]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, Mar 2006 | |
3 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
4 | // | |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
6 | // at your option, any later version. See the LICENSE.txt file for the text of | |
7 | // the license. | |
8 | //----------------------------------------------------------------------------- | |
9 | // The main application code. This is the first thing called after start.c | |
10 | // executes. | |
11 | //----------------------------------------------------------------------------- | |
12 | ||
13 | #include "usb_cdc.h" | |
14 | #include "cmd.h" | |
15 | ||
16 | #include "proxmark3.h" | |
17 | #include "apps.h" | |
18 | #include "util.h" | |
19 | #include "printf.h" | |
20 | #include "string.h" | |
21 | ||
22 | #include <stdarg.h> | |
23 | ||
24 | #include "legicrf.h" | |
25 | #include <hitag2.h> | |
26 | ||
27 | #ifdef WITH_LCD | |
28 | #include "LCD.h" | |
29 | #endif | |
30 | ||
31 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
32 | ||
33 | //============================================================================= | |
34 | // A buffer where we can queue things up to be sent through the FPGA, for | |
35 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
36 | // is the order in which they go out on the wire. | |
37 | //============================================================================= | |
38 | ||
39 | uint8_t ToSend[512]; | |
40 | int ToSendMax; | |
41 | static int ToSendBit; | |
42 | struct common_area common_area __attribute__((section(".commonarea"))); | |
43 | ||
44 | void BufferClear(void) | |
45 | { | |
46 | memset(BigBuf,0,sizeof(BigBuf)); | |
47 | Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf)); | |
48 | } | |
49 | ||
50 | void ToSendReset(void) | |
51 | { | |
52 | ToSendMax = -1; | |
53 | ToSendBit = 8; | |
54 | } | |
55 | ||
56 | void ToSendStuffBit(int b) | |
57 | { | |
58 | if(ToSendBit >= 8) { | |
59 | ToSendMax++; | |
60 | ToSend[ToSendMax] = 0; | |
61 | ToSendBit = 0; | |
62 | } | |
63 | ||
64 | if(b) { | |
65 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
66 | } | |
67 | ||
68 | ToSendBit++; | |
69 | ||
70 | if(ToSendBit >= sizeof(ToSend)) { | |
71 | ToSendBit = 0; | |
72 | DbpString("ToSendStuffBit overflowed!"); | |
73 | } | |
74 | } | |
75 | ||
76 | //============================================================================= | |
77 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
78 | //============================================================================= | |
79 | ||
80 | void DbpString(char *str) | |
81 | { | |
82 | cmd_send(CMD_DEBUG_PRINT_STRING,strlen(str),0,0,(byte_t*)str,strlen(str)); | |
83 | // /* this holds up stuff unless we're connected to usb */ | |
84 | // if (!UsbConnected()) | |
85 | // return; | |
86 | // | |
87 | // UsbCommand c; | |
88 | // c.cmd = CMD_DEBUG_PRINT_STRING; | |
89 | // c.arg[0] = strlen(str); | |
90 | // if(c.arg[0] > sizeof(c.d.asBytes)) { | |
91 | // c.arg[0] = sizeof(c.d.asBytes); | |
92 | // } | |
93 | // memcpy(c.d.asBytes, str, c.arg[0]); | |
94 | // | |
95 | // UsbSendPacket((uint8_t *)&c, sizeof(c)); | |
96 | // // TODO fix USB so stupid things like this aren't req'd | |
97 | // SpinDelay(50); | |
98 | } | |
99 | ||
100 | #if 0 | |
101 | void DbpIntegers(int x1, int x2, int x3) | |
102 | { | |
103 | cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0); | |
104 | // /* this holds up stuff unless we're connected to usb */ | |
105 | // if (!UsbConnected()) | |
106 | // return; | |
107 | // | |
108 | // UsbCommand c; | |
109 | // c.cmd = CMD_DEBUG_PRINT_INTEGERS; | |
110 | // c.arg[0] = x1; | |
111 | // c.arg[1] = x2; | |
112 | // c.arg[2] = x3; | |
113 | // | |
114 | // UsbSendPacket((uint8_t *)&c, sizeof(c)); | |
115 | // // XXX | |
116 | // SpinDelay(50); | |
117 | } | |
118 | #endif | |
119 | ||
120 | void Dbprintf(const char *fmt, ...) { | |
121 | // should probably limit size here; oh well, let's just use a big buffer | |
122 | char output_string[128]; | |
123 | va_list ap; | |
124 | ||
125 | va_start(ap, fmt); | |
126 | kvsprintf(fmt, output_string, 10, ap); | |
127 | va_end(ap); | |
128 | ||
129 | DbpString(output_string); | |
130 | } | |
131 | ||
132 | // prints HEX & ASCII | |
133 | void Dbhexdump(int len, uint8_t *d, bool bAsci) { | |
134 | int l=0,i; | |
135 | char ascii[9]; | |
136 | ||
137 | while (len>0) { | |
138 | if (len>8) l=8; | |
139 | else l=len; | |
140 | ||
141 | memcpy(ascii,d,l); | |
142 | ascii[l]=0; | |
143 | ||
144 | // filter safe ascii | |
145 | for (i=0;i<l;i++) | |
146 | if (ascii[i]<32 || ascii[i]>126) ascii[i]='.'; | |
147 | ||
148 | if (bAsci) { | |
149 | Dbprintf("%-8s %*D",ascii,l,d," "); | |
150 | } else { | |
151 | Dbprintf("%*D",l,d," "); | |
152 | } | |
153 | ||
154 | len-=8; | |
155 | d+=8; | |
156 | } | |
157 | } | |
158 | ||
159 | //----------------------------------------------------------------------------- | |
160 | // Read an ADC channel and block till it completes, then return the result | |
161 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
162 | // return that. | |
163 | //----------------------------------------------------------------------------- | |
164 | static int ReadAdc(int ch) | |
165 | { | |
166 | uint32_t d; | |
167 | ||
168 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
169 | AT91C_BASE_ADC->ADC_MR = | |
170 | ADC_MODE_PRESCALE(32) | | |
171 | ADC_MODE_STARTUP_TIME(16) | | |
172 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
173 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); | |
174 | ||
175 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
176 | while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) | |
177 | ; | |
178 | d = AT91C_BASE_ADC->ADC_CDR[ch]; | |
179 | ||
180 | return d; | |
181 | } | |
182 | ||
183 | int AvgAdc(int ch) // was static - merlok | |
184 | { | |
185 | int i; | |
186 | int a = 0; | |
187 | ||
188 | for(i = 0; i < 32; i++) { | |
189 | a += ReadAdc(ch); | |
190 | } | |
191 | ||
192 | return (a + 15) >> 5; | |
193 | } | |
194 | ||
195 | void MeasureAntennaTuning(void) | |
196 | { | |
197 | uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET; | |
198 | int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0 | |
199 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV | |
200 | ||
201 | // UsbCommand c; | |
202 | ||
203 | LED_B_ON(); | |
204 | DbpString("Measuring antenna characteristics, please wait..."); | |
205 | memset(dest,0,sizeof(FREE_BUFFER_SIZE)); | |
206 | ||
207 | /* | |
208 | * Sweeps the useful LF range of the proxmark from | |
209 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
210 | * read the voltage in the antenna, the result left | |
211 | * in the buffer is a graph which should clearly show | |
212 | * the resonating frequency of your LF antenna | |
213 | * ( hopefully around 95 if it is tuned to 125kHz!) | |
214 | */ | |
215 | ||
216 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
217 | for (i=255; i>19; i--) { | |
218 | WDT_HIT(); | |
219 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
220 | SpinDelay(20); | |
221 | // Vref = 3.3V, and a 10000:240 voltage divider on the input | |
222 | // can measure voltages up to 137500 mV | |
223 | adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10); | |
224 | if (i==95) vLf125 = adcval; // voltage at 125Khz | |
225 | if (i==89) vLf134 = adcval; // voltage at 134Khz | |
226 | ||
227 | dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes | |
228 | if(dest[i] > peak) { | |
229 | peakv = adcval; | |
230 | peak = dest[i]; | |
231 | peakf = i; | |
232 | //ptr = i; | |
233 | } | |
234 | } | |
235 | ||
236 | LED_A_ON(); | |
237 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
238 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
239 | SpinDelay(20); | |
240 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
241 | // can measure voltages up to 33000 mV | |
242 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
243 | ||
244 | // c.cmd = CMD_MEASURED_ANTENNA_TUNING; | |
245 | // c.arg[0] = (vLf125 << 0) | (vLf134 << 16); | |
246 | // c.arg[1] = vHf; | |
247 | // c.arg[2] = peakf | (peakv << 16); | |
248 | ||
249 | DbpString("Measuring complete, sending report back to host"); | |
250 | cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0); | |
251 | // UsbSendPacket((uint8_t *)&c, sizeof(c)); | |
252 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
253 | LED_A_OFF(); | |
254 | LED_B_OFF(); | |
255 | return; | |
256 | } | |
257 | ||
258 | void MeasureAntennaTuningHf(void) | |
259 | { | |
260 | int vHf = 0; // in mV | |
261 | ||
262 | DbpString("Measuring HF antenna, press button to exit"); | |
263 | ||
264 | for (;;) { | |
265 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
266 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
267 | SpinDelay(20); | |
268 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
269 | // can measure voltages up to 33000 mV | |
270 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
271 | ||
272 | Dbprintf("%d mV",vHf); | |
273 | if (BUTTON_PRESS()) break; | |
274 | } | |
275 | DbpString("cancelled"); | |
276 | } | |
277 | ||
278 | ||
279 | void SimulateTagHfListen(void) | |
280 | { | |
281 | uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET; | |
282 | uint8_t v = 0; | |
283 | int i; | |
284 | int p = 0; | |
285 | ||
286 | // We're using this mode just so that I can test it out; the simulated | |
287 | // tag mode would work just as well and be simpler. | |
288 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
289 | ||
290 | // We need to listen to the high-frequency, peak-detected path. | |
291 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
292 | ||
293 | FpgaSetupSsc(); | |
294 | ||
295 | i = 0; | |
296 | for(;;) { | |
297 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
298 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
299 | } | |
300 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
301 | uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
302 | ||
303 | v <<= 1; | |
304 | if(r & 1) { | |
305 | v |= 1; | |
306 | } | |
307 | p++; | |
308 | ||
309 | if(p >= 8) { | |
310 | dest[i] = v; | |
311 | v = 0; | |
312 | p = 0; | |
313 | i++; | |
314 | ||
315 | if(i >= FREE_BUFFER_SIZE) { | |
316 | break; | |
317 | } | |
318 | } | |
319 | } | |
320 | } | |
321 | DbpString("simulate tag (now type bitsamples)"); | |
322 | } | |
323 | ||
324 | void ReadMem(int addr) | |
325 | { | |
326 | const uint8_t *data = ((uint8_t *)addr); | |
327 | ||
328 | Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
329 | addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); | |
330 | } | |
331 | ||
332 | /* osimage version information is linked in */ | |
333 | extern struct version_information version_information; | |
334 | /* bootrom version information is pointed to from _bootphase1_version_pointer */ | |
335 | extern char *_bootphase1_version_pointer, _flash_start, _flash_end; | |
336 | void SendVersion(void) | |
337 | { | |
338 | char temp[48]; /* Limited data payload in USB packets */ | |
339 | DbpString("Prox/RFID mark3 RFID instrument"); | |
340 | ||
341 | /* Try to find the bootrom version information. Expect to find a pointer at | |
342 | * symbol _bootphase1_version_pointer, perform slight sanity checks on the | |
343 | * pointer, then use it. | |
344 | */ | |
345 | char *bootrom_version = *(char**)&_bootphase1_version_pointer; | |
346 | if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { | |
347 | DbpString("bootrom version information appears invalid"); | |
348 | } else { | |
349 | FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); | |
350 | DbpString(temp); | |
351 | } | |
352 | ||
353 | FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); | |
354 | DbpString(temp); | |
355 | ||
356 | FpgaGatherVersion(temp, sizeof(temp)); | |
357 | DbpString(temp); | |
358 | } | |
359 | ||
360 | #ifdef WITH_LF | |
361 | // samy's sniff and repeat routine | |
362 | void SamyRun() | |
363 | { | |
364 | DbpString("Stand-alone mode! No PC necessary."); | |
365 | ||
366 | // 3 possible options? no just 2 for now | |
367 | #define OPTS 2 | |
368 | ||
369 | int high[OPTS], low[OPTS]; | |
370 | ||
371 | // Oooh pretty -- notify user we're in elite samy mode now | |
372 | LED(LED_RED, 200); | |
373 | LED(LED_ORANGE, 200); | |
374 | LED(LED_GREEN, 200); | |
375 | LED(LED_ORANGE, 200); | |
376 | LED(LED_RED, 200); | |
377 | LED(LED_ORANGE, 200); | |
378 | LED(LED_GREEN, 200); | |
379 | LED(LED_ORANGE, 200); | |
380 | LED(LED_RED, 200); | |
381 | ||
382 | int selected = 0; | |
383 | int playing = 0; | |
384 | ||
385 | // Turn on selected LED | |
386 | LED(selected + 1, 0); | |
387 | ||
388 | for (;;) | |
389 | { | |
390 | // UsbPoll(FALSE); | |
391 | usb_poll(); | |
392 | WDT_HIT(); | |
393 | ||
394 | // Was our button held down or pressed? | |
395 | int button_pressed = BUTTON_HELD(1000); | |
396 | SpinDelay(300); | |
397 | ||
398 | // Button was held for a second, begin recording | |
399 | if (button_pressed > 0) | |
400 | { | |
401 | LEDsoff(); | |
402 | LED(selected + 1, 0); | |
403 | LED(LED_RED2, 0); | |
404 | ||
405 | // record | |
406 | DbpString("Starting recording"); | |
407 | ||
408 | // wait for button to be released | |
409 | while(BUTTON_PRESS()) | |
410 | WDT_HIT(); | |
411 | ||
412 | /* need this delay to prevent catching some weird data */ | |
413 | SpinDelay(500); | |
414 | ||
415 | CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); | |
416 | Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]); | |
417 | ||
418 | LEDsoff(); | |
419 | LED(selected + 1, 0); | |
420 | // Finished recording | |
421 | ||
422 | // If we were previously playing, set playing off | |
423 | // so next button push begins playing what we recorded | |
424 | playing = 0; | |
425 | } | |
426 | ||
427 | // Change where to record (or begin playing) | |
428 | else if (button_pressed) | |
429 | { | |
430 | // Next option if we were previously playing | |
431 | if (playing) | |
432 | selected = (selected + 1) % OPTS; | |
433 | playing = !playing; | |
434 | ||
435 | LEDsoff(); | |
436 | LED(selected + 1, 0); | |
437 | ||
438 | // Begin transmitting | |
439 | if (playing) | |
440 | { | |
441 | LED(LED_GREEN, 0); | |
442 | DbpString("Playing"); | |
443 | // wait for button to be released | |
444 | while(BUTTON_PRESS()) | |
445 | WDT_HIT(); | |
446 | Dbprintf("%x %x %x", selected, high[selected], low[selected]); | |
447 | CmdHIDsimTAG(high[selected], low[selected], 0); | |
448 | DbpString("Done playing"); | |
449 | if (BUTTON_HELD(1000) > 0) | |
450 | { | |
451 | DbpString("Exiting"); | |
452 | LEDsoff(); | |
453 | return; | |
454 | } | |
455 | ||
456 | /* We pressed a button so ignore it here with a delay */ | |
457 | SpinDelay(300); | |
458 | ||
459 | // when done, we're done playing, move to next option | |
460 | selected = (selected + 1) % OPTS; | |
461 | playing = !playing; | |
462 | LEDsoff(); | |
463 | LED(selected + 1, 0); | |
464 | } | |
465 | else | |
466 | while(BUTTON_PRESS()) | |
467 | WDT_HIT(); | |
468 | } | |
469 | } | |
470 | } | |
471 | #endif | |
472 | ||
473 | /* | |
474 | OBJECTIVE | |
475 | Listen and detect an external reader. Determine the best location | |
476 | for the antenna. | |
477 | ||
478 | INSTRUCTIONS: | |
479 | Inside the ListenReaderField() function, there is two mode. | |
480 | By default, when you call the function, you will enter mode 1. | |
481 | If you press the PM3 button one time, you will enter mode 2. | |
482 | If you press the PM3 button a second time, you will exit the function. | |
483 | ||
484 | DESCRIPTION OF MODE 1: | |
485 | This mode just listens for an external reader field and lights up green | |
486 | for HF and/or red for LF. This is the original mode of the detectreader | |
487 | function. | |
488 | ||
489 | DESCRIPTION OF MODE 2: | |
490 | This mode will visually represent, using the LEDs, the actual strength of the | |
491 | current compared to the maximum current detected. Basically, once you know | |
492 | what kind of external reader is present, it will help you spot the best location to place | |
493 | your antenna. You will probably not get some good results if there is a LF and a HF reader | |
494 | at the same place! :-) | |
495 | ||
496 | LIGHT SCHEME USED: | |
497 | */ | |
498 | static const char LIGHT_SCHEME[] = { | |
499 | 0x0, /* ---- | No field detected */ | |
500 | 0x1, /* X--- | 14% of maximum current detected */ | |
501 | 0x2, /* -X-- | 29% of maximum current detected */ | |
502 | 0x4, /* --X- | 43% of maximum current detected */ | |
503 | 0x8, /* ---X | 57% of maximum current detected */ | |
504 | 0xC, /* --XX | 71% of maximum current detected */ | |
505 | 0xE, /* -XXX | 86% of maximum current detected */ | |
506 | 0xF, /* XXXX | 100% of maximum current detected */ | |
507 | }; | |
508 | static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); | |
509 | ||
510 | void ListenReaderField(int limit) | |
511 | { | |
512 | int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max; | |
513 | int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max; | |
514 | int mode=1, display_val, display_max, i; | |
515 | ||
516 | #define LF_ONLY 1 | |
517 | #define HF_ONLY 2 | |
518 | ||
519 | LEDsoff(); | |
520 | ||
521 | lf_av=lf_max=ReadAdc(ADC_CHAN_LF); | |
522 | ||
523 | if(limit != HF_ONLY) { | |
524 | Dbprintf("LF 125/134 Baseline: %d", lf_av); | |
525 | lf_baseline = lf_av; | |
526 | } | |
527 | ||
528 | hf_av=hf_max=ReadAdc(ADC_CHAN_HF); | |
529 | ||
530 | if (limit != LF_ONLY) { | |
531 | Dbprintf("HF 13.56 Baseline: %d", hf_av); | |
532 | hf_baseline = hf_av; | |
533 | } | |
534 | ||
535 | for(;;) { | |
536 | if (BUTTON_PRESS()) { | |
537 | SpinDelay(500); | |
538 | switch (mode) { | |
539 | case 1: | |
540 | mode=2; | |
541 | DbpString("Signal Strength Mode"); | |
542 | break; | |
543 | case 2: | |
544 | default: | |
545 | DbpString("Stopped"); | |
546 | LEDsoff(); | |
547 | return; | |
548 | break; | |
549 | } | |
550 | } | |
551 | WDT_HIT(); | |
552 | ||
553 | if (limit != HF_ONLY) { | |
554 | if(mode==1) { | |
555 | if (abs(lf_av - lf_baseline) > 10) LED_D_ON(); | |
556 | else LED_D_OFF(); | |
557 | } | |
558 | ||
559 | ++lf_count; | |
560 | lf_av_new= ReadAdc(ADC_CHAN_LF); | |
561 | // see if there's a significant change | |
562 | if(abs(lf_av - lf_av_new) > 10) { | |
563 | Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count); | |
564 | lf_av = lf_av_new; | |
565 | if (lf_av > lf_max) | |
566 | lf_max = lf_av; | |
567 | lf_count= 0; | |
568 | } | |
569 | } | |
570 | ||
571 | if (limit != LF_ONLY) { | |
572 | if (mode == 1){ | |
573 | if (abs(hf_av - hf_baseline) > 10) LED_B_ON(); | |
574 | else LED_B_OFF(); | |
575 | } | |
576 | ||
577 | ++hf_count; | |
578 | hf_av_new= ReadAdc(ADC_CHAN_HF); | |
579 | // see if there's a significant change | |
580 | if(abs(hf_av - hf_av_new) > 10) { | |
581 | Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count); | |
582 | hf_av = hf_av_new; | |
583 | if (hf_av > hf_max) | |
584 | hf_max = hf_av; | |
585 | hf_count= 0; | |
586 | } | |
587 | } | |
588 | ||
589 | if(mode == 2) { | |
590 | if (limit == LF_ONLY) { | |
591 | display_val = lf_av; | |
592 | display_max = lf_max; | |
593 | } else if (limit == HF_ONLY) { | |
594 | display_val = hf_av; | |
595 | display_max = hf_max; | |
596 | } else { /* Pick one at random */ | |
597 | if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { | |
598 | display_val = hf_av; | |
599 | display_max = hf_max; | |
600 | } else { | |
601 | display_val = lf_av; | |
602 | display_max = lf_max; | |
603 | } | |
604 | } | |
605 | for (i=0; i<LIGHT_LEN; i++) { | |
606 | if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { | |
607 | if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); | |
608 | if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); | |
609 | if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); | |
610 | if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); | |
611 | break; | |
612 | } | |
613 | } | |
614 | } | |
615 | } | |
616 | } | |
617 | ||
618 | void UsbPacketReceived(uint8_t *packet, int len) | |
619 | { | |
620 | UsbCommand *c = (UsbCommand *)packet; | |
621 | ||
622 | // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); | |
623 | ||
624 | switch(c->cmd) { | |
625 | #ifdef WITH_LF | |
626 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
627 | AcquireRawAdcSamples125k(c->arg[0]); | |
628 | cmd_send(CMD_ACK,0,0,0,0,0); | |
629 | break; | |
630 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
631 | ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
632 | break; | |
633 | case CMD_HID_DEMOD_FSK: | |
634 | CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag | |
635 | break; | |
636 | case CMD_HID_SIM_TAG: | |
637 | CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID | |
638 | break; | |
639 | case CMD_HID_CLONE_TAG: | |
640 | CopyHIDtoT55x7(c->arg[0], c->arg[1]); // Clone HID tag by ID to T55x7 | |
641 | break; | |
642 | case CMD_EM410X_WRITE_TAG: | |
643 | WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); | |
644 | break; | |
645 | case CMD_READ_TI_TYPE: | |
646 | ReadTItag(); | |
647 | break; | |
648 | case CMD_WRITE_TI_TYPE: | |
649 | WriteTItag(c->arg[0],c->arg[1],c->arg[2]); | |
650 | break; | |
651 | case CMD_SIMULATE_TAG_125K: | |
652 | LED_A_ON(); | |
653 | SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); | |
654 | LED_A_OFF(); | |
655 | break; | |
656 | case CMD_LF_SIMULATE_BIDIR: | |
657 | SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); | |
658 | break; | |
659 | case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7 | |
660 | CopyIndala64toT55x7(c->arg[0], c->arg[1]); | |
661 | break; | |
662 | case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7 | |
663 | CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); | |
664 | break; | |
665 | #endif | |
666 | ||
667 | #ifdef WITH_HITAG | |
668 | case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type | |
669 | SnoopHitag(c->arg[0]); | |
670 | break; | |
671 | case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content | |
672 | SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes); | |
673 | break; | |
674 | case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function | |
675 | ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); | |
676 | break; | |
677 | #endif | |
678 | ||
679 | #ifdef WITH_ISO15693 | |
680 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
681 | AcquireRawAdcSamplesIso15693(); | |
682 | break; | |
683 | case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693: | |
684 | RecordRawAdcSamplesIso15693(); | |
685 | break; | |
686 | ||
687 | case CMD_ISO_15693_COMMAND: | |
688 | DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
689 | break; | |
690 | ||
691 | case CMD_ISO_15693_FIND_AFI: | |
692 | BruteforceIso15693Afi(c->arg[0]); | |
693 | break; | |
694 | ||
695 | case CMD_ISO_15693_DEBUG: | |
696 | SetDebugIso15693(c->arg[0]); | |
697 | break; | |
698 | ||
699 | case CMD_READER_ISO_15693: | |
700 | ReaderIso15693(c->arg[0]); | |
701 | break; | |
702 | case CMD_SIMTAG_ISO_15693: | |
703 | SimTagIso15693(c->arg[0]); | |
704 | break; | |
705 | #endif | |
706 | ||
707 | #ifdef WITH_LEGICRF | |
708 | case CMD_SIMULATE_TAG_LEGIC_RF: | |
709 | LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]); | |
710 | break; | |
711 | ||
712 | case CMD_WRITER_LEGIC_RF: | |
713 | LegicRfWriter(c->arg[1], c->arg[0]); | |
714 | break; | |
715 | ||
716 | case CMD_READER_LEGIC_RF: | |
717 | LegicRfReader(c->arg[0], c->arg[1]); | |
718 | break; | |
719 | #endif | |
720 | ||
721 | #ifdef WITH_ISO14443b | |
722 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: | |
723 | AcquireRawAdcSamplesIso14443(c->arg[0]); | |
724 | break; | |
725 | case CMD_READ_SRI512_TAG: | |
726 | ReadSRI512Iso14443(c->arg[0]); | |
727 | break; | |
728 | case CMD_READ_SRIX4K_TAG: | |
729 | ReadSRIX4KIso14443(c->arg[0]); | |
730 | break; | |
731 | case CMD_SNOOP_ISO_14443: | |
732 | SnoopIso14443(); | |
733 | break; | |
734 | case CMD_SIMULATE_TAG_ISO_14443: | |
735 | SimulateIso14443Tag(); | |
736 | break; | |
737 | #endif | |
738 | ||
739 | #ifdef WITH_ISO14443a | |
740 | case CMD_SNOOP_ISO_14443a: | |
741 | SnoopIso14443a(c->arg[0]); | |
742 | break; | |
743 | case CMD_READER_ISO_14443a: | |
744 | ReaderIso14443a(c); | |
745 | break; | |
746 | case CMD_SIMULATE_TAG_ISO_14443a: | |
747 | SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2]); // ## Simulate iso14443a tag - pass tag type & UID | |
748 | break; | |
749 | case CMD_EPA_PACE_COLLECT_NONCE: | |
750 | EPA_PACE_Collect_Nonce(c); | |
751 | break; | |
752 | ||
753 | case CMD_READER_MIFARE: | |
754 | ReaderMifare(c->arg[0]); | |
755 | break; | |
756 | case CMD_MIFARE_READBL: | |
757 | MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
758 | break; | |
759 | case CMD_MIFARE_READSC: | |
760 | MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
761 | break; | |
762 | case CMD_MIFARE_WRITEBL: | |
763 | MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
764 | break; | |
765 | case CMD_MIFARE_NESTED: | |
766 | MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
767 | break; | |
768 | case CMD_MIFARE_CHKKEYS: | |
769 | MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
770 | break; | |
771 | case CMD_SIMULATE_MIFARE_CARD: | |
772 | Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
773 | break; | |
774 | ||
775 | // emulator | |
776 | case CMD_MIFARE_SET_DBGMODE: | |
777 | MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
778 | break; | |
779 | case CMD_MIFARE_EML_MEMCLR: | |
780 | MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
781 | break; | |
782 | case CMD_MIFARE_EML_MEMSET: | |
783 | MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
784 | break; | |
785 | case CMD_MIFARE_EML_MEMGET: | |
786 | MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
787 | break; | |
788 | case CMD_MIFARE_EML_CARDLOAD: | |
789 | MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
790 | break; | |
791 | ||
792 | // Work with "magic Chinese" card | |
793 | case CMD_MIFARE_EML_CSETBLOCK: | |
794 | MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
795 | break; | |
796 | case CMD_MIFARE_EML_CGETBLOCK: | |
797 | MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
798 | break; | |
799 | ||
800 | // mifare sniffer | |
801 | case CMD_MIFARE_SNIFFER: | |
802 | SniffMifare(c->arg[0]); | |
803 | break; | |
804 | #endif | |
805 | ||
806 | #ifdef WITH_ICLASS | |
807 | // Makes use of ISO14443a FPGA Firmware | |
808 | case CMD_SNOOP_ICLASS: | |
809 | SnoopIClass(); | |
810 | break; | |
811 | case CMD_SIMULATE_TAG_ICLASS: | |
812 | SimulateIClass(c->arg[0], c->d.asBytes); | |
813 | break; | |
814 | case CMD_READER_ICLASS: | |
815 | ReaderIClass(c->arg[0]); | |
816 | break; | |
817 | #endif | |
818 | ||
819 | case CMD_SIMULATE_TAG_HF_LISTEN: | |
820 | SimulateTagHfListen(); | |
821 | break; | |
822 | ||
823 | case CMD_BUFF_CLEAR: | |
824 | BufferClear(); | |
825 | break; | |
826 | ||
827 | case CMD_MEASURE_ANTENNA_TUNING: | |
828 | MeasureAntennaTuning(); | |
829 | break; | |
830 | ||
831 | case CMD_MEASURE_ANTENNA_TUNING_HF: | |
832 | MeasureAntennaTuningHf(); | |
833 | break; | |
834 | ||
835 | case CMD_LISTEN_READER_FIELD: | |
836 | ListenReaderField(c->arg[0]); | |
837 | break; | |
838 | ||
839 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
840 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
841 | SpinDelay(200); | |
842 | LED_D_OFF(); // LED D indicates field ON or OFF | |
843 | break; | |
844 | ||
845 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: { | |
846 | // UsbCommand n; | |
847 | // if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { | |
848 | // n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; | |
849 | // } else { | |
850 | // n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; | |
851 | // } | |
852 | // n.arg[0] = c->arg[0]; | |
853 | // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t) | |
854 | // LED_B_ON(); | |
855 | // usb_write((uint8_t *)&n, sizeof(n)); | |
856 | // UsbSendPacket((uint8_t *)&n, sizeof(n)); | |
857 | // LED_B_OFF(); | |
858 | ||
859 | LED_B_ON(); | |
860 | for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) { | |
861 | size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE); | |
862 | cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len); | |
863 | } | |
864 | // Trigger a finish downloading signal with an ACK frame | |
865 | cmd_send(CMD_ACK,0,0,0,0,0); | |
866 | LED_B_OFF(); | |
867 | } break; | |
868 | ||
869 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
870 | uint8_t *b = (uint8_t *)BigBuf; | |
871 | memcpy(b+c->arg[0], c->d.asBytes, 48); | |
872 | //Dbprintf("copied 48 bytes to %i",b+c->arg[0]); | |
873 | // UsbSendPacket((uint8_t*)&ack, sizeof(ack)); | |
874 | cmd_send(CMD_ACK,0,0,0,0,0); | |
875 | } break; | |
876 | ||
877 | case CMD_READ_MEM: | |
878 | ReadMem(c->arg[0]); | |
879 | break; | |
880 | ||
881 | case CMD_SET_LF_DIVISOR: | |
882 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); | |
883 | break; | |
884 | ||
885 | case CMD_SET_ADC_MUX: | |
886 | switch(c->arg[0]) { | |
887 | case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; | |
888 | case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; | |
889 | case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; | |
890 | case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; | |
891 | } | |
892 | break; | |
893 | ||
894 | case CMD_VERSION: | |
895 | SendVersion(); | |
896 | break; | |
897 | ||
898 | #ifdef WITH_LCD | |
899 | case CMD_LCD_RESET: | |
900 | LCDReset(); | |
901 | break; | |
902 | case CMD_LCD: | |
903 | LCDSend(c->arg[0]); | |
904 | break; | |
905 | #endif | |
906 | case CMD_SETUP_WRITE: | |
907 | case CMD_FINISH_WRITE: | |
908 | case CMD_HARDWARE_RESET: { | |
909 | usb_disable(); | |
910 | SpinDelay(1000); | |
911 | SpinDelay(1000); | |
912 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
913 | for(;;) { | |
914 | // We're going to reset, and the bootrom will take control. | |
915 | } | |
916 | } break; | |
917 | ||
918 | case CMD_START_FLASH: { | |
919 | if(common_area.flags.bootrom_present) { | |
920 | common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; | |
921 | } | |
922 | usb_disable(); | |
923 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
924 | for(;;); | |
925 | } break; | |
926 | ||
927 | case CMD_DEVICE_INFO: { | |
928 | uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; | |
929 | if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; | |
930 | // UsbSendPacket((uint8_t*)&c, sizeof(c)); | |
931 | cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0); | |
932 | } break; | |
933 | ||
934 | default: { | |
935 | Dbprintf("%s: 0x%04x","unknown command:",c->cmd); | |
936 | } break; | |
937 | } | |
938 | } | |
939 | ||
940 | void __attribute__((noreturn)) AppMain(void) | |
941 | { | |
942 | SpinDelay(100); | |
943 | ||
944 | if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { | |
945 | /* Initialize common area */ | |
946 | memset(&common_area, 0, sizeof(common_area)); | |
947 | common_area.magic = COMMON_AREA_MAGIC; | |
948 | common_area.version = 1; | |
949 | } | |
950 | common_area.flags.osimage_present = 1; | |
951 | ||
952 | LED_D_OFF(); | |
953 | LED_C_OFF(); | |
954 | LED_B_OFF(); | |
955 | LED_A_OFF(); | |
956 | ||
957 | // Init USB device | |
958 | usb_enable(); | |
959 | // UsbStart(); | |
960 | ||
961 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
962 | AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; | |
963 | AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; | |
964 | AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; | |
965 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
966 | AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | | |
967 | AT91C_PMC_PRES_CLK_4; | |
968 | AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; | |
969 | ||
970 | // Reset SPI | |
971 | AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; | |
972 | // Reset SSC | |
973 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
974 | ||
975 | // Load the FPGA image, which we have stored in our flash. | |
976 | FpgaDownloadAndGo(); | |
977 | ||
978 | StartTickCount(); | |
979 | ||
980 | #ifdef WITH_LCD | |
981 | LCDInit(); | |
982 | #endif | |
983 | ||
984 | byte_t rx[sizeof(UsbCommand)]; | |
985 | size_t rx_len; | |
986 | ||
987 | for(;;) { | |
988 | if (usb_poll()) { | |
989 | rx_len = usb_read(rx,sizeof(UsbCommand)); | |
990 | if (rx_len) { | |
991 | UsbPacketReceived(rx,rx_len); | |
992 | } | |
993 | } | |
994 | // UsbPoll(FALSE); | |
995 | ||
996 | WDT_HIT(); | |
997 | ||
998 | #ifdef WITH_LF | |
999 | if (BUTTON_HELD(1000) > 0) | |
1000 | SamyRun(); | |
1001 | #endif | |
1002 | } | |
1003 | } |