3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
18 Copyright (C) 2008-2008 bla <blapost@gmail.com>
24 #if !defined LOWMEM && defined __GNUC__
25 static uint8_t filterlut
[1 << 20];
26 static void __attribute__((constructor
)) fill_lut()
29 for(i
= 0; i
< 1 << 20; ++i
)
30 filterlut
[i
] = filter(i
);
32 #define filter(x) (filterlut[(x) & 0xfffff])
37 typedef struct bucket
{
42 typedef bucket_t bucket_array_t
[2][0x100];
44 typedef struct bucket_info
{
46 uint32_t *head
, *tail
;
47 } bucket_info
[2][0x100];
52 static void bucket_sort_intersect(uint32_t* const estart
, uint32_t* const estop
,
53 uint32_t* const ostart
, uint32_t* const ostop
,
54 bucket_info_t
*bucket_info
, bucket_array_t bucket
)
65 // init buckets to be empty
66 for (uint32_t i
= 0; i
< 2; i
++) {
67 for (uint32_t j
= 0x00; j
<= 0xff; j
++) {
68 bucket
[i
][j
].bp
= bucket
[i
][j
].head
;
72 // sort the lists into the buckets based on the MSB (contribution bits)
73 for (uint32_t i
= 0; i
< 2; i
++) {
74 for (p1
= start
[i
]; p1
<= stop
[i
]; p1
++) {
75 uint32_t bucket_index
= (*p1
& 0xff000000) >> 24;
76 *(bucket
[i
][bucket_index
].bp
++) = *p1
;
81 // write back intersecting buckets as sorted list.
82 // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
83 uint32_t nonempty_bucket
;
84 for (uint32_t i
= 0; i
< 2; i
++) {
87 for (uint32_t j
= 0x00; j
<= 0xff; j
++) {
88 if (bucket
[0][j
].bp
!= bucket
[0][j
].head
&& bucket
[1][j
].bp
!= bucket
[1][j
].head
) { // non-empty intersecting buckets only
89 bucket_info
->bucket_info
[i
][nonempty_bucket
].head
= p1
;
90 for (p2
= bucket
[i
][j
].head
; p2
< bucket
[i
][j
].bp
; *p1
++ = *p2
++);
91 bucket_info
->bucket_info
[i
][nonempty_bucket
].tail
= p1
- 1;
95 bucket_info
->numbuckets
= nonempty_bucket
;
100 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
102 static inline uint32_t*
103 binsearch(uint32_t *start
, uint32_t *stop
)
105 uint32_t mid
, val
= *stop
& 0xff000000;
107 if(start
[mid
= (stop
- start
) >> 1] > val
)
115 /** update_contribution
116 * helper, calculates the partial linear feedback contributions and puts in MSB
119 update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
)
121 uint32_t p
= *item
>> 25;
123 p
= p
<< 1 | parity(*item
& mask1
);
124 p
= p
<< 1 | parity(*item
& mask2
);
125 *item
= p
<< 24 | (*item
& 0xffffff);
129 * using a bit of the keystream extend the table of possible lfsr states
132 extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
)
136 for(uint32_t *p
= tbl
; p
<= *end
; p
++) {
138 if(filter(*p
) != filter(*p
| 1)) { // replace
139 *p
|= filter(*p
) ^ bit
;
140 update_contribution(p
, m1
, m2
);
142 } else if(filter(*p
) == bit
) { // insert
145 update_contribution(p
, m1
, m2
);
147 update_contribution(p
, m1
, m2
);
157 /** extend_table_simple
158 * using a bit of the keystream extend the table of possible lfsr states
161 extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
)
163 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
164 if(filter(*tbl
) ^ filter(*tbl
| 1)) { // replace
165 *tbl
|= filter(*tbl
) ^ bit
;
166 } else if(filter(*tbl
) == bit
) { // insert
175 * recursively narrow down the search space, 4 bits of keystream at a time
177 static struct Crypto1State
*
178 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
,
179 uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
,
180 struct Crypto1State
*sl
, uint32_t in
, bucket_array_t bucket
)
183 bucket_info_t bucket_info
;
186 for(e
= e_head
; e
<= e_tail
; ++e
) {
187 *e
= *e
<< 1 ^ parity(*e
& LF_POLY_EVEN
) ^ !!(in
& 4);
188 for(o
= o_head
; o
<= o_tail
; ++o
, ++sl
) {
190 sl
->odd
= *e
^ parity(*o
& LF_POLY_ODD
);
193 sl
->odd
= sl
->even
= 0;
197 for(uint32_t i
= 0; i
< 4 && rem
--; i
++) {
198 extend_table(o_head
, &o_tail
, (oks
>>= 1) & 1,
199 LF_POLY_EVEN
<< 1 | 1, LF_POLY_ODD
<< 1, 0);
203 extend_table(e_head
, &e_tail
, (eks
>>= 1) & 1,
204 LF_POLY_ODD
, LF_POLY_EVEN
<< 1 | 1, (in
>>= 2) & 3);
209 bucket_sort_intersect(e_head
, e_tail
, o_head
, o_tail
, &bucket_info
, bucket
);
211 for (int i
= bucket_info
.numbuckets
- 1; i
>= 0; i
--) {
212 sl
= recover(bucket_info
.bucket_info
[1][i
].head
, bucket_info
.bucket_info
[1][i
].tail
, oks
,
213 bucket_info
.bucket_info
[0][i
].head
, bucket_info
.bucket_info
[0][i
].tail
, eks
,
214 rem
, sl
, in
, bucket
);
220 * recover the state of the lfsr given 32 bits of the keystream
221 * additionally you can use the in parameter to specify the value
222 * that was fed into the lfsr at the time the keystream was generated
224 struct Crypto1State
* lfsr_recovery32(uint32_t ks2
, uint32_t in
)
226 struct Crypto1State
*statelist
;
227 uint32_t *odd_head
= 0, *odd_tail
= 0, oks
= 0;
228 uint32_t *even_head
= 0, *even_tail
= 0, eks
= 0;
231 // split the keystream into an odd and even part
232 for(i
= 31; i
>= 0; i
-= 2)
233 oks
= oks
<< 1 | BEBIT(ks2
, i
);
234 for(i
= 30; i
>= 0; i
-= 2)
235 eks
= eks
<< 1 | BEBIT(ks2
, i
);
237 odd_head
= odd_tail
= malloc(sizeof(uint32_t) << 21);
238 even_head
= even_tail
= malloc(sizeof(uint32_t) << 21);
239 statelist
= malloc(sizeof(struct Crypto1State
) << 18);
240 if(!odd_tail
-- || !even_tail
-- || !statelist
) {
243 statelist
->odd
= statelist
->even
= 0;
245 // allocate memory for out of place bucket_sort
246 bucket_array_t bucket
;
247 for (uint32_t i
= 0; i
< 2; i
++)
248 for (uint32_t j
= 0; j
<= 0xff; j
++) {
249 bucket
[i
][j
].head
= malloc(sizeof(uint32_t)<<14);
250 if (!bucket
[i
][j
].head
) {
256 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
257 for(i
= 1 << 20; i
>= 0; --i
) {
258 if(filter(i
) == (oks
& 1))
260 if(filter(i
) == (eks
& 1))
264 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
265 for(i
= 0; i
< 4; i
++) {
266 extend_table_simple(odd_head
, &odd_tail
, (oks
>>= 1) & 1);
267 extend_table_simple(even_head
, &even_tail
, (eks
>>= 1) & 1);
270 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
271 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
272 // parameter into account.
274 in
= (in
>> 16 & 0xff) | (in
<< 16) | (in
& 0xff00); // Byte swapping
276 recover(odd_head
, odd_tail
, oks
,
277 even_head
, even_tail
, eks
, 11, statelist
, in
<< 1, bucket
);
283 for (uint32_t i
= 0; i
< 2; i
++)
284 for (uint32_t j
= 0; j
<= 0xff; j
++)
285 free(bucket
[i
][j
].head
);
290 static const uint32_t S1
[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
291 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
292 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
293 static const uint32_t S2
[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
294 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
295 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
296 0x7EC7EE90, 0x7F63F748, 0x79117020};
297 static const uint32_t T1
[] = {
298 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
299 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
300 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
301 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
302 static const uint32_t T2
[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
303 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
304 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
305 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
306 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
307 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
308 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD};
309 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
310 /** Reverse 64 bits of keystream into possible cipher states
311 * Variation mentioned in the paper. Somewhat optimized version
313 struct Crypto1State
* lfsr_recovery64(uint32_t ks2
, uint32_t ks3
)
315 struct Crypto1State
*statelist
, *sl
;
316 uint8_t oks
[32], eks
[32], hi
[32];
317 uint32_t low
= 0, win
= 0;
318 uint32_t *tail
, table
[1 << 16];
321 sl
= statelist
= malloc(sizeof(struct Crypto1State
) << 4);
324 sl
->odd
= sl
->even
= 0;
326 for(i
= 30; i
>= 0; i
-= 2) {
327 oks
[i
>> 1] = BIT(ks2
, i
^ 24);
328 oks
[16 + (i
>> 1)] = BIT(ks3
, i
^ 24);
330 for(i
= 31; i
>= 0; i
-= 2) {
331 eks
[i
>> 1] = BIT(ks2
, i
^ 24);
332 eks
[16 + (i
>> 1)] = BIT(ks3
, i
^ 24);
335 for(i
= 0xfffff; i
>= 0; --i
) {
336 if (filter(i
) != oks
[0])
340 for(j
= 1; tail
>= table
&& j
< 29; ++j
)
341 extend_table_simple(table
, &tail
, oks
[j
]);
346 for(j
= 0; j
< 19; ++j
)
347 low
= low
<< 1 | parity(i
& S1
[j
]);
348 for(j
= 0; j
< 32; ++j
)
349 hi
[j
] = parity(i
& T1
[j
]);
351 for(; tail
>= table
; --tail
) {
352 for(j
= 0; j
< 3; ++j
) {
354 *tail
|= parity((i
& C1
[j
]) ^ (*tail
& C2
[j
]));
355 if(filter(*tail
) != oks
[29 + j
])
359 for(j
= 0; j
< 19; ++j
)
360 win
= win
<< 1 | parity(*tail
& S2
[j
]);
363 for(j
= 0; j
< 32; ++j
) {
364 win
= win
<< 1 ^ hi
[j
] ^ parity(*tail
& T2
[j
]);
365 if(filter(win
) != eks
[j
])
369 *tail
= *tail
<< 1 | parity(LF_POLY_EVEN
& *tail
);
370 sl
->odd
= *tail
^ parity(LF_POLY_ODD
& win
);
373 sl
->odd
= sl
->even
= 0;
380 /** lfsr_rollback_bit
381 * Rollback the shift register in order to get previous states
383 void lfsr_rollback_bit(struct Crypto1State
*s
, uint32_t in
, int fb
)
394 out
^= LF_POLY_EVEN
& (s
->even
>>= 1);
395 out
^= LF_POLY_ODD
& s
->odd
;
397 out
^= filter(s
->odd
) & !!fb
;
399 s
->even
|= parity(out
) << 23;
401 /** lfsr_rollback_byte
402 * Rollback the shift register in order to get previous states
404 void lfsr_rollback_byte(struct Crypto1State
*s
, uint32_t in
, int fb
)
407 for (i
= 7; i
>= 0; --i
)
408 lfsr_rollback_bit(s
, BEBIT(in
, i
), fb
);
410 /** lfsr_rollback_word
411 * Rollback the shift register in order to get previous states
413 void lfsr_rollback_word(struct Crypto1State
*s
, uint32_t in
, int fb
)
416 for (i
= 31; i
>= 0; --i
)
417 lfsr_rollback_bit(s
, BEBIT(in
, i
), fb
);
421 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
423 static uint16_t *dist
= 0;
424 int nonce_distance(uint32_t from
, uint32_t to
)
428 dist
= malloc(2 << 16);
431 for (x
= i
= 1; i
; ++i
) {
432 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
433 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
436 return (65535 + dist
[to
>> 16] - dist
[from
>> 16]) % 65535;
440 static uint32_t fastfwd
[2][8] = {
441 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
442 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
447 * Is an exported helper function from the common prefix attack
448 * Described in the "dark side" paper. It returns an -1 terminated array
449 * of possible partial(21 bit) secret state.
450 * The required keystream(ks) needs to contain the keystream that was used to
451 * encrypt the NACK which is observed when varying only the 4 last bits of Nr
452 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
454 uint32_t *lfsr_prefix_ks(uint8_t ks
[8], int isodd
)
456 uint32_t *candidates
= malloc(4 << 21);
463 size
= (1 << 21) - 1;
464 for(i
= 0; i
<= size
; ++i
)
467 for(c
= 0; c
< 8; ++c
)
468 for(i
= 0;i
<= size
; ++i
) {
469 entry
= candidates
[i
] ^ fastfwd
[isodd
][c
];
471 if(filter(entry
>> 1) == BIT(ks
[c
], isodd
))
472 if(filter(entry
) == BIT(ks
[c
], isodd
+ 2))
475 candidates
[i
--] = candidates
[size
--];
478 candidates
[size
+ 1] = -1;
484 * helper function which eliminates possible secret states using parity bits
486 static struct Crypto1State
*
487 brute_top(uint32_t prefix
, uint32_t rresp
, unsigned char parities
[8][8],
488 uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
)
490 struct Crypto1State s
;
491 uint32_t ks1
, nr
, ks2
, rr
, ks3
, good
, c
;
494 for (int i
= 0; i
< 8; i
++) {
495 for (int j
= 0; j
< 8; j
++) {
496 if (parities
[i
][j
] != 0) {
503 for(c
= 0; c
< 8; ++c
) {
504 s
.odd
= odd
^ fastfwd
[1][c
];
505 s
.even
= even
^ fastfwd
[0][c
];
507 lfsr_rollback_bit(&s
, 0, 0);
508 lfsr_rollback_bit(&s
, 0, 0);
509 lfsr_rollback_bit(&s
, 0, 0);
511 lfsr_rollback_word(&s
, 0, 0);
512 lfsr_rollback_word(&s
, prefix
| c
<< 5, 1);
520 ks1
= crypto1_word(&s
, prefix
| c
<< 5, 1);
521 ks2
= crypto1_word(&s
,0,0);
522 ks3
= crypto1_word(&s
, 0,0);
523 nr
= ks1
^ (prefix
| c
<< 5);
527 good
&= parity(nr
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24);
528 good
&= parity(rr
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16);
529 good
&= parity(rr
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
, 8);
530 good
&= parity(rr
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
, 0);
531 good
&= parity(rr
& 0x000000ff) ^ parities
[c
][7] ^ BIT(ks3
, 24);
541 /** lfsr_common_prefix
542 * Implentation of the common prefix attack.
543 * Requires the 28 bit constant prefix used as reader nonce (pfx)
544 * The reader response used (rr)
545 * The keystream used to encrypt the observed NACK's (ks)
546 * The parity bits (par)
547 * It returns a zero terminated list of possible cipher states after the
548 * tag nonce was fed in
551 lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8])
553 struct Crypto1State
*statelist
, *s
;
554 uint32_t *odd
, *even
, *o
, *e
, top
;
556 odd
= lfsr_prefix_ks(ks
, 1);
557 even
= lfsr_prefix_ks(ks
, 0);
559 statelist
= malloc((sizeof *statelist
) << 21); //how large should be?
560 if(!statelist
|| !odd
|| !even
)
569 for(o
= odd
; *o
!= -1; ++o
)
570 for(e
= even
; *e
!= -1; ++e
)
571 for(top
= 0; top
< 64; ++top
) {
572 *o
= (*o
& 0x1fffff) | (top
<< 21);
573 *e
= (*e
& 0x1fffff) | (top
>> 3) << 21;
574 s
= brute_top(pfx
, rr
, par
, *o
, *e
, s
);
577 s
->odd
= s
->even
= -1;
578 //printf("state count = %d\n",s-statelist);