]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
tryout.... changed to 64-bit command arguments in stead of 32-bit
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26
27 #ifdef WITH_LCD
28 #include "LCD.h"
29 #endif
30
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
32
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
38
39 uint8_t ToSend[512];
40 int ToSendMax;
41 static int ToSendBit;
42 struct common_area common_area __attribute__((section(".commonarea")));
43
44 void BufferClear(void)
45 {
46 memset(BigBuf,0,sizeof(BigBuf));
47 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
48 }
49
50 void ToSendReset(void)
51 {
52 ToSendMax = -1;
53 ToSendBit = 8;
54 }
55
56 void ToSendStuffBit(int b)
57 {
58 if(ToSendBit >= 8) {
59 ToSendMax++;
60 ToSend[ToSendMax] = 0;
61 ToSendBit = 0;
62 }
63
64 if(b) {
65 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
66 }
67
68 ToSendBit++;
69
70 if(ToSendBit >= sizeof(ToSend)) {
71 ToSendBit = 0;
72 DbpString("ToSendStuffBit overflowed!");
73 }
74 }
75
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
79
80 void DbpString(char *str)
81 {
82 cmd_send(CMD_DEBUG_PRINT_STRING,strlen(str),0,0,(byte_t*)str,strlen(str));
83 // /* this holds up stuff unless we're connected to usb */
84 // if (!UsbConnected())
85 // return;
86 //
87 // UsbCommand c;
88 // c.cmd = CMD_DEBUG_PRINT_STRING;
89 // c.arg[0] = strlen(str);
90 // if(c.arg[0] > sizeof(c.d.asBytes)) {
91 // c.arg[0] = sizeof(c.d.asBytes);
92 // }
93 // memcpy(c.d.asBytes, str, c.arg[0]);
94 //
95 // UsbSendPacket((uint8_t *)&c, sizeof(c));
96 // // TODO fix USB so stupid things like this aren't req'd
97 // SpinDelay(50);
98 }
99
100 #if 0
101 void DbpIntegers(int x1, int x2, int x3)
102 {
103 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
104 // /* this holds up stuff unless we're connected to usb */
105 // if (!UsbConnected())
106 // return;
107 //
108 // UsbCommand c;
109 // c.cmd = CMD_DEBUG_PRINT_INTEGERS;
110 // c.arg[0] = x1;
111 // c.arg[1] = x2;
112 // c.arg[2] = x3;
113 //
114 // UsbSendPacket((uint8_t *)&c, sizeof(c));
115 // // XXX
116 // SpinDelay(50);
117 }
118 #endif
119
120 void Dbprintf(const char *fmt, ...) {
121 // should probably limit size here; oh well, let's just use a big buffer
122 char output_string[128];
123 va_list ap;
124
125 va_start(ap, fmt);
126 kvsprintf(fmt, output_string, 10, ap);
127 va_end(ap);
128
129 DbpString(output_string);
130 }
131
132 // prints HEX & ASCII
133 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
134 int l=0,i;
135 char ascii[9];
136
137 while (len>0) {
138 if (len>8) l=8;
139 else l=len;
140
141 memcpy(ascii,d,l);
142 ascii[l]=0;
143
144 // filter safe ascii
145 for (i=0;i<l;i++)
146 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
147
148 if (bAsci) {
149 Dbprintf("%-8s %*D",ascii,l,d," ");
150 } else {
151 Dbprintf("%*D",l,d," ");
152 }
153
154 len-=8;
155 d+=8;
156 }
157 }
158
159 //-----------------------------------------------------------------------------
160 // Read an ADC channel and block till it completes, then return the result
161 // in ADC units (0 to 1023). Also a routine to average 32 samples and
162 // return that.
163 //-----------------------------------------------------------------------------
164 static int ReadAdc(int ch)
165 {
166 uint32_t d;
167
168 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
169 AT91C_BASE_ADC->ADC_MR =
170 ADC_MODE_PRESCALE(32) |
171 ADC_MODE_STARTUP_TIME(16) |
172 ADC_MODE_SAMPLE_HOLD_TIME(8);
173 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
174
175 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
176 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
177 ;
178 d = AT91C_BASE_ADC->ADC_CDR[ch];
179
180 return d;
181 }
182
183 int AvgAdc(int ch) // was static - merlok
184 {
185 int i;
186 int a = 0;
187
188 for(i = 0; i < 32; i++) {
189 a += ReadAdc(ch);
190 }
191
192 return (a + 15) >> 5;
193 }
194
195 void MeasureAntennaTuning(void)
196 {
197 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
198 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
199 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
200
201 // UsbCommand c;
202
203 LED_B_ON();
204 DbpString("Measuring antenna characteristics, please wait...");
205 memset(dest,0,sizeof(FREE_BUFFER_SIZE));
206
207 /*
208 * Sweeps the useful LF range of the proxmark from
209 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
210 * read the voltage in the antenna, the result left
211 * in the buffer is a graph which should clearly show
212 * the resonating frequency of your LF antenna
213 * ( hopefully around 95 if it is tuned to 125kHz!)
214 */
215
216 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
217 for (i=255; i>19; i--) {
218 WDT_HIT();
219 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
220 SpinDelay(20);
221 // Vref = 3.3V, and a 10000:240 voltage divider on the input
222 // can measure voltages up to 137500 mV
223 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
224 if (i==95) vLf125 = adcval; // voltage at 125Khz
225 if (i==89) vLf134 = adcval; // voltage at 134Khz
226
227 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
228 if(dest[i] > peak) {
229 peakv = adcval;
230 peak = dest[i];
231 peakf = i;
232 //ptr = i;
233 }
234 }
235
236 LED_A_ON();
237 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
238 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
239 SpinDelay(20);
240 // Vref = 3300mV, and an 10:1 voltage divider on the input
241 // can measure voltages up to 33000 mV
242 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
243
244 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
245 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
246 // c.arg[1] = vHf;
247 // c.arg[2] = peakf | (peakv << 16);
248
249 DbpString("Measuring complete, sending report back to host");
250 cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0);
251 // UsbSendPacket((uint8_t *)&c, sizeof(c));
252 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
253 LED_A_OFF();
254 LED_B_OFF();
255 return;
256 }
257
258 void MeasureAntennaTuningHf(void)
259 {
260 int vHf = 0; // in mV
261
262 DbpString("Measuring HF antenna, press button to exit");
263
264 for (;;) {
265 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
267 SpinDelay(20);
268 // Vref = 3300mV, and an 10:1 voltage divider on the input
269 // can measure voltages up to 33000 mV
270 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
271
272 Dbprintf("%d mV",vHf);
273 if (BUTTON_PRESS()) break;
274 }
275 DbpString("cancelled");
276 }
277
278
279 void SimulateTagHfListen(void)
280 {
281 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
282 uint8_t v = 0;
283 int i;
284 int p = 0;
285
286 // We're using this mode just so that I can test it out; the simulated
287 // tag mode would work just as well and be simpler.
288 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
289
290 // We need to listen to the high-frequency, peak-detected path.
291 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
292
293 FpgaSetupSsc();
294
295 i = 0;
296 for(;;) {
297 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
298 AT91C_BASE_SSC->SSC_THR = 0xff;
299 }
300 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
301 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
302
303 v <<= 1;
304 if(r & 1) {
305 v |= 1;
306 }
307 p++;
308
309 if(p >= 8) {
310 dest[i] = v;
311 v = 0;
312 p = 0;
313 i++;
314
315 if(i >= FREE_BUFFER_SIZE) {
316 break;
317 }
318 }
319 }
320 }
321 DbpString("simulate tag (now type bitsamples)");
322 }
323
324 void ReadMem(int addr)
325 {
326 const uint8_t *data = ((uint8_t *)addr);
327
328 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
329 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
330 }
331
332 /* osimage version information is linked in */
333 extern struct version_information version_information;
334 /* bootrom version information is pointed to from _bootphase1_version_pointer */
335 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
336 void SendVersion(void)
337 {
338 char temp[48]; /* Limited data payload in USB packets */
339 DbpString("Prox/RFID mark3 RFID instrument");
340
341 /* Try to find the bootrom version information. Expect to find a pointer at
342 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
343 * pointer, then use it.
344 */
345 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
346 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
347 DbpString("bootrom version information appears invalid");
348 } else {
349 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
350 DbpString(temp);
351 }
352
353 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
354 DbpString(temp);
355
356 FpgaGatherVersion(temp, sizeof(temp));
357 DbpString(temp);
358 }
359
360 #ifdef WITH_LF
361 // samy's sniff and repeat routine
362 void SamyRun()
363 {
364 DbpString("Stand-alone mode! No PC necessary.");
365
366 // 3 possible options? no just 2 for now
367 #define OPTS 2
368
369 int high[OPTS], low[OPTS];
370
371 // Oooh pretty -- notify user we're in elite samy mode now
372 LED(LED_RED, 200);
373 LED(LED_ORANGE, 200);
374 LED(LED_GREEN, 200);
375 LED(LED_ORANGE, 200);
376 LED(LED_RED, 200);
377 LED(LED_ORANGE, 200);
378 LED(LED_GREEN, 200);
379 LED(LED_ORANGE, 200);
380 LED(LED_RED, 200);
381
382 int selected = 0;
383 int playing = 0;
384
385 // Turn on selected LED
386 LED(selected + 1, 0);
387
388 for (;;)
389 {
390 // UsbPoll(FALSE);
391 usb_poll();
392 WDT_HIT();
393
394 // Was our button held down or pressed?
395 int button_pressed = BUTTON_HELD(1000);
396 SpinDelay(300);
397
398 // Button was held for a second, begin recording
399 if (button_pressed > 0)
400 {
401 LEDsoff();
402 LED(selected + 1, 0);
403 LED(LED_RED2, 0);
404
405 // record
406 DbpString("Starting recording");
407
408 // wait for button to be released
409 while(BUTTON_PRESS())
410 WDT_HIT();
411
412 /* need this delay to prevent catching some weird data */
413 SpinDelay(500);
414
415 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
416 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
417
418 LEDsoff();
419 LED(selected + 1, 0);
420 // Finished recording
421
422 // If we were previously playing, set playing off
423 // so next button push begins playing what we recorded
424 playing = 0;
425 }
426
427 // Change where to record (or begin playing)
428 else if (button_pressed)
429 {
430 // Next option if we were previously playing
431 if (playing)
432 selected = (selected + 1) % OPTS;
433 playing = !playing;
434
435 LEDsoff();
436 LED(selected + 1, 0);
437
438 // Begin transmitting
439 if (playing)
440 {
441 LED(LED_GREEN, 0);
442 DbpString("Playing");
443 // wait for button to be released
444 while(BUTTON_PRESS())
445 WDT_HIT();
446 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
447 CmdHIDsimTAG(high[selected], low[selected], 0);
448 DbpString("Done playing");
449 if (BUTTON_HELD(1000) > 0)
450 {
451 DbpString("Exiting");
452 LEDsoff();
453 return;
454 }
455
456 /* We pressed a button so ignore it here with a delay */
457 SpinDelay(300);
458
459 // when done, we're done playing, move to next option
460 selected = (selected + 1) % OPTS;
461 playing = !playing;
462 LEDsoff();
463 LED(selected + 1, 0);
464 }
465 else
466 while(BUTTON_PRESS())
467 WDT_HIT();
468 }
469 }
470 }
471 #endif
472
473 /*
474 OBJECTIVE
475 Listen and detect an external reader. Determine the best location
476 for the antenna.
477
478 INSTRUCTIONS:
479 Inside the ListenReaderField() function, there is two mode.
480 By default, when you call the function, you will enter mode 1.
481 If you press the PM3 button one time, you will enter mode 2.
482 If you press the PM3 button a second time, you will exit the function.
483
484 DESCRIPTION OF MODE 1:
485 This mode just listens for an external reader field and lights up green
486 for HF and/or red for LF. This is the original mode of the detectreader
487 function.
488
489 DESCRIPTION OF MODE 2:
490 This mode will visually represent, using the LEDs, the actual strength of the
491 current compared to the maximum current detected. Basically, once you know
492 what kind of external reader is present, it will help you spot the best location to place
493 your antenna. You will probably not get some good results if there is a LF and a HF reader
494 at the same place! :-)
495
496 LIGHT SCHEME USED:
497 */
498 static const char LIGHT_SCHEME[] = {
499 0x0, /* ---- | No field detected */
500 0x1, /* X--- | 14% of maximum current detected */
501 0x2, /* -X-- | 29% of maximum current detected */
502 0x4, /* --X- | 43% of maximum current detected */
503 0x8, /* ---X | 57% of maximum current detected */
504 0xC, /* --XX | 71% of maximum current detected */
505 0xE, /* -XXX | 86% of maximum current detected */
506 0xF, /* XXXX | 100% of maximum current detected */
507 };
508 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
509
510 void ListenReaderField(int limit)
511 {
512 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
513 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
514 int mode=1, display_val, display_max, i;
515
516 #define LF_ONLY 1
517 #define HF_ONLY 2
518
519 LEDsoff();
520
521 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
522
523 if(limit != HF_ONLY) {
524 Dbprintf("LF 125/134 Baseline: %d", lf_av);
525 lf_baseline = lf_av;
526 }
527
528 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
529
530 if (limit != LF_ONLY) {
531 Dbprintf("HF 13.56 Baseline: %d", hf_av);
532 hf_baseline = hf_av;
533 }
534
535 for(;;) {
536 if (BUTTON_PRESS()) {
537 SpinDelay(500);
538 switch (mode) {
539 case 1:
540 mode=2;
541 DbpString("Signal Strength Mode");
542 break;
543 case 2:
544 default:
545 DbpString("Stopped");
546 LEDsoff();
547 return;
548 break;
549 }
550 }
551 WDT_HIT();
552
553 if (limit != HF_ONLY) {
554 if(mode==1) {
555 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
556 else LED_D_OFF();
557 }
558
559 ++lf_count;
560 lf_av_new= ReadAdc(ADC_CHAN_LF);
561 // see if there's a significant change
562 if(abs(lf_av - lf_av_new) > 10) {
563 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
564 lf_av = lf_av_new;
565 if (lf_av > lf_max)
566 lf_max = lf_av;
567 lf_count= 0;
568 }
569 }
570
571 if (limit != LF_ONLY) {
572 if (mode == 1){
573 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
574 else LED_B_OFF();
575 }
576
577 ++hf_count;
578 hf_av_new= ReadAdc(ADC_CHAN_HF);
579 // see if there's a significant change
580 if(abs(hf_av - hf_av_new) > 10) {
581 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
582 hf_av = hf_av_new;
583 if (hf_av > hf_max)
584 hf_max = hf_av;
585 hf_count= 0;
586 }
587 }
588
589 if(mode == 2) {
590 if (limit == LF_ONLY) {
591 display_val = lf_av;
592 display_max = lf_max;
593 } else if (limit == HF_ONLY) {
594 display_val = hf_av;
595 display_max = hf_max;
596 } else { /* Pick one at random */
597 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
598 display_val = hf_av;
599 display_max = hf_max;
600 } else {
601 display_val = lf_av;
602 display_max = lf_max;
603 }
604 }
605 for (i=0; i<LIGHT_LEN; i++) {
606 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
607 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
608 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
609 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
610 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
611 break;
612 }
613 }
614 }
615 }
616 }
617
618 void UsbPacketReceived(uint8_t *packet, int len)
619 {
620 UsbCommand *c = (UsbCommand *)packet;
621
622 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
623
624 switch(c->cmd) {
625 #ifdef WITH_LF
626 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
627 AcquireRawAdcSamples125k(c->arg[0]);
628 cmd_send(CMD_ACK,0,0,0,0,0);
629 break;
630 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
631 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
632 break;
633 case CMD_HID_DEMOD_FSK:
634 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
635 break;
636 case CMD_HID_SIM_TAG:
637 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
638 break;
639 case CMD_HID_CLONE_TAG:
640 CopyHIDtoT55x7(c->arg[0], c->arg[1]); // Clone HID tag by ID to T55x7
641 break;
642 case CMD_EM410X_WRITE_TAG:
643 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
644 break;
645 case CMD_READ_TI_TYPE:
646 ReadTItag();
647 break;
648 case CMD_WRITE_TI_TYPE:
649 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
650 break;
651 case CMD_SIMULATE_TAG_125K:
652 LED_A_ON();
653 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
654 LED_A_OFF();
655 break;
656 case CMD_LF_SIMULATE_BIDIR:
657 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
658 break;
659 case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
660 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
661 break;
662 case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
663 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
664 break;
665 #endif
666
667 #ifdef WITH_HITAG
668 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
669 SnoopHitag(c->arg[0]);
670 break;
671 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
672 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
673 break;
674 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
675 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
676 break;
677 #endif
678
679 #ifdef WITH_ISO15693
680 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
681 AcquireRawAdcSamplesIso15693();
682 break;
683 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
684 RecordRawAdcSamplesIso15693();
685 break;
686
687 case CMD_ISO_15693_COMMAND:
688 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
689 break;
690
691 case CMD_ISO_15693_FIND_AFI:
692 BruteforceIso15693Afi(c->arg[0]);
693 break;
694
695 case CMD_ISO_15693_DEBUG:
696 SetDebugIso15693(c->arg[0]);
697 break;
698
699 case CMD_READER_ISO_15693:
700 ReaderIso15693(c->arg[0]);
701 break;
702 case CMD_SIMTAG_ISO_15693:
703 SimTagIso15693(c->arg[0]);
704 break;
705 #endif
706
707 #ifdef WITH_LEGICRF
708 case CMD_SIMULATE_TAG_LEGIC_RF:
709 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
710 break;
711
712 case CMD_WRITER_LEGIC_RF:
713 LegicRfWriter(c->arg[1], c->arg[0]);
714 break;
715
716 case CMD_READER_LEGIC_RF:
717 LegicRfReader(c->arg[0], c->arg[1]);
718 break;
719 #endif
720
721 #ifdef WITH_ISO14443b
722 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
723 AcquireRawAdcSamplesIso14443(c->arg[0]);
724 break;
725 case CMD_READ_SRI512_TAG:
726 ReadSRI512Iso14443(c->arg[0]);
727 break;
728 case CMD_READ_SRIX4K_TAG:
729 ReadSRIX4KIso14443(c->arg[0]);
730 break;
731 case CMD_SNOOP_ISO_14443:
732 SnoopIso14443();
733 break;
734 case CMD_SIMULATE_TAG_ISO_14443:
735 SimulateIso14443Tag();
736 break;
737 #endif
738
739 #ifdef WITH_ISO14443a
740 case CMD_SNOOP_ISO_14443a:
741 SnoopIso14443a(c->arg[0]);
742 break;
743 case CMD_READER_ISO_14443a:
744 ReaderIso14443a(c);
745 break;
746 case CMD_SIMULATE_TAG_ISO_14443a:
747 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2]); // ## Simulate iso14443a tag - pass tag type & UID
748 break;
749 case CMD_EPA_PACE_COLLECT_NONCE:
750 EPA_PACE_Collect_Nonce(c);
751 break;
752
753 case CMD_READER_MIFARE:
754 ReaderMifare(c->arg[0]);
755 break;
756 case CMD_MIFARE_READBL:
757 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
758 break;
759 case CMD_MIFARE_READSC:
760 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
761 break;
762 case CMD_MIFARE_WRITEBL:
763 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
764 break;
765 case CMD_MIFARE_NESTED:
766 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
767 break;
768 case CMD_MIFARE_CHKKEYS:
769 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
770 break;
771 case CMD_SIMULATE_MIFARE_CARD:
772 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
773 break;
774
775 // emulator
776 case CMD_MIFARE_SET_DBGMODE:
777 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
778 break;
779 case CMD_MIFARE_EML_MEMCLR:
780 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
781 break;
782 case CMD_MIFARE_EML_MEMSET:
783 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
784 break;
785 case CMD_MIFARE_EML_MEMGET:
786 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
787 break;
788 case CMD_MIFARE_EML_CARDLOAD:
789 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
790 break;
791
792 // Work with "magic Chinese" card
793 case CMD_MIFARE_EML_CSETBLOCK:
794 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
795 break;
796 case CMD_MIFARE_EML_CGETBLOCK:
797 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
798 break;
799
800 // mifare sniffer
801 case CMD_MIFARE_SNIFFER:
802 SniffMifare(c->arg[0]);
803 break;
804 #endif
805
806 #ifdef WITH_ICLASS
807 // Makes use of ISO14443a FPGA Firmware
808 case CMD_SNOOP_ICLASS:
809 SnoopIClass();
810 break;
811 case CMD_SIMULATE_TAG_ICLASS:
812 SimulateIClass(c->arg[0], c->d.asBytes);
813 break;
814 case CMD_READER_ICLASS:
815 ReaderIClass(c->arg[0]);
816 break;
817 #endif
818
819 case CMD_SIMULATE_TAG_HF_LISTEN:
820 SimulateTagHfListen();
821 break;
822
823 case CMD_BUFF_CLEAR:
824 BufferClear();
825 break;
826
827 case CMD_MEASURE_ANTENNA_TUNING:
828 MeasureAntennaTuning();
829 break;
830
831 case CMD_MEASURE_ANTENNA_TUNING_HF:
832 MeasureAntennaTuningHf();
833 break;
834
835 case CMD_LISTEN_READER_FIELD:
836 ListenReaderField(c->arg[0]);
837 break;
838
839 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
840 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
841 SpinDelay(200);
842 LED_D_OFF(); // LED D indicates field ON or OFF
843 break;
844
845 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
846 // UsbCommand n;
847 // if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
848 // n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
849 // } else {
850 // n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
851 // }
852 // n.arg[0] = c->arg[0];
853 // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
854 // LED_B_ON();
855 // usb_write((uint8_t *)&n, sizeof(n));
856 // UsbSendPacket((uint8_t *)&n, sizeof(n));
857 // LED_B_OFF();
858
859 LED_B_ON();
860 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
861 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
862 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
863 }
864 // Trigger a finish downloading signal with an ACK frame
865 cmd_send(CMD_ACK,0,0,0,0,0);
866 LED_B_OFF();
867 } break;
868
869 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
870 uint8_t *b = (uint8_t *)BigBuf;
871 memcpy(b+c->arg[0], c->d.asBytes, 48);
872 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
873 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
874 cmd_send(CMD_ACK,0,0,0,0,0);
875 } break;
876
877 case CMD_READ_MEM:
878 ReadMem(c->arg[0]);
879 break;
880
881 case CMD_SET_LF_DIVISOR:
882 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
883 break;
884
885 case CMD_SET_ADC_MUX:
886 switch(c->arg[0]) {
887 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
888 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
889 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
890 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
891 }
892 break;
893
894 case CMD_VERSION:
895 SendVersion();
896 break;
897
898 #ifdef WITH_LCD
899 case CMD_LCD_RESET:
900 LCDReset();
901 break;
902 case CMD_LCD:
903 LCDSend(c->arg[0]);
904 break;
905 #endif
906 case CMD_SETUP_WRITE:
907 case CMD_FINISH_WRITE:
908 case CMD_HARDWARE_RESET: {
909 usb_disable();
910 SpinDelay(1000);
911 SpinDelay(1000);
912 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
913 for(;;) {
914 // We're going to reset, and the bootrom will take control.
915 }
916 } break;
917
918 case CMD_START_FLASH: {
919 if(common_area.flags.bootrom_present) {
920 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
921 }
922 usb_disable();
923 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
924 for(;;);
925 } break;
926
927 case CMD_DEVICE_INFO: {
928 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
929 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
930 // UsbSendPacket((uint8_t*)&c, sizeof(c));
931 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
932 } break;
933
934 default: {
935 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
936 } break;
937 }
938 }
939
940 void __attribute__((noreturn)) AppMain(void)
941 {
942 SpinDelay(100);
943
944 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
945 /* Initialize common area */
946 memset(&common_area, 0, sizeof(common_area));
947 common_area.magic = COMMON_AREA_MAGIC;
948 common_area.version = 1;
949 }
950 common_area.flags.osimage_present = 1;
951
952 LED_D_OFF();
953 LED_C_OFF();
954 LED_B_OFF();
955 LED_A_OFF();
956
957 // Init USB device
958 usb_enable();
959 // UsbStart();
960
961 // The FPGA gets its clock from us from PCK0 output, so set that up.
962 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
963 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
964 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
965 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
966 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
967 AT91C_PMC_PRES_CLK_4;
968 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
969
970 // Reset SPI
971 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
972 // Reset SSC
973 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
974
975 // Load the FPGA image, which we have stored in our flash.
976 FpgaDownloadAndGo();
977
978 StartTickCount();
979
980 #ifdef WITH_LCD
981 LCDInit();
982 #endif
983
984 byte_t rx[sizeof(UsbCommand)];
985 size_t rx_len;
986
987 for(;;) {
988 if (usb_poll()) {
989 rx_len = usb_read(rx,sizeof(UsbCommand));
990 if (rx_len) {
991 UsbPacketReceived(rx,rx_len);
992 }
993 }
994 // UsbPoll(FALSE);
995
996 WDT_HIT();
997
998 #ifdef WITH_LF
999 if (BUTTON_HELD(1000) > 0)
1000 SamyRun();
1001 #endif
1002 }
1003 }
Impressum, Datenschutz