1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "../include/proxmark3.h"
17 #include "../common/cmd.h"
18 #include "../common/iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
23 static uint32_t iso14a_timeout
;
24 uint8_t *trace
= (uint8_t *) BigBuf
+TRACE_OFFSET
;
29 // the block number for the ISO14443-4 PCB
30 static uint8_t iso14_pcb_blocknum
= 0;
35 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
36 #define REQUEST_GUARD_TIME (7000/16 + 1)
37 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
38 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
39 // bool LastCommandWasRequest = FALSE;
42 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
44 // When the PM acts as reader and is receiving tag data, it takes
45 // 3 ticks delay in the AD converter
46 // 16 ticks until the modulation detector completes and sets curbit
47 // 8 ticks until bit_to_arm is assigned from curbit
48 // 8*16 ticks for the transfer from FPGA to ARM
49 // 4*16 ticks until we measure the time
50 // - 8*16 ticks because we measure the time of the previous transfer
51 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
53 // When the PM acts as a reader and is sending, it takes
54 // 4*16 ticks until we can write data to the sending hold register
55 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
56 // 8 ticks until the first transfer starts
57 // 8 ticks later the FPGA samples the data
58 // 1 tick to assign mod_sig_coil
59 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
61 // When the PM acts as tag and is receiving it takes
62 // 2 ticks delay in the RF part (for the first falling edge),
63 // 3 ticks for the A/D conversion,
64 // 8 ticks on average until the start of the SSC transfer,
65 // 8 ticks until the SSC samples the first data
66 // 7*16 ticks to complete the transfer from FPGA to ARM
67 // 8 ticks until the next ssp_clk rising edge
68 // 4*16 ticks until we measure the time
69 // - 8*16 ticks because we measure the time of the previous transfer
70 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
72 // The FPGA will report its internal sending delay in
73 uint16_t FpgaSendQueueDelay
;
74 // the 5 first bits are the number of bits buffered in mod_sig_buf
75 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
76 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
78 // When the PM acts as tag and is sending, it takes
79 // 4*16 ticks until we can write data to the sending hold register
80 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
81 // 8 ticks until the first transfer starts
82 // 8 ticks later the FPGA samples the data
83 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
84 // + 1 tick to assign mod_sig_coil
85 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
87 // When the PM acts as sniffer and is receiving tag data, it takes
88 // 3 ticks A/D conversion
89 // 14 ticks to complete the modulation detection
90 // 8 ticks (on average) until the result is stored in to_arm
91 // + the delays in transferring data - which is the same for
92 // sniffing reader and tag data and therefore not relevant
93 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
95 // When the PM acts as sniffer and is receiving reader data, it takes
96 // 2 ticks delay in analogue RF receiver (for the falling edge of the
97 // start bit, which marks the start of the communication)
98 // 3 ticks A/D conversion
99 // 8 ticks on average until the data is stored in to_arm.
100 // + the delays in transferring data - which is the same for
101 // sniffing reader and tag data and therefore not relevant
102 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
104 //variables used for timing purposes:
105 //these are in ssp_clk cycles:
106 uint32_t NextTransferTime
;
107 uint32_t LastTimeProxToAirStart
;
108 uint32_t LastProxToAirDuration
;
112 // CARD TO READER - manchester
113 // Sequence D: 11110000 modulation with subcarrier during first half
114 // Sequence E: 00001111 modulation with subcarrier during second half
115 // Sequence F: 00000000 no modulation with subcarrier
116 // READER TO CARD - miller
117 // Sequence X: 00001100 drop after half a period
118 // Sequence Y: 00000000 no drop
119 // Sequence Z: 11000000 drop at start
127 //replaced large parity table with small parity generation function - saves flash code
129 const uint8_t OddByteParity[256] = {
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
141 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
142 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
143 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
144 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
145 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
149 void iso14a_set_trigger(bool enable
) {
153 void iso14a_clear_trace() {
154 memset(trace
, 0x44, TRACE_SIZE
);
158 void iso14a_set_tracing(bool enable
) {
162 void iso14a_set_timeout(uint32_t timeout
) {
163 iso14a_timeout
= timeout
;
166 //-----------------------------------------------------------------------------
167 // Generate the parity value for a byte sequence
169 //-----------------------------------------------------------------------------
171 byte_t oddparity (const byte_t bt)
173 return OddByteParity[bt];
177 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
182 // Generate the parity bits
183 for (i
= 0; i
< iLen
; i
++) {
184 // and save them to a 32Bit word
185 //dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
186 dwPar
|= (oddparity(pbtCmd
[i
]) << i
);
191 void AppendCrc14443a(uint8_t* data
, int len
)
193 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
196 // The function LogTrace() is also used by the iClass implementation in iClass.c
197 bool RAMFUNC
LogTrace(const uint8_t * btBytes
, uint8_t iLen
, uint32_t timestamp
, uint32_t dwParity
, bool readerToTag
)
199 if (!tracing
) return FALSE
;
200 // Return when trace is full
201 if (traceLen
+ sizeof(timestamp
) + sizeof(dwParity
) + iLen
>= TRACE_SIZE
) {
202 tracing
= FALSE
; // don't trace any more
206 // Trace the random, i'm curious
207 trace
[traceLen
++] = ((timestamp
>> 0) & 0xff);
208 trace
[traceLen
++] = ((timestamp
>> 8) & 0xff);
209 trace
[traceLen
++] = ((timestamp
>> 16) & 0xff);
210 trace
[traceLen
++] = ((timestamp
>> 24) & 0xff);
213 trace
[traceLen
- 1] |= 0x80;
215 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
216 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
217 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
218 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
219 trace
[traceLen
++] = iLen
;
220 if (btBytes
!= NULL
&& iLen
!= 0) {
221 memcpy(trace
+ traceLen
, btBytes
, iLen
);
227 //=============================================================================
228 // ISO 14443 Type A - Miller decoder
229 //=============================================================================
231 // This decoder is used when the PM3 acts as a tag.
232 // The reader will generate "pauses" by temporarily switching of the field.
233 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
234 // The FPGA does a comparison with a threshold and would deliver e.g.:
235 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
236 // The Miller decoder needs to identify the following sequences:
237 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
238 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
239 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
240 // Note 1: the bitstream may start at any time. We therefore need to sync.
241 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
242 //-----------------------------------------------------------------------------
245 // Lookup-Table to decide if 4 raw bits are a modulation.
246 // We accept two or three consecutive "0" in any position with the rest "1"
247 const bool Mod_Miller_LUT
[] = {
248 TRUE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
,
249 TRUE
, TRUE
, FALSE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
251 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
252 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
256 Uart
.state
= STATE_UNSYNCD
;
258 Uart
.len
= 0; // number of decoded data bytes
259 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
260 Uart
.parityBits
= 0; //
261 Uart
.twoBits
= 0x0000; // buffer for 2 Bits
268 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
269 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
272 Uart
.twoBits
= (Uart
.twoBits
<< 8) | bit
;
274 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
275 if (Uart
.highCnt
< 7) { // wait for a stable unmodulated signal
276 if (Uart
.twoBits
== 0xffff) {
282 Uart
.syncBit
= 0xFFFF; // not set
283 // look for 00xx1111 (the start bit)
284 if ((Uart
.twoBits
& 0x6780) == 0x0780) Uart
.syncBit
= 7;
285 else if ((Uart
.twoBits
& 0x33C0) == 0x03C0) Uart
.syncBit
= 6;
286 else if ((Uart
.twoBits
& 0x19E0) == 0x01E0) Uart
.syncBit
= 5;
287 else if ((Uart
.twoBits
& 0x0CF0) == 0x00F0) Uart
.syncBit
= 4;
288 else if ((Uart
.twoBits
& 0x0678) == 0x0078) Uart
.syncBit
= 3;
289 else if ((Uart
.twoBits
& 0x033C) == 0x003C) Uart
.syncBit
= 2;
290 else if ((Uart
.twoBits
& 0x019E) == 0x001E) Uart
.syncBit
= 1;
291 else if ((Uart
.twoBits
& 0x00CF) == 0x000F) Uart
.syncBit
= 0;
292 if (Uart
.syncBit
!= 0xFFFF) {
293 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
294 Uart
.startTime
-= Uart
.syncBit
;
295 Uart
.endTime
= Uart
.startTime
;
296 Uart
.state
= STATE_START_OF_COMMUNICATION
;
302 if (IsMillerModulationNibble1(Uart
.twoBits
>> Uart
.syncBit
)) {
303 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
306 } else { // Modulation in first half = Sequence Z = logic "0"
307 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
312 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
313 Uart
.state
= STATE_MILLER_Z
;
314 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
315 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
316 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
317 Uart
.parityBits
<<= 1; // make room for the parity bit
318 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
325 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
327 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
328 Uart
.state
= STATE_MILLER_X
;
329 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
330 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
331 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
332 Uart
.parityBits
<<= 1; // make room for the new parity bit
333 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
337 } else { // no modulation in both halves - Sequence Y
338 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
339 Uart
.state
= STATE_UNSYNCD
;
340 if(Uart
.len
== 0 && Uart
.bitCount
> 0) { // if we decoded some bits
341 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // add them to the output
342 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
343 Uart
.parityBits
<<= 1; // no parity bit - add "0"
344 Uart
.bitCount
--; // last "0" was part of the EOC sequence
348 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
351 } else { // a logic "0"
353 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
354 Uart
.state
= STATE_MILLER_Y
;
355 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
356 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
357 Uart
.parityBits
<<= 1; // make room for the parity bit
358 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
368 return FALSE
; // not finished yet, need more data
373 //=============================================================================
374 // ISO 14443 Type A - Manchester decoder
375 //=============================================================================
377 // This decoder is used when the PM3 acts as a reader.
378 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
379 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
380 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
381 // The Manchester decoder needs to identify the following sequences:
382 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
383 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
384 // 8 ticks unmodulated: Sequence F = end of communication
385 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
386 // Note 1: the bitstream may start at any time. We therefore need to sync.
387 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
390 // Lookup-Table to decide if 4 raw bits are a modulation.
391 // We accept three or four "1" in any position
392 const bool Mod_Manchester_LUT
[] = {
393 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
394 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
397 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
398 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
403 Demod
.state
= DEMOD_UNSYNCD
;
404 Demod
.len
= 0; // number of decoded data bytes
405 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
406 Demod
.parityBits
= 0; //
407 Demod
.collisionPos
= 0; // Position of collision bit
408 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
414 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
415 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
418 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
420 if (Demod
.state
== DEMOD_UNSYNCD
) {
422 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
423 if (Demod
.twoBits
== 0x0000) {
429 Demod
.syncBit
= 0xFFFF; // not set
430 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
431 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
432 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
433 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
434 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
435 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
436 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
437 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
438 if (Demod
.syncBit
!= 0xFFFF) {
439 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
440 Demod
.startTime
-= Demod
.syncBit
;
441 Demod
.bitCount
= offset
; // number of decoded data bits
442 Demod
.state
= DEMOD_MANCHESTER_DATA
;
448 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
449 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
450 if (!Demod
.collisionPos
) {
451 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
453 } // modulation in first half only - Sequence D = 1
455 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
456 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
457 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
458 Demod
.parityBits
<<= 1; // make room for the parity bit
459 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
463 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
464 } else { // no modulation in first half
465 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
467 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
468 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
469 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
470 Demod
.parityBits
<<= 1; // make room for the new parity bit
471 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
475 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
476 } else { // no modulation in both halves - End of communication
477 if (Demod
.len
> 0 || Demod
.bitCount
> 0) { // received something
478 if(Demod
.bitCount
> 0) { // if we decoded bits
479 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // add the remaining decoded bits to the output
480 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff;
481 // No parity bit, so just shift a 0
482 Demod
.parityBits
<<= 1;
484 return TRUE
; // we are finished with decoding the raw data sequence
485 } else { // nothing received. Start over
493 return FALSE
; // not finished yet, need more data
496 //=============================================================================
497 // Finally, a `sniffer' for ISO 14443 Type A
498 // Both sides of communication!
499 //=============================================================================
501 //-----------------------------------------------------------------------------
502 // Record the sequence of commands sent by the reader to the tag, with
503 // triggering so that we start recording at the point that the tag is moved
505 //-----------------------------------------------------------------------------
506 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
508 // bit 0 - trigger from first card answer
509 // bit 1 - trigger from first reader 7-bit request
513 iso14a_clear_trace();
514 iso14a_set_tracing(TRUE
);
516 // We won't start recording the frames that we acquire until we trigger;
517 // a good trigger condition to get started is probably when we see a
518 // response from the tag.
519 // triggered == FALSE -- to wait first for card
520 bool triggered
= !(param
& 0x03);
522 // The command (reader -> tag) that we're receiving.
523 // The length of a received command will in most cases be no more than 18 bytes.
524 // So 32 should be enough!
525 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
526 // The response (tag -> reader) that we're receiving.
527 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
529 // As we receive stuff, we copy it from receivedCmd or receivedResponse
530 // into trace, along with its length and other annotations.
531 //uint8_t *trace = (uint8_t *)BigBuf;
533 // The DMA buffer, used to stream samples from the FPGA
534 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
535 uint8_t *data
= dmaBuf
;
536 uint8_t previous_data
= 0;
539 bool TagIsActive
= FALSE
;
540 bool ReaderIsActive
= FALSE
;
542 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
544 // Set up the demodulator for tag -> reader responses.
545 Demod
.output
= receivedResponse
;
547 // Set up the demodulator for the reader -> tag commands
548 Uart
.output
= receivedCmd
;
550 // Setup and start DMA.
551 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
553 // And now we loop, receiving samples.
554 for(uint32_t rsamples
= 0; TRUE
; ) {
557 DbpString("cancelled by button");
564 int register readBufDataP
= data
- dmaBuf
;
565 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
566 if (readBufDataP
<= dmaBufDataP
){
567 dataLen
= dmaBufDataP
- readBufDataP
;
569 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
571 // test for length of buffer
572 if(dataLen
> maxDataLen
) {
573 maxDataLen
= dataLen
;
575 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
579 if(dataLen
< 1) continue;
581 // primary buffer was stopped( <-- we lost data!
582 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
583 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
584 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
585 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
587 // secondary buffer sets as primary, secondary buffer was stopped
588 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
589 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
590 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
595 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
597 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
598 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
599 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
602 // check - if there is a short 7bit request from reader
603 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
606 if (!LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, Uart
.parityBits
, TRUE
)) break;
607 if (!LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, 0, TRUE
)) break;
609 /* And ready to receive another command. */
611 /* And also reset the demod code, which might have been */
612 /* false-triggered by the commands from the reader. */
616 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
619 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
620 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
621 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
624 if (!LogTrace(receivedResponse
, Demod
.len
, Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, Demod
.parityBits
, FALSE
)) break;
625 if (!LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, 0, FALSE
)) break;
627 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
629 // And ready to receive another response.
633 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
637 previous_data
= *data
;
640 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
645 DbpString("COMMAND FINISHED");
648 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
649 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen
, (uint32_t)Uart
.output
[0]);
653 //-----------------------------------------------------------------------------
654 // Prepare tag messages
655 //-----------------------------------------------------------------------------
656 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, int len
, uint32_t dwParity
)
662 // Correction bit, might be removed when not needed
667 ToSendStuffBit(1); // 1
673 ToSend
[++ToSendMax
] = SEC_D
;
674 LastProxToAirDuration
= 8 * ToSendMax
- 4;
676 for(i
= 0; i
< len
; i
++) {
681 for(j
= 0; j
< 8; j
++) {
683 ToSend
[++ToSendMax
] = SEC_D
;
685 ToSend
[++ToSendMax
] = SEC_E
;
690 // Get the parity bit
691 //if ((dwParity >> i) & 0x01) {
692 if (oddparity(cmd
[i
]) & 0x01) {
693 ToSend
[++ToSendMax
] = SEC_D
;
694 LastProxToAirDuration
= 8 * ToSendMax
- 4;
696 ToSend
[++ToSendMax
] = SEC_E
;
697 LastProxToAirDuration
= 8 * ToSendMax
;
702 ToSend
[++ToSendMax
] = SEC_F
;
704 // Convert from last byte pos to length
708 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
){
709 CodeIso14443aAsTagPar(cmd
, len
, GetParity(cmd
, len
));
713 static void Code4bitAnswerAsTag(uint8_t cmd
)
719 // Correction bit, might be removed when not needed
724 ToSendStuffBit(1); // 1
730 ToSend
[++ToSendMax
] = SEC_D
;
733 for(i
= 0; i
< 4; i
++) {
735 ToSend
[++ToSendMax
] = SEC_D
;
736 LastProxToAirDuration
= 8 * ToSendMax
- 4;
738 ToSend
[++ToSendMax
] = SEC_E
;
739 LastProxToAirDuration
= 8 * ToSendMax
;
745 ToSend
[++ToSendMax
] = SEC_F
;
747 // Convert from last byte pos to length
751 //-----------------------------------------------------------------------------
752 // Wait for commands from reader
753 // Stop when button is pressed
754 // Or return TRUE when command is captured
755 //-----------------------------------------------------------------------------
756 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
758 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
759 // only, since we are receiving, not transmitting).
760 // Signal field is off with the appropriate LED
762 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
764 // Now run a `software UART' on the stream of incoming samples.
766 Uart
.output
= received
;
769 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
774 if(BUTTON_PRESS()) return FALSE
;
776 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
777 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
778 if(MillerDecoding(b
, 0)) {
786 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
);
787 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
788 int EmSend4bit(uint8_t resp
);
789 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
790 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
791 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
);
792 int EmSendCmd(uint8_t *resp
, int respLen
);
793 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
);
794 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
795 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
);
797 static uint8_t* free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
804 uint32_t ProxToAirDuration
;
805 } tag_response_info_t
;
807 void reset_free_buffer() {
808 free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
811 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
812 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
813 // This will need the following byte array for a modulation sequence
814 // 144 data bits (18 * 8)
817 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
818 // 1 just for the case
820 // 166 bytes, since every bit that needs to be send costs us a byte
823 // Prepare the tag modulation bits from the message
824 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
826 // Make sure we do not exceed the free buffer space
827 if (ToSendMax
> max_buffer_size
) {
828 Dbprintf("Out of memory, when modulating bits for tag answer:");
829 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
833 // Copy the byte array, used for this modulation to the buffer position
834 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
836 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
837 response_info
->modulation_n
= ToSendMax
;
838 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
843 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
844 // Retrieve and store the current buffer index
845 response_info
->modulation
= free_buffer_pointer
;
847 // Determine the maximum size we can use from our buffer
848 size_t max_buffer_size
= (((uint8_t *)BigBuf
)+FREE_BUFFER_OFFSET
+FREE_BUFFER_SIZE
)-free_buffer_pointer
;
850 // Forward the prepare tag modulation function to the inner function
851 if (prepare_tag_modulation(response_info
,max_buffer_size
)) {
852 // Update the free buffer offset
853 free_buffer_pointer
+= ToSendMax
;
860 //-----------------------------------------------------------------------------
861 // Main loop of simulated tag: receive commands from reader, decide what
862 // response to send, and send it.
863 //-----------------------------------------------------------------------------
864 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
866 // Enable and clear the trace
867 iso14a_clear_trace();
868 iso14a_set_tracing(TRUE
);
872 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
873 uint8_t response1
[2];
876 case 1: { // MIFARE Classic
877 // Says: I am Mifare 1k - original line
882 case 2: { // MIFARE Ultralight
883 // Says: I am a stupid memory tag, no crypto
888 case 3: { // MIFARE DESFire
889 // Says: I am a DESFire tag, ph33r me
894 case 4: { // ISO/IEC 14443-4
895 // Says: I am a javacard (JCOP)
900 case 5: { // MIFARE TNP3XXX
907 Dbprintf("Error: unkown tagtype (%d)",tagType
);
912 // The second response contains the (mandatory) first 24 bits of the UID
913 uint8_t response2
[5];
915 // Check if the uid uses the (optional) part
916 uint8_t response2a
[5];
919 num_to_bytes(uid_1st
,3,response2
+1);
920 num_to_bytes(uid_2nd
,4,response2a
);
921 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
923 // Configure the ATQA and SAK accordingly
924 response1
[0] |= 0x40;
927 num_to_bytes(uid_1st
,4,response2
);
928 // Configure the ATQA and SAK accordingly
929 response1
[0] &= 0xBF;
933 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
934 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
936 // Prepare the mandatory SAK (for 4 and 7 byte UID)
937 uint8_t response3
[3];
939 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
941 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
942 uint8_t response3a
[3];
943 response3a
[0] = sak
& 0xFB;
944 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
946 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
947 uint8_t response6
[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
948 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
950 #define TAG_RESPONSE_COUNT 7
951 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
952 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
953 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
954 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
955 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
956 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
957 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
958 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
961 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
962 // Such a response is less time critical, so we can prepare them on the fly
963 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
964 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
965 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
966 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
967 tag_response_info_t dynamic_response_info
= {
968 .response
= dynamic_response_buffer
,
970 .modulation
= dynamic_modulation_buffer
,
974 // Reset the offset pointer of the free buffer
977 // Prepare the responses of the anticollision phase
978 // there will be not enough time to do this at the moment the reader sends it REQA
979 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
980 prepare_allocated_tag_modulation(&responses
[i
]);
983 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
986 // To control where we are in the protocol
990 // Just to allow some checks
995 // We need to listen to the high-frequency, peak-detected path.
996 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
999 tag_response_info_t
* p_response
;
1003 // Clean receive command buffer
1005 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, RECV_CMD_SIZE
)) {
1006 DbpString("Button press");
1012 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1013 // Okay, look at the command now.
1015 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1016 p_response
= &responses
[0]; order
= 1;
1017 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1018 p_response
= &responses
[0]; order
= 6;
1019 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1020 p_response
= &responses
[1]; order
= 2;
1021 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1022 p_response
= &responses
[2]; order
= 20;
1023 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1024 p_response
= &responses
[3]; order
= 3;
1025 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1026 p_response
= &responses
[4]; order
= 30;
1027 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1028 EmSendCmdEx(data
+(4*receivedCmd
[0]),16,false);
1029 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1030 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1032 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1033 // DbpString("Reader requested we HALT!:");
1035 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1036 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1039 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1040 p_response
= &responses
[5]; order
= 7;
1041 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1042 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1043 EmSend4bit(CARD_NACK_NA
);
1046 p_response
= &responses
[6]; order
= 70;
1048 } else if (order
== 7 && len
== 8) { // Received authentication request
1050 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1051 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1053 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1054 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1055 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1057 // Check for ISO 14443A-4 compliant commands, look at left nibble
1058 switch (receivedCmd
[0]) {
1061 case 0x0A: { // IBlock (command)
1062 dynamic_response_info
.response
[0] = receivedCmd
[0];
1063 dynamic_response_info
.response
[1] = 0x00;
1064 dynamic_response_info
.response
[2] = 0x90;
1065 dynamic_response_info
.response
[3] = 0x00;
1066 dynamic_response_info
.response_n
= 4;
1070 case 0x1B: { // Chaining command
1071 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1072 dynamic_response_info
.response_n
= 2;
1077 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1078 dynamic_response_info
.response_n
= 2;
1082 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1083 dynamic_response_info
.response_n
= 2;
1087 case 0xC2: { // Readers sends deselect command
1088 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1089 dynamic_response_info
.response_n
= 2;
1093 // Never seen this command before
1095 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1096 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1098 Dbprintf("Received unknown command (len=%d):",len
);
1099 Dbhexdump(len
,receivedCmd
,false);
1101 dynamic_response_info
.response_n
= 0;
1105 if (dynamic_response_info
.response_n
> 0) {
1106 // Copy the CID from the reader query
1107 dynamic_response_info
.response
[1] = receivedCmd
[1];
1109 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1110 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1111 dynamic_response_info
.response_n
+= 2;
1113 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1114 Dbprintf("Error preparing tag response");
1116 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1117 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1121 p_response
= &dynamic_response_info
;
1125 // Count number of wakeups received after a halt
1126 if(order
== 6 && lastorder
== 5) { happened
++; }
1128 // Count number of other messages after a halt
1129 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1131 if(cmdsRecvd
> 999) {
1132 DbpString("1000 commands later...");
1137 if (p_response
!= NULL
) {
1138 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1139 // do the tracing for the previous reader request and this tag answer:
1140 EmLogTrace(Uart
.output
,
1142 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1143 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1145 p_response
->response
,
1146 p_response
->response_n
,
1147 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1148 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1149 SwapBits(GetParity(p_response
->response
, p_response
->response_n
), p_response
->response_n
));
1153 Dbprintf("Trace Full. Simulation stopped.");
1158 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1163 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1164 // of bits specified in the delay parameter.
1165 void PrepareDelayedTransfer(uint16_t delay
)
1167 uint8_t bitmask
= 0;
1168 uint8_t bits_to_shift
= 0;
1169 uint8_t bits_shifted
= 0;
1173 for (uint16_t i
= 0; i
< delay
; i
++) {
1174 bitmask
|= (0x01 << i
);
1176 ToSend
[ToSendMax
++] = 0x00;
1177 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1178 bits_to_shift
= ToSend
[i
] & bitmask
;
1179 ToSend
[i
] = ToSend
[i
] >> delay
;
1180 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1181 bits_shifted
= bits_to_shift
;
1187 //-------------------------------------------------------------------------------------
1188 // Transmit the command (to the tag) that was placed in ToSend[].
1189 // Parameter timing:
1190 // if NULL: transfer at next possible time, taking into account
1191 // request guard time and frame delay time
1192 // if == 0: transfer immediately and return time of transfer
1193 // if != 0: delay transfer until time specified
1194 //-------------------------------------------------------------------------------------
1195 static void TransmitFor14443a(const uint8_t *cmd
, int len
, uint32_t *timing
)
1198 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1200 uint32_t ThisTransferTime
= 0;
1203 if(*timing
== 0) { // Measure time
1204 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1206 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1208 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1209 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1210 LastTimeProxToAirStart
= *timing
;
1212 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1213 while(GetCountSspClk() < ThisTransferTime
);
1214 LastTimeProxToAirStart
= ThisTransferTime
;
1218 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1222 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1223 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1231 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1235 //-----------------------------------------------------------------------------
1236 // Prepare reader command (in bits, support short frames) to send to FPGA
1237 //-----------------------------------------------------------------------------
1238 void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd
, int bits
, uint32_t dwParity
)
1246 // Start of Communication (Seq. Z)
1247 ToSend
[++ToSendMax
] = SEC_Z
;
1248 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1251 size_t bytecount
= nbytes(bits
);
1252 // Generate send structure for the data bits
1253 for (i
= 0; i
< bytecount
; i
++) {
1254 // Get the current byte to send
1256 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1258 for (j
= 0; j
< bitsleft
; j
++) {
1261 ToSend
[++ToSendMax
] = SEC_X
;
1262 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1267 ToSend
[++ToSendMax
] = SEC_Z
;
1268 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1271 ToSend
[++ToSendMax
] = SEC_Y
;
1278 // Only transmit (last) parity bit if we transmitted a complete byte
1280 // Get the parity bit
1281 if ((dwParity
>> i
) & 0x01) {
1283 ToSend
[++ToSendMax
] = SEC_X
;
1284 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1289 ToSend
[++ToSendMax
] = SEC_Z
;
1290 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1293 ToSend
[++ToSendMax
] = SEC_Y
;
1300 // End of Communication: Logic 0 followed by Sequence Y
1303 ToSend
[++ToSendMax
] = SEC_Z
;
1304 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1307 ToSend
[++ToSendMax
] = SEC_Y
;
1310 ToSend
[++ToSendMax
] = SEC_Y
;
1312 // Convert to length of command:
1316 //-----------------------------------------------------------------------------
1317 // Prepare reader command to send to FPGA
1318 //-----------------------------------------------------------------------------
1319 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1321 CodeIso14443aBitsAsReaderPar(cmd
,len
*8,dwParity
);
1324 //-----------------------------------------------------------------------------
1325 // Wait for commands from reader
1326 // Stop when button is pressed (return 1) or field was gone (return 2)
1327 // Or return 0 when command is captured
1328 //-----------------------------------------------------------------------------
1329 static int EmGetCmd(uint8_t *received
, int *len
)
1333 uint32_t timer
= 0, vtime
= 0;
1337 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1338 // only, since we are receiving, not transmitting).
1339 // Signal field is off with the appropriate LED
1341 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1343 // Set ADC to read field strength
1344 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1345 AT91C_BASE_ADC
->ADC_MR
=
1346 ADC_MODE_PRESCALE(32) |
1347 ADC_MODE_STARTUP_TIME(16) |
1348 ADC_MODE_SAMPLE_HOLD_TIME(8);
1349 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1351 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1353 // Now run a 'software UART' on the stream of incoming samples.
1355 Uart
.output
= received
;
1358 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1363 if (BUTTON_PRESS()) return 1;
1365 // test if the field exists
1366 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1368 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1369 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1370 if (analogCnt
>= 32) {
1371 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1372 vtime
= GetTickCount();
1373 if (!timer
) timer
= vtime
;
1374 // 50ms no field --> card to idle state
1375 if (vtime
- timer
> 50) return 2;
1377 if (timer
) timer
= 0;
1383 // receive and test the miller decoding
1384 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1385 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1386 if(MillerDecoding(b
, 0)) {
1396 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
)
1400 uint32_t ThisTransferTime
;
1402 // Modulate Manchester
1403 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1405 // include correction bit if necessary
1406 if (Uart
.parityBits
& 0x01) {
1407 correctionNeeded
= TRUE
;
1409 if(correctionNeeded
) {
1410 // 1236, so correction bit needed
1416 // clear receiving shift register and holding register
1417 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1418 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1419 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1420 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1422 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1423 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1424 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1425 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1428 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1431 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1434 for(; i
<= respLen
; ) {
1435 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1436 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1437 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1440 if(BUTTON_PRESS()) {
1445 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1446 for (i
= 0; i
< 2 ; ) {
1447 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1448 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1449 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1454 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1459 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1460 Code4bitAnswerAsTag(resp
);
1461 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1462 // do the tracing for the previous reader request and this tag answer:
1463 EmLogTrace(Uart
.output
,
1465 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1466 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1470 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1471 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1472 SwapBits(GetParity(&resp
, 1), 1));
1476 int EmSend4bit(uint8_t resp
){
1477 return EmSend4bitEx(resp
, false);
1480 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
){
1481 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1482 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1483 // do the tracing for the previous reader request and this tag answer:
1484 EmLogTrace(Uart
.output
,
1486 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1487 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1491 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1492 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1493 SwapBits(GetParity(resp
, respLen
), respLen
));
1497 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
){
1498 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, GetParity(resp
, respLen
));
1501 int EmSendCmd(uint8_t *resp
, int respLen
){
1502 return EmSendCmdExPar(resp
, respLen
, false, GetParity(resp
, respLen
));
1505 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
){
1506 return EmSendCmdExPar(resp
, respLen
, false, par
);
1509 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
1510 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
)
1513 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1514 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1515 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1516 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1517 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1518 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1519 reader_EndTime
= tag_StartTime
- exact_fdt
;
1520 reader_StartTime
= reader_EndTime
- reader_modlen
;
1521 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_Parity
, TRUE
)) {
1523 } else if (!LogTrace(NULL
, 0, reader_EndTime
, 0, TRUE
)) {
1525 } else if (!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_Parity
, FALSE
)) {
1528 return (!LogTrace(NULL
, 0, tag_EndTime
, 0, FALSE
));
1535 //-----------------------------------------------------------------------------
1536 // Wait a certain time for tag response
1537 // If a response is captured return TRUE
1538 // If it takes too long return FALSE
1539 //-----------------------------------------------------------------------------
1540 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint16_t offset
, int maxLen
)
1544 // Set FPGA mode to "reader listen mode", no modulation (listen
1545 // only, since we are receiving, not transmitting).
1546 // Signal field is on with the appropriate LED
1548 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1550 // Now get the answer from the card
1552 Demod
.output
= receivedResponse
;
1555 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1561 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1562 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1563 if(ManchesterDecoding(b
, offset
, 0)) {
1564 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1566 } else if(c
++ > iso14a_timeout
) {
1573 void ReaderTransmitBitsPar(uint8_t* frame
, int bits
, uint32_t par
, uint32_t *timing
)
1576 CodeIso14443aBitsAsReaderPar(frame
,bits
,par
);
1578 // Send command to tag
1579 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1583 // Log reader command in trace buffer
1585 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1586 LogTrace(NULL
, 0, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, 0, TRUE
);
1590 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
, uint32_t *timing
)
1592 ReaderTransmitBitsPar(frame
,len
*8,par
, timing
);
1595 void ReaderTransmitBits(uint8_t* frame
, int len
, uint32_t *timing
)
1597 // Generate parity and redirect
1598 ReaderTransmitBitsPar(frame
,len
,GetParity(frame
,len
/8), timing
);
1601 void ReaderTransmit(uint8_t* frame
, int len
, uint32_t *timing
)
1603 // Generate parity and redirect
1604 ReaderTransmitBitsPar(frame
,len
*8,GetParity(frame
,len
), timing
);
1607 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
)
1609 if (!GetIso14443aAnswerFromTag(receivedAnswer
,offset
,160)) return FALSE
;
1611 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1612 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1617 int ReaderReceive(uint8_t* receivedAnswer
)
1619 return ReaderReceiveOffset(receivedAnswer
, 0);
1622 int ReaderReceivePar(uint8_t *receivedAnswer
, uint32_t *parptr
)
1624 if (!GetIso14443aAnswerFromTag(receivedAnswer
,0,160)) return FALSE
;
1626 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1627 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1629 *parptr
= Demod
.parityBits
;
1633 /* performs iso14443a anticollision procedure
1634 * fills the uid pointer unless NULL
1635 * fills resp_data unless NULL */
1636 int iso14443a_select_card(byte_t
* uid_ptr
, iso14a_card_select_t
* p_hi14a_card
, uint32_t* cuid_ptr
) {
1637 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1638 uint8_t sel_all
[] = { 0x93,0x20 };
1639 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1640 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1641 uint8_t* resp
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
); // was 3560 - tied to other size changes
1643 size_t uid_resp_len
;
1645 uint8_t sak
= 0x04; // cascade uid
1646 int cascade_level
= 0;
1649 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1650 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1653 if(!ReaderReceive(resp
)) return 0;
1654 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1657 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1658 p_hi14a_card
->uidlen
= 0;
1659 memset(p_hi14a_card
->uid
,0,10);
1664 memset(uid_ptr
,0,10);
1667 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1668 // which case we need to make a cascade 2 request and select - this is a long UID
1669 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1670 for(; sak
& 0x04; cascade_level
++) {
1671 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1672 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1675 ReaderTransmit(sel_all
,sizeof(sel_all
), NULL
);
1676 if (!ReaderReceive(resp
)) return 0;
1678 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1679 memset(uid_resp
, 0, 4);
1680 uint16_t uid_resp_bits
= 0;
1681 uint16_t collision_answer_offset
= 0;
1682 // anti-collision-loop:
1683 while (Demod
.collisionPos
) {
1684 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1685 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1686 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1687 uid_resp
[uid_resp_bits
& 0xf8] |= UIDbit
<< (uid_resp_bits
% 8);
1689 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1691 // construct anticollosion command:
1692 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1693 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1694 sel_uid
[2+i
] = uid_resp
[i
];
1696 collision_answer_offset
= uid_resp_bits
%8;
1697 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1698 if (!ReaderReceiveOffset(resp
, collision_answer_offset
)) return 0;
1700 // finally, add the last bits and BCC of the UID
1701 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1702 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1703 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1706 } else { // no collision, use the response to SELECT_ALL as current uid
1707 memcpy(uid_resp
,resp
,4);
1712 // calculate crypto UID. Always use last 4 Bytes.
1714 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1717 // Construct SELECT UID command
1718 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1719 memcpy(sel_uid
+2,uid_resp
,4); // the UID
1720 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1721 AppendCrc14443a(sel_uid
,7); // calculate and add CRC
1722 ReaderTransmit(sel_uid
,sizeof(sel_uid
), NULL
);
1725 if (!ReaderReceive(resp
)) return 0;
1728 //Dbprintf("SAK: %02x",resp[0]);
1730 // Test if more parts of the uid are comming
1731 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1732 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1733 // http://www.nxp.com/documents/application_note/AN10927.pdf
1734 // This was earlier:
1735 //memcpy(uid_resp, uid_resp + 1, 3);
1736 // But memcpy should not be used for overlapping arrays,
1737 // and memmove appears to not be available in the arm build.
1738 // So this has been replaced with a for-loop:
1739 for(int xx
= 0; xx
< 3; xx
++)
1740 uid_resp
[xx
] = uid_resp
[xx
+1];
1745 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1749 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1750 p_hi14a_card
->uidlen
+= uid_resp_len
;
1755 p_hi14a_card
->sak
= sak
;
1756 p_hi14a_card
->ats_len
= 0;
1759 if( (sak
& 0x20) == 0) {
1760 return 2; // non iso14443a compliant tag
1763 // Request for answer to select
1764 AppendCrc14443a(rats
, 2);
1765 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1767 if (!(len
= ReaderReceive(resp
))) return 0;
1770 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1771 p_hi14a_card
->ats_len
= len
;
1774 // reset the PCB block number
1775 iso14_pcb_blocknum
= 0;
1779 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1780 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1781 // Set up the synchronous serial port
1783 // connect Demodulated Signal to ADC:
1784 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1786 // Signal field is on with the appropriate LED
1787 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
|| fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1792 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1799 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1800 iso14a_set_timeout(1050); // 10ms default 10*105 =
1803 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1804 uint8_t real_cmd
[cmd_len
+4];
1805 real_cmd
[0] = 0x0a; //I-Block
1806 // put block number into the PCB
1807 real_cmd
[0] |= iso14_pcb_blocknum
;
1808 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1809 memcpy(real_cmd
+2, cmd
, cmd_len
);
1810 AppendCrc14443a(real_cmd
,cmd_len
+2);
1812 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1813 size_t len
= ReaderReceive(data
);
1814 uint8_t * data_bytes
= (uint8_t *) data
;
1816 return 0; //DATA LINK ERROR
1817 // if we received an I- or R(ACK)-Block with a block number equal to the
1818 // current block number, toggle the current block number
1819 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1820 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1821 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1822 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1824 iso14_pcb_blocknum
^= 1;
1830 //-----------------------------------------------------------------------------
1831 // Read an ISO 14443a tag. Send out commands and store answers.
1833 //-----------------------------------------------------------------------------
1834 void ReaderIso14443a(UsbCommand
*c
)
1836 iso14a_command_t param
= c
->arg
[0];
1837 uint8_t *cmd
= c
->d
.asBytes
;
1838 size_t len
= c
->arg
[1] & 0xFFFF;
1839 size_t lenbits
= c
->arg
[1] >> 16;
1841 byte_t buf
[USB_CMD_DATA_SIZE
];
1843 if(param
& ISO14A_CONNECT
) {
1844 iso14a_clear_trace();
1847 iso14a_set_tracing(TRUE
);
1849 if(param
& ISO14A_REQUEST_TRIGGER
) {
1850 iso14a_set_trigger(TRUE
);
1853 if(param
& ISO14A_CONNECT
) {
1854 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1855 if(!(param
& ISO14A_NO_SELECT
)) {
1856 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1857 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1858 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1862 if(param
& ISO14A_SET_TIMEOUT
) {
1863 iso14a_set_timeout(c
->arg
[2]);
1866 if(param
& ISO14A_APDU
) {
1867 arg0
= iso14_apdu(cmd
, len
, buf
);
1868 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1871 if(param
& ISO14A_RAW
) {
1872 if(param
& ISO14A_APPEND_CRC
) {
1873 AppendCrc14443a(cmd
,len
);
1879 ReaderTransmitBitsPar(cmd
,lenbits
,GetParity(cmd
,lenbits
/8), NULL
);
1881 ReaderTransmit(cmd
,len
, NULL
);
1883 arg0
= ReaderReceive(buf
);
1884 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1887 if(param
& ISO14A_REQUEST_TRIGGER
) {
1888 iso14a_set_trigger(FALSE
);
1891 if(param
& ISO14A_NO_DISCONNECT
) {
1895 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1900 // Determine the distance between two nonces.
1901 // Assume that the difference is small, but we don't know which is first.
1902 // Therefore try in alternating directions.
1903 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1906 uint32_t nttmp1
, nttmp2
;
1908 if (nt1
== nt2
) return 0;
1913 for (i
= 1; i
< 32768; i
++) {
1914 nttmp1
= prng_successor(nttmp1
, 1);
1915 if (nttmp1
== nt2
) return i
;
1916 nttmp2
= prng_successor(nttmp2
, 1);
1917 if (nttmp2
== nt1
) return -i
;
1920 return(-99999); // either nt1 or nt2 are invalid nonces
1924 //-----------------------------------------------------------------------------
1925 // Recover several bits of the cypher stream. This implements (first stages of)
1926 // the algorithm described in "The Dark Side of Security by Obscurity and
1927 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1928 // (article by Nicolas T. Courtois, 2009)
1929 //-----------------------------------------------------------------------------
1930 void ReaderMifare(bool first_try
)
1933 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1934 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1935 static uint8_t mf_nr_ar3
;
1937 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1939 iso14a_clear_trace();
1940 iso14a_set_tracing(TRUE
);
1944 //byte_t par_mask = 0xff;
1945 static byte_t par_low
= 0;
1951 uint32_t previous_nt
= 0;
1952 static uint32_t nt_attacked
= 0;
1953 byte_t par_list
[8] = {0x00};
1954 byte_t ks_list
[8] = {0x00};
1956 static uint32_t sync_time
;
1957 static uint32_t sync_cycles
;
1958 int catch_up_cycles
= 0;
1959 int last_catch_up
= 0;
1960 uint16_t consecutive_resyncs
= 0;
1965 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
1966 sync_time
= GetCountSspClk() & 0xfffffff8;
1967 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1973 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1974 // nt_attacked = prng_successor(nt_attacked, 1);
1976 mf_nr_ar
[3] = mf_nr_ar3
;
1985 Dbprintf("Mifare: Before loopen");
1986 for(uint16_t i
= 0; TRUE
; i
++) {
1990 // Test if the action was cancelled
1991 if(BUTTON_PRESS()) {
1997 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1998 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2002 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2003 catch_up_cycles
= 0;
2005 // if we missed the sync time already, advance to the next nonce repeat
2006 while(GetCountSspClk() > sync_time
) {
2007 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2010 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2011 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2013 // Receive the (4 Byte) "random" nonce
2014 if (!ReaderReceive(receivedAnswer
)) {
2015 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2020 nt
= bytes_to_num(receivedAnswer
, 4);
2022 // Transmit reader nonce with fake par
2023 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2025 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2026 int nt_distance
= dist_nt(previous_nt
, nt
);
2027 if (nt_distance
== 0) {
2031 if (nt_distance
== -99999) { // invalid nonce received, try again
2034 sync_cycles
= (sync_cycles
- nt_distance
);
2035 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2040 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2041 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2042 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2043 catch_up_cycles
= 0;
2046 if (catch_up_cycles
== last_catch_up
) {
2047 consecutive_resyncs
++;
2050 last_catch_up
= catch_up_cycles
;
2051 consecutive_resyncs
= 0;
2053 if (consecutive_resyncs
< 3) {
2054 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2057 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2058 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2063 consecutive_resyncs
= 0;
2065 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2066 if (ReaderReceive(receivedAnswer
))
2068 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2072 par_low
= par
& 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2076 if(led_on
) LED_B_ON(); else LED_B_OFF();
2078 par_list
[nt_diff
] = par
;
2079 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2081 // Test if the information is complete
2082 if (nt_diff
== 0x07) {
2087 nt_diff
= (nt_diff
+ 1) & 0x07;
2088 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2091 if (nt_diff
== 0 && first_try
)
2095 par
= (((par
>> 3) + 1) << 3) | par_low
;
2101 mf_nr_ar
[3] &= 0x1F;
2104 memcpy(buf
+ 0, uid
, 4);
2105 num_to_bytes(nt
, 4, buf
+ 4);
2106 memcpy(buf
+ 8, par_list
, 8);
2107 memcpy(buf
+ 16, ks_list
, 8);
2108 memcpy(buf
+ 24, mf_nr_ar
, 4);
2110 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2113 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2116 iso14a_set_tracing(FALSE
);
2120 *MIFARE 1K simulate.
2123 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2124 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2125 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2126 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2127 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2129 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2131 int cardSTATE
= MFEMUL_NOFIELD
;
2133 int vHf
= 0; // in mV
2135 uint32_t selTimer
= 0;
2136 uint32_t authTimer
= 0;
2139 uint8_t cardWRBL
= 0;
2140 uint8_t cardAUTHSC
= 0;
2141 uint8_t cardAUTHKEY
= 0xff; // no authentication
2142 uint32_t cardRr
= 0;
2144 //uint32_t rn_enc = 0;
2146 uint32_t cardINTREG
= 0;
2147 uint8_t cardINTBLOCK
= 0;
2148 struct Crypto1State mpcs
= {0, 0};
2149 struct Crypto1State
*pcs
;
2151 uint32_t numReads
= 0;//Counts numer of times reader read a block
2152 uint8_t* receivedCmd
= eml_get_bigbufptr_recbuf();
2153 uint8_t *response
= eml_get_bigbufptr_sendbuf();
2155 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2156 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2157 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2158 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2159 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2161 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2162 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2164 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2165 // This can be used in a reader-only attack.
2166 // (it can also be retrieved via 'hf 14a list', but hey...
2167 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2168 uint8_t ar_nr_collected
= 0;
2171 iso14a_clear_trace();
2172 iso14a_set_tracing(TRUE
);
2174 // Authenticate response - nonce
2175 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2177 //-- Determine the UID
2178 // Can be set from emulator memory, incoming data
2179 // and can be 7 or 4 bytes long
2180 if (flags
& FLAG_4B_UID_IN_DATA
)
2182 // 4B uid comes from data-portion of packet
2183 memcpy(rUIDBCC1
,datain
,4);
2184 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2186 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2187 // 7B uid comes from data-portion of packet
2188 memcpy(&rUIDBCC1
[1],datain
,3);
2189 memcpy(rUIDBCC2
, datain
+3, 4);
2192 // get UID from emul memory
2193 emlGetMemBt(receivedCmd
, 7, 1);
2194 _7BUID
= !(receivedCmd
[0] == 0x00);
2195 if (!_7BUID
) { // ---------- 4BUID
2196 emlGetMemBt(rUIDBCC1
, 0, 4);
2197 } else { // ---------- 7BUID
2198 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2199 emlGetMemBt(rUIDBCC2
, 3, 4);
2204 * Regardless of what method was used to set the UID, set fifth byte and modify
2205 * the ATQA for 4 or 7-byte UID
2207 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2211 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2214 // We need to listen to the high-frequency, peak-detected path.
2215 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2218 if (MF_DBGLEVEL
>= 1) {
2220 Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1
[0] , rUIDBCC1
[1] , rUIDBCC1
[2] , rUIDBCC1
[3]);
2222 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1
[0] , rUIDBCC1
[1] , rUIDBCC1
[2] , rUIDBCC1
[3],rUIDBCC2
[0],rUIDBCC2
[1] ,rUIDBCC2
[2] , rUIDBCC2
[3]);
2226 bool finished
= FALSE
;
2227 while (!BUTTON_PRESS() && !finished
) {
2230 // find reader field
2231 // Vref = 3300mV, and an 10:1 voltage divider on the input
2232 // can measure voltages up to 33000 mV
2233 if (cardSTATE
== MFEMUL_NOFIELD
) {
2234 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2235 if (vHf
> MF_MINFIELDV
) {
2236 cardSTATE_TO_IDLE();
2240 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2244 res
= EmGetCmd(receivedCmd
, &len
);
2245 if (res
== 2) { //Field is off!
2246 cardSTATE
= MFEMUL_NOFIELD
;
2249 } else if (res
== 1) {
2250 break; //return value 1 means button press
2253 // REQ or WUP request in ANY state and WUP in HALTED state
2254 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2255 selTimer
= GetTickCount();
2256 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2257 cardSTATE
= MFEMUL_SELECT1
;
2259 // init crypto block
2262 crypto1_destroy(pcs
);
2267 switch (cardSTATE
) {
2268 case MFEMUL_NOFIELD
:
2271 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2272 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2275 case MFEMUL_SELECT1
:{
2277 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2278 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2279 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2283 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2285 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2289 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2290 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2291 cuid
= bytes_to_num(rUIDBCC1
, 4);
2293 cardSTATE
= MFEMUL_WORK
;
2295 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2298 cardSTATE
= MFEMUL_SELECT2
;
2306 cardSTATE_TO_IDLE();
2307 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2308 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2311 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2312 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2315 if(ar_nr_collected
< 2){
2316 if(ar_nr_responses
[2] != ar
)
2317 {// Avoid duplicates... probably not necessary, ar should vary.
2318 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2319 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2320 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2321 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2327 crypto1_word(pcs
, ar
, 1);
2328 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2331 if (cardRr
!= prng_successor(nonce
, 64)){
2332 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr
, prng_successor(nonce
, 64));
2333 // Shouldn't we respond anything here?
2334 // Right now, we don't nack or anything, which causes the
2335 // reader to do a WUPA after a while. /Martin
2336 // -- which is the correct response. /piwi
2337 cardSTATE_TO_IDLE();
2338 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2339 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2343 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2345 num_to_bytes(ans
, 4, rAUTH_AT
);
2347 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2349 cardSTATE
= MFEMUL_WORK
;
2350 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2351 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2352 GetTickCount() - authTimer
);
2355 case MFEMUL_SELECT2
:{
2357 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2358 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2361 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2362 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2368 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2369 EmSendCmd(rSAK
, sizeof(rSAK
));
2370 cuid
= bytes_to_num(rUIDBCC2
, 4);
2371 cardSTATE
= MFEMUL_WORK
;
2373 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2377 // i guess there is a command). go into the work state.
2379 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2380 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2383 cardSTATE
= MFEMUL_WORK
;
2385 //intentional fall-through to the next case-stmt
2390 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2391 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2395 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2397 if(encrypted_data
) {
2399 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2402 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2403 authTimer
= GetTickCount();
2404 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2405 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2406 crypto1_destroy(pcs
);//Added by martin
2407 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2409 if (!encrypted_data
) { // first authentication
2410 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2412 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2413 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2414 } else { // nested authentication
2415 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2416 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2417 num_to_bytes(ans
, 4, rAUTH_AT
);
2419 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2420 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2421 cardSTATE
= MFEMUL_AUTH1
;
2425 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2426 // BUT... ACK --> NACK
2427 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2428 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2432 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2433 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2434 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2439 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2440 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2444 if(receivedCmd
[0] == 0x30 // read block
2445 || receivedCmd
[0] == 0xA0 // write block
2446 || receivedCmd
[0] == 0xC0 // inc
2447 || receivedCmd
[0] == 0xC1 // dec
2448 || receivedCmd
[0] == 0xC2 // restore
2449 || receivedCmd
[0] == 0xB0) { // transfer
2450 if (receivedCmd
[1] >= 16 * 4) {
2451 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2452 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2456 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2457 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2458 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2463 if (receivedCmd
[0] == 0x30) {
2464 if (MF_DBGLEVEL
>= 4) {
2465 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2467 emlGetMem(response
, receivedCmd
[1], 1);
2468 AppendCrc14443a(response
, 16);
2469 mf_crypto1_encrypt(pcs
, response
, 18, &par
);
2470 EmSendCmdPar(response
, 18, par
);
2472 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2473 Dbprintf("%d reads done, exiting", numReads
);
2479 if (receivedCmd
[0] == 0xA0) {
2480 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2481 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2482 cardSTATE
= MFEMUL_WRITEBL2
;
2483 cardWRBL
= receivedCmd
[1];
2486 // increment, decrement, restore
2487 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2488 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2489 if (emlCheckValBl(receivedCmd
[1])) {
2490 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2491 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2494 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2495 if (receivedCmd
[0] == 0xC1)
2496 cardSTATE
= MFEMUL_INTREG_INC
;
2497 if (receivedCmd
[0] == 0xC0)
2498 cardSTATE
= MFEMUL_INTREG_DEC
;
2499 if (receivedCmd
[0] == 0xC2)
2500 cardSTATE
= MFEMUL_INTREG_REST
;
2501 cardWRBL
= receivedCmd
[1];
2505 if (receivedCmd
[0] == 0xB0) {
2506 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2507 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2508 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2510 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2514 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2517 cardSTATE
= MFEMUL_HALTED
;
2518 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2519 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2520 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2524 if (receivedCmd
[0] == 0xe0) {//RATS
2525 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2528 // command not allowed
2529 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2530 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2533 case MFEMUL_WRITEBL2
:{
2535 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2536 emlSetMem(receivedCmd
, cardWRBL
, 1);
2537 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2538 cardSTATE
= MFEMUL_WORK
;
2540 cardSTATE_TO_IDLE();
2541 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2542 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2547 case MFEMUL_INTREG_INC
:{
2548 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2549 memcpy(&ans
, receivedCmd
, 4);
2550 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2551 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2552 cardSTATE_TO_IDLE();
2555 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2556 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2557 cardINTREG
= cardINTREG
+ ans
;
2558 cardSTATE
= MFEMUL_WORK
;
2561 case MFEMUL_INTREG_DEC
:{
2562 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2563 memcpy(&ans
, receivedCmd
, 4);
2564 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2565 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2566 cardSTATE_TO_IDLE();
2569 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2570 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2571 cardINTREG
= cardINTREG
- ans
;
2572 cardSTATE
= MFEMUL_WORK
;
2575 case MFEMUL_INTREG_REST
:{
2576 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2577 memcpy(&ans
, receivedCmd
, 4);
2578 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2579 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2580 cardSTATE_TO_IDLE();
2583 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2584 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2585 cardSTATE
= MFEMUL_WORK
;
2591 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2594 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2596 //May just aswell send the collected ar_nr in the response aswell
2597 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,0,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2600 if(flags
& FLAG_NR_AR_ATTACK
)
2602 if(ar_nr_collected
> 1) {
2603 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2604 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2605 ar_nr_responses
[0], // UID
2606 ar_nr_responses
[1], //NT
2607 ar_nr_responses
[2], //AR1
2608 ar_nr_responses
[3], //NR1
2609 ar_nr_responses
[6], //AR2
2610 ar_nr_responses
[7] //NR2
2613 Dbprintf("Failed to obtain two AR/NR pairs!");
2614 if(ar_nr_collected
>0) {
2615 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2616 ar_nr_responses
[0], // UID
2617 ar_nr_responses
[1], //NT
2618 ar_nr_responses
[2], //AR1
2619 ar_nr_responses
[3] //NR1
2624 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2629 //-----------------------------------------------------------------------------
2632 //-----------------------------------------------------------------------------
2633 void RAMFUNC
SniffMifare(uint8_t param
) {
2635 // bit 0 - trigger from first card answer
2636 // bit 1 - trigger from first reader 7-bit request
2638 // C(red) A(yellow) B(green)
2640 // init trace buffer
2641 iso14a_clear_trace();
2642 iso14a_set_tracing(TRUE
);
2644 // The command (reader -> tag) that we're receiving.
2645 // The length of a received command will in most cases be no more than 18 bytes.
2646 // So 32 should be enough!
2647 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
2648 // The response (tag -> reader) that we're receiving.
2649 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
2651 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2652 // into trace, along with its length and other annotations.
2653 //uint8_t *trace = (uint8_t *)BigBuf;
2655 // The DMA buffer, used to stream samples from the FPGA
2656 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
2657 uint8_t *data
= dmaBuf
;
2658 uint8_t previous_data
= 0;
2661 bool ReaderIsActive
= FALSE
;
2662 bool TagIsActive
= FALSE
;
2664 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2666 // Set up the demodulator for tag -> reader responses.
2667 Demod
.output
= receivedResponse
;
2669 // Set up the demodulator for the reader -> tag commands
2670 Uart
.output
= receivedCmd
;
2672 // Setup for the DMA.
2673 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2680 // And now we loop, receiving samples.
2681 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2683 if(BUTTON_PRESS()) {
2684 DbpString("cancelled by button");
2691 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2692 // check if a transaction is completed (timeout after 2000ms).
2693 // if yes, stop the DMA transfer and send what we have so far to the client
2694 if (MfSniffSend(2000)) {
2695 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2699 ReaderIsActive
= FALSE
;
2700 TagIsActive
= FALSE
;
2701 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2705 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2706 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2707 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2708 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2710 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2712 // test for length of buffer
2713 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2714 maxDataLen
= dataLen
;
2716 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2720 if(dataLen
< 1) continue;
2722 // primary buffer was stopped ( <-- we lost data!
2723 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2724 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2725 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2726 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2728 // secondary buffer sets as primary, secondary buffer was stopped
2729 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2730 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2731 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2736 if (sniffCounter
& 0x01) {
2738 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2739 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2740 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2742 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parityBits
, Uart
.bitCount
, TRUE
)) break;
2744 /* And ready to receive another command. */
2747 /* And also reset the demod code */
2750 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2753 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2754 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2755 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2758 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parityBits
, Demod
.bitCount
, FALSE
)) break;
2760 // And ready to receive another response.
2763 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2767 previous_data
= *data
;
2770 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2776 DbpString("COMMAND FINISHED");
2778 FpgaDisableSscDma();
2781 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);