]>
cvs.zerfleddert.de Git - proxmark3-svn/blob - tools/nonce2key/crapto1.c
3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
18 Copyright (C) 2008-2008 bla <blapost@gmail.com>
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut
[1 << 20];
25 static void __attribute__((constructor
)) fill_lut()
28 for(i
= 0; i
< 1 << 20; ++i
)
29 filterlut
[i
] = filter(i
);
31 #define filter(x) (filterlut[(x) & 0xfffff])
34 static void quicksort(uint32_t* const start
, uint32_t* const stop
)
36 uint32_t *it
= start
+ 1, *rit
= stop
, t
;
44 else if(*rit
> *start
)
47 t
= *it
, *it
= *rit
, *rit
= t
;
52 t
= *rit
, *rit
= *start
, *start
= t
;
54 quicksort(start
, rit
- 1);
55 quicksort(rit
+ 1, stop
);
58 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
60 static inline uint32_t* binsearch(uint32_t *start
, uint32_t *stop
)
62 uint32_t mid
, val
= *stop
& 0xff000000;
64 if(start
[mid
= (stop
- start
) >> 1] > val
)
72 /** update_contribution
73 * helper, calculates the partial linear feedback contributions and puts in MSB
76 update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
)
78 uint32_t p
= *item
>> 25;
80 p
= p
<< 1 | parity(*item
& mask1
);
81 p
= p
<< 1 | parity(*item
& mask2
);
82 *item
= p
<< 24 | (*item
& 0xffffff);
86 * using a bit of the keystream extend the table of possible lfsr states
89 extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
)
92 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
93 if(filter(*tbl
) ^ filter(*tbl
| 1)) {
94 *tbl
|= filter(*tbl
) ^ bit
;
95 update_contribution(tbl
, m1
, m2
);
97 } else if(filter(*tbl
) == bit
) {
100 update_contribution(tbl
, m1
, m2
);
102 update_contribution(tbl
, m1
, m2
);
107 /** extend_table_simple
108 * using a bit of the keystream extend the table of possible lfsr states
111 extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
)
113 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
114 if(filter(*tbl
) ^ filter(*tbl
| 1)) {
115 *tbl
|= filter(*tbl
) ^ bit
;
116 } else if(filter(*tbl
) == bit
) {
123 * recursively narrow down the search space, 4 bits of keystream at a time
125 static struct Crypto1State
*
126 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
,
127 uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
,
128 struct Crypto1State
*sl
, uint32_t in
)
133 for(e
= e_head
; e
<= e_tail
; ++e
) {
134 *e
= *e
<< 1 ^ parity(*e
& LF_POLY_EVEN
) ^ !!(in
& 4);
135 for(o
= o_head
; o
<= o_tail
; ++o
, ++sl
) {
137 sl
->odd
= *e
^ parity(*o
& LF_POLY_ODD
);
138 sl
[1].odd
= sl
[1].even
= 0;
144 for(i
= 0; i
< 4 && rem
--; i
++) {
148 extend_table(o_head
, &o_tail
, oks
& 1, LF_POLY_EVEN
<< 1 | 1,
149 LF_POLY_ODD
<< 1, 0);
153 extend_table(e_head
, &e_tail
, eks
& 1, LF_POLY_ODD
,
154 LF_POLY_EVEN
<< 1 | 1, in
& 3);
159 quicksort(o_head
, o_tail
);
160 quicksort(e_head
, e_tail
);
162 while(o_tail
>= o_head
&& e_tail
>= e_head
)
163 if(((*o_tail
^ *e_tail
) >> 24) == 0) {
164 o_tail
= binsearch(o_head
, o
= o_tail
);
165 e_tail
= binsearch(e_head
, e
= e_tail
);
166 sl
= recover(o_tail
--, o
, oks
,
167 e_tail
--, e
, eks
, rem
, sl
, in
);
169 else if(*o_tail
> *e_tail
)
170 o_tail
= binsearch(o_head
, o_tail
) - 1;
172 e_tail
= binsearch(e_head
, e_tail
) - 1;
177 * recover the state of the lfsr given 32 bits of the keystream
178 * additionally you can use the in parameter to specify the value
179 * that was fed into the lfsr at the time the keystream was generated
181 struct Crypto1State
* lfsr_recovery32(uint32_t ks2
, uint32_t in
)
183 struct Crypto1State
*statelist
;
184 uint32_t *odd_head
= 0, *odd_tail
= 0, oks
= 0;
185 uint32_t *even_head
= 0, *even_tail
= 0, eks
= 0;
188 for(i
= 31; i
>= 0; i
-= 2)
189 oks
= oks
<< 1 | BEBIT(ks2
, i
);
190 for(i
= 30; i
>= 0; i
-= 2)
191 eks
= eks
<< 1 | BEBIT(ks2
, i
);
193 odd_head
= odd_tail
= malloc(sizeof(uint32_t) << 21);
194 even_head
= even_tail
= malloc(sizeof(uint32_t) << 21);
195 statelist
= malloc(sizeof(struct Crypto1State
) << 18);
196 if(!odd_tail
-- || !even_tail
-- || !statelist
) {
202 statelist
->odd
= statelist
->even
= 0;
204 for(i
= 1 << 20; i
>= 0; --i
) {
205 if(filter(i
) == (oks
& 1))
207 if(filter(i
) == (eks
& 1))
211 for(i
= 0; i
< 4; i
++) {
212 extend_table_simple(odd_head
, &odd_tail
, (oks
>>= 1) & 1);
213 extend_table_simple(even_head
, &even_tail
, (eks
>>= 1) & 1);
216 in
= (in
>> 16 & 0xff) | (in
<< 16) | (in
& 0xff00);
217 recover(odd_head
, odd_tail
, oks
,
218 even_head
, even_tail
, eks
, 11, statelist
, in
<< 1);
226 static const uint32_t S1
[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
227 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
228 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
229 static const uint32_t S2
[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
230 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
231 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
232 0x7EC7EE90, 0x7F63F748, 0x79117020};
233 static const uint32_t T1
[] = {
234 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
235 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
236 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
237 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
238 static const uint32_t T2
[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
239 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
240 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
241 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
242 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
243 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
244 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD};
245 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
246 /** Reverse 64 bits of keystream into possible cipher states
247 * Variation mentioned in the paper. Somewhat optimized version
249 struct Crypto1State
* lfsr_recovery64(uint32_t ks2
, uint32_t ks3
)
251 struct Crypto1State
*statelist
, *sl
;
252 uint8_t oks
[32], eks
[32], hi
[32];
253 uint32_t low
= 0, win
= 0;
254 uint32_t *tail
, table
[1 << 16];
257 sl
= statelist
= malloc(sizeof(struct Crypto1State
) << 4);
260 sl
->odd
= sl
->even
= 0;
262 for(i
= 30; i
>= 0; i
-= 2) {
263 oks
[i
>> 1] = BEBIT(ks2
, i
);
264 oks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
266 for(i
= 31; i
>= 0; i
-= 2) {
267 eks
[i
>> 1] = BEBIT(ks2
, i
);
268 eks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
271 for(i
= 0xfffff; i
>= 0; --i
) {
272 if (filter(i
) != oks
[0])
276 for(j
= 1; tail
>= table
&& j
< 29; ++j
)
277 extend_table_simple(table
, &tail
, oks
[j
]);
282 for(j
= 0; j
< 19; ++j
)
283 low
= low
<< 1 | parity(i
& S1
[j
]);
284 for(j
= 0; j
< 32; ++j
)
285 hi
[j
] = parity(i
& T1
[j
]);
287 for(; tail
>= table
; --tail
) {
288 for(j
= 0; j
< 3; ++j
) {
290 *tail
|= parity((i
& C1
[j
]) ^ (*tail
& C2
[j
]));
291 if(filter(*tail
) != oks
[29 + j
])
295 for(j
= 0; j
< 19; ++j
)
296 win
= win
<< 1 | parity(*tail
& S2
[j
]);
299 for(j
= 0; j
< 32; ++j
) {
300 win
= win
<< 1 ^ hi
[j
] ^ parity(*tail
& T2
[j
]);
301 if(filter(win
) != eks
[j
])
305 *tail
= *tail
<< 1 | parity(LF_POLY_EVEN
& *tail
);
306 sl
->odd
= *tail
^ parity(LF_POLY_ODD
& win
);
309 sl
->odd
= sl
->even
= 0;
316 /** lfsr_rollback_bit
317 * Rollback the shift register in order to get previous states
319 uint8_t lfsr_rollback_bit(struct Crypto1State
*s
, uint32_t in
, int fb
)
326 t
= s
->odd
, s
->odd
= s
->even
, s
->even
= t
;
329 out
^= LF_POLY_EVEN
& (s
->even
>>= 1);
330 out
^= LF_POLY_ODD
& s
->odd
;
332 out
^= (ret
= filter(s
->odd
)) & !!fb
;
334 s
->even
|= parity(out
) << 23;
337 /** lfsr_rollback_byte
338 * Rollback the shift register in order to get previous states
340 uint8_t lfsr_rollback_byte(struct Crypto1State
*s
, uint32_t in
, int fb
)
343 for (i
= 7; i
>= 0; --i
)
344 ret
|= lfsr_rollback_bit(s
, BIT(in
, i
), fb
) << i
;
347 /** lfsr_rollback_word
348 * Rollback the shift register in order to get previous states
350 uint32_t lfsr_rollback_word(struct Crypto1State
*s
, uint32_t in
, int fb
)
354 for (i
= 31; i
>= 0; --i
)
355 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, i
), fb
) << (i
^ 24);
360 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
362 static uint16_t *dist
= 0;
363 int nonce_distance(uint32_t from
, uint32_t to
)
367 dist
= malloc(2 << 16);
370 for (x
= i
= 1; i
; ++i
) {
371 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
372 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
375 return (65535 + dist
[to
>> 16] - dist
[from
>> 16]) % 65535;
379 static uint32_t fastfwd
[2][8] = {
380 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
381 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
386 * Is an exported helper function from the common prefix attack
387 * Described in the "dark side" paper. It returns an -1 terminated array
388 * of possible partial(21 bit) secret state.
389 * The required keystream(ks) needs to contain the keystream that was used to
390 * encrypt the NACK which is observed when varying only the 3 last bits of Nr
391 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
393 uint32_t *lfsr_prefix_ks(uint8_t ks
[8], int isodd
)
395 uint32_t c
, entry
, *candidates
= malloc(4 << 10);
396 int i
, size
= 0, good
;
401 for(i
= 0; i
< 1 << 21; ++i
) {
402 for(c
= 0, good
= 1; good
&& c
< 8; ++c
) {
403 entry
= i
^ fastfwd
[isodd
][c
];
404 good
&= (BIT(ks
[c
], isodd
) == filter(entry
>> 1));
405 good
&= (BIT(ks
[c
], isodd
+ 2) == filter(entry
));
408 candidates
[size
++] = i
;
411 candidates
[size
] = -1;
417 * helper function which eliminates possible secret states using parity bits
419 static struct Crypto1State
*
420 check_pfx_parity(uint32_t prefix
, uint32_t rresp
, uint8_t parities
[8][8],
421 uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
)
423 uint32_t ks1
, nr
, ks2
, rr
, ks3
, c
, good
= 1;
425 for(c
= 0; good
&& c
< 8; ++c
) {
426 sl
->odd
= odd
^ fastfwd
[1][c
];
427 sl
->even
= even
^ fastfwd
[0][c
];
429 lfsr_rollback_bit(sl
, 0, 0);
430 lfsr_rollback_bit(sl
, 0, 0);
432 ks3
= lfsr_rollback_bit(sl
, 0, 0);
433 ks2
= lfsr_rollback_word(sl
, 0, 0);
434 ks1
= lfsr_rollback_word(sl
, prefix
| c
<< 5, 1);
436 nr
= ks1
^ (prefix
| c
<< 5);
439 good
&= parity(nr
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24);
440 good
&= parity(rr
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16);
441 good
&= parity(rr
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
, 8);
442 good
&= parity(rr
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
, 0);
443 good
&= parity(rr
& 0x000000ff) ^ parities
[c
][7] ^ ks3
;
450 /** lfsr_common_prefix
451 * Implentation of the common prefix attack.
452 * Requires the 28 bit constant prefix used as reader nonce (pfx)
453 * The reader response used (rr)
454 * The keystream used to encrypt the observed NACK's (ks)
455 * The parity bits (par)
456 * It returns a zero terminated list of possible cipher states after the
457 * tag nonce was fed in
460 lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8])
462 struct Crypto1State
*statelist
, *s
;
463 uint32_t *odd
, *even
, *o
, *e
, top
;
465 odd
= lfsr_prefix_ks(ks
, 1);
466 even
= lfsr_prefix_ks(ks
, 0);
468 s
= statelist
= malloc((sizeof *statelist
) << 20);
469 if(!s
|| !odd
|| !even
) {
475 for(o
= odd
; *o
+ 1; ++o
)
476 for(e
= even
; *e
+ 1; ++e
)
477 for(top
= 0; top
< 64; ++top
) {
479 *e
+= (!(top
& 7) + 1) << 21;
480 s
= check_pfx_parity(pfx
, rr
, par
, *o
, *e
, s
);
483 s
->odd
= s
->even
= 0;