302 static const uint32_t T2
[] = {  0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0, 
 303         0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268, 
 304         0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0, 
 305         0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0, 
 306         0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950, 
 307         0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0}; 
 308 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD}; 
 309 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0}; 
 310 /** Reverse 64 bits of keystream into possible cipher states 
 311  * Variation mentioned in the paper. Somewhat optimized version 
 313 struct Crypto1State
* lfsr_recovery64(uint32_t ks2
, uint32_t ks3
) 
 315         struct Crypto1State 
*statelist
, *sl
; 
 316         uint8_t oks
[32], eks
[32], hi
[32]; 
 317         uint32_t low 
= 0,  win 
= 0; 
 318         uint32_t *tail
, table
[1 << 16]; 
 321         sl 
= statelist 
= malloc(sizeof(struct Crypto1State
) << 4); 
 324         sl
->odd 
= sl
->even 
= 0; 
 326         for(i 
= 30; i 
>= 0; i 
-= 2) { 
 327                 oks
[i 
>> 1] = BIT(ks2
, i 
^ 24); 
 328                 oks
[16 + (i 
>> 1)] = BIT(ks3
, i 
^ 24); 
 330         for(i 
= 31; i 
>= 0; i 
-= 2) { 
 331                 eks
[i 
>> 1] = BIT(ks2
, i 
^ 24); 
 332                 eks
[16 + (i 
>> 1)] = BIT(ks3
, i 
^ 24); 
 335         for(i 
= 0xfffff; i 
>= 0; --i
) { 
 336                 if (filter(i
) != oks
[0]) 
 340                 for(j 
= 1; tail 
>= table 
&& j 
< 29; ++j
) 
 341                         extend_table_simple(table
, &tail
, oks
[j
]); 
 346                 for(j 
= 0; j 
< 19; ++j
) 
 347                         low 
= low 
<< 1 | parity(i 
& S1
[j
]); 
 348                 for(j 
= 0; j 
< 32; ++j
) 
 349                         hi
[j
] = parity(i 
& T1
[j
]); 
 351                 for(; tail 
>= table
; --tail
) { 
 352                         for(j 
= 0; j 
< 3; ++j
) { 
 354                                 *tail 
|= parity((i 
& C1
[j
]) ^ (*tail 
& C2
[j
])); 
 355                                 if(filter(*tail
) != oks
[29 + j
]) 
 359                         for(j 
= 0; j 
< 19; ++j
) 
 360                                 win 
= win 
<< 1 | parity(*tail 
& S2
[j
]); 
 363                         for(j 
= 0; j 
< 32; ++j
) { 
 364                                 win 
= win 
<< 1 ^ hi
[j
] ^ parity(*tail 
& T2
[j
]); 
 365                                 if(filter(win
) != eks
[j
]) 
 369                         *tail 
= *tail 
<< 1 | parity(LF_POLY_EVEN 
& *tail
); 
 370                         sl
->odd 
= *tail 
^ parity(LF_POLY_ODD 
& win
); 
 373                         sl
->odd 
= sl
->even 
= 0; 
 380 /** lfsr_rollback_bit 
 381  * Rollback the shift register in order to get previous states 
 383 void lfsr_rollback_bit(struct Crypto1State 
*s
, uint32_t in
, int fb
) 
 394         out 
^= LF_POLY_EVEN 
& (s
->even 
>>= 1); 
 395         out 
^= LF_POLY_ODD 
& s
->odd
; 
 397         out 
^= filter(s
->odd
) & !!fb
; 
 399         s
->even 
|= parity(out
) << 23; 
 401 /** lfsr_rollback_byte 
 402  * Rollback the shift register in order to get previous states 
 404 void lfsr_rollback_byte(struct Crypto1State 
*s
, uint32_t in
, int fb
) 
 407         for (i 
= 7; i 
>= 0; --i
) 
 408                 lfsr_rollback_bit(s
, BEBIT(in
, i
), fb
); 
 410 /** lfsr_rollback_word 
 411  * Rollback the shift register in order to get previous states 
 413 void lfsr_rollback_word(struct Crypto1State 
*s
, uint32_t in
, int fb
) 
 416         for (i 
= 31; i 
>= 0; --i
) 
 417                 lfsr_rollback_bit(s
, BEBIT(in
, i
), fb
); 
 421  * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y 
 423 static uint16_t *dist 
= 0; 
 424 int nonce_distance(uint32_t from
, uint32_t to
) 
 428                 dist 
= malloc(2 << 16); 
 431                 for (x 
= i 
= 1; i
; ++i
) { 
 432                         dist
[(x 
& 0xff) << 8 | x 
>> 8] = i
; 
 433                         x 
= x 
>> 1 | (x 
^ x 
>> 2 ^ x 
>> 3 ^ x 
>> 5) << 15; 
 436         return (65535 + dist
[to 
>> 16] - dist
[from 
>> 16]) % 65535; 
 440 static uint32_t fastfwd
[2][8] = { 
 441         { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB}, 
 442         { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}}; 
 447  * Is an exported helper function from the common prefix attack 
 448  * Described in the "dark side" paper. It returns an -1 terminated array 
 449  * of possible partial(21 bit) secret state. 
 450  * The required keystream(ks) needs to contain the keystream that was used to 
 451  * encrypt the NACK which is observed when varying only the 4 last bits of Nr 
 452  * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3 
 454 uint32_t *lfsr_prefix_ks(uint8_t ks
[8], int isodd
) 
 456         uint32_t *candidates 
= malloc(4 << 21); 
 463         size 
= (1 << 21) - 1; 
 464         for(i 
= 0; i 
<= size
; ++i
) 
 467         for(c 
= 0;  c 
< 8; ++c
) 
 468                 for(i 
= 0;i 
<= size
; ++i
) { 
 469                         entry 
= candidates
[i
] ^ fastfwd
[isodd
][c
]; 
 471                         if(filter(entry 
>> 1) == BIT(ks
[c
], isodd
)) 
 472                                 if(filter(entry
) == BIT(ks
[c
], isodd 
+ 2)) 
 475                         candidates
[i
--] = candidates
[size
--]; 
 478         candidates
[size 
+ 1] = -1; 
 484  * helper function which eliminates possible secret states using parity bits 
 486 static struct Crypto1State
* 
 487 brute_top(uint32_t prefix
, uint32_t rresp
, unsigned char parities
[8][8], 
 488                   uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
) 
 490         struct Crypto1State s
; 
 491         uint32_t ks1
, nr
, ks2
, rr
, ks3
, good
, c
; 
 494         for (int i 
= 0; i 
< 8; i
++) { 
 495                 for (int j 
= 0; j 
< 8; j
++) { 
 496                         if (parities
[i
][j
] != 0) { 
 503         for(c 
= 0; c 
< 8; ++c
) { 
 504                 s
.odd 
= odd 
^ fastfwd
[1][c
]; 
 505                 s
.even 
= even 
^ fastfwd
[0][c
]; 
 507                 lfsr_rollback_bit(&s
, 0, 0); 
 508                 lfsr_rollback_bit(&s
, 0, 0); 
 509                 lfsr_rollback_bit(&s
, 0, 0); 
 511                 lfsr_rollback_word(&s
, 0, 0); 
 512                 lfsr_rollback_word(&s
, prefix 
| c 
<< 5, 1); 
 520                 ks1 
= crypto1_word(&s
, prefix 
| c 
<< 5, 1); 
 521                 ks2 
= crypto1_word(&s
,0,0); 
 522                 ks3 
= crypto1_word(&s
, 0,0); 
 523                 nr 
= ks1 
^ (prefix 
| c 
<< 5); 
 527                 good 
&= parity(nr 
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24); 
 528                 good 
&= parity(rr 
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16); 
 529                 good 
&= parity(rr 
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
,  8); 
 530                 good 
&= parity(rr 
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
,  0); 
 531                 good 
&= parity(rr 
& 0x000000ff) ^ parities
[c
][7] ^ BIT(ks3
, 24); 
 541 /** lfsr_common_prefix 
 542  * Implentation of the common prefix attack. 
 543  * Requires the 28 bit constant prefix used as reader nonce (pfx) 
 544  * The reader response used (rr) 
 545  * The keystream used to encrypt the observed NACK's (ks) 
 546  * The parity bits (par) 
 547  * It returns a zero terminated list of possible cipher states after the 
 548  * tag nonce was fed in 
 551 lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8]) 
 553         struct Crypto1State 
*statelist
, *s
; 
 554         uint32_t *odd
, *even
, *o
, *e
, top
; 
 556         odd 
= lfsr_prefix_ks(ks
, 1); 
 557         even 
= lfsr_prefix_ks(ks
, 0); 
 559         statelist 
= malloc((sizeof *statelist
) << 21);  //how large should be? 
 560         if(!statelist 
|| !odd 
|| !even
) 
 569         for(o 
= odd
; *o 
!= -1; ++o
) 
 570                 for(e 
= even
; *e 
!= -1; ++e
) 
 571                         for(top 
= 0; top 
< 64; ++top
) { 
 572                                 *o 
= (*o 
& 0x1fffff) | (top 
<< 21); 
 573                                 *e 
= (*e 
& 0x1fffff) | (top 
>> 3) << 21; 
 574                                 s 
= brute_top(pfx
, rr
, par
, *o
, *e
, s
); 
 577         s
->odd 
= s
->even 
= -1; 
 578         //printf("state count = %d\n",s-statelist);