1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
23 static uint32_t iso14a_timeout
;
26 // the block number for the ISO14443-4 PCB
27 static uint8_t iso14_pcb_blocknum
= 0;
32 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
33 #define REQUEST_GUARD_TIME (7000/16 + 1)
34 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
35 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
36 // bool LastCommandWasRequest = FALSE;
39 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
41 // When the PM acts as reader and is receiving tag data, it takes
42 // 3 ticks delay in the AD converter
43 // 16 ticks until the modulation detector completes and sets curbit
44 // 8 ticks until bit_to_arm is assigned from curbit
45 // 8*16 ticks for the transfer from FPGA to ARM
46 // 4*16 ticks until we measure the time
47 // - 8*16 ticks because we measure the time of the previous transfer
48 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
50 // When the PM acts as a reader and is sending, it takes
51 // 4*16 ticks until we can write data to the sending hold register
52 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
53 // 8 ticks until the first transfer starts
54 // 8 ticks later the FPGA samples the data
55 // 1 tick to assign mod_sig_coil
56 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
58 // When the PM acts as tag and is receiving it takes
59 // 2 ticks delay in the RF part (for the first falling edge),
60 // 3 ticks for the A/D conversion,
61 // 8 ticks on average until the start of the SSC transfer,
62 // 8 ticks until the SSC samples the first data
63 // 7*16 ticks to complete the transfer from FPGA to ARM
64 // 8 ticks until the next ssp_clk rising edge
65 // 4*16 ticks until we measure the time
66 // - 8*16 ticks because we measure the time of the previous transfer
67 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
69 // The FPGA will report its internal sending delay in
70 uint16_t FpgaSendQueueDelay
;
71 // the 5 first bits are the number of bits buffered in mod_sig_buf
72 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
75 // When the PM acts as tag and is sending, it takes
76 // 4*16 ticks until we can write data to the sending hold register
77 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
78 // 8 ticks until the first transfer starts
79 // 8 ticks later the FPGA samples the data
80 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
81 // + 1 tick to assign mod_sig_coil
82 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
84 // When the PM acts as sniffer and is receiving tag data, it takes
85 // 3 ticks A/D conversion
86 // 14 ticks to complete the modulation detection
87 // 8 ticks (on average) until the result is stored in to_arm
88 // + the delays in transferring data - which is the same for
89 // sniffing reader and tag data and therefore not relevant
90 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
92 // When the PM acts as sniffer and is receiving reader data, it takes
93 // 2 ticks delay in analogue RF receiver (for the falling edge of the
94 // start bit, which marks the start of the communication)
95 // 3 ticks A/D conversion
96 // 8 ticks on average until the data is stored in to_arm.
97 // + the delays in transferring data - which is the same for
98 // sniffing reader and tag data and therefore not relevant
99 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
101 //variables used for timing purposes:
102 //these are in ssp_clk cycles:
103 static uint32_t NextTransferTime
;
104 static uint32_t LastTimeProxToAirStart
;
105 static uint32_t LastProxToAirDuration
;
109 // CARD TO READER - manchester
110 // Sequence D: 11110000 modulation with subcarrier during first half
111 // Sequence E: 00001111 modulation with subcarrier during second half
112 // Sequence F: 00000000 no modulation with subcarrier
113 // READER TO CARD - miller
114 // Sequence X: 00001100 drop after half a period
115 // Sequence Y: 00000000 no drop
116 // Sequence Z: 11000000 drop at start
124 const uint8_t OddByteParity
[256] = {
125 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
126 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
144 void iso14a_set_trigger(bool enable
) {
149 void iso14a_set_timeout(uint32_t timeout
) {
150 iso14a_timeout
= timeout
;
151 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
155 void iso14a_set_ATS_timeout(uint8_t *ats
) {
161 if (ats
[0] > 1) { // there is a format byte T0
162 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
163 if ((ats
[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
168 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
169 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
171 iso14a_set_timeout(fwt
/(8*16));
177 //-----------------------------------------------------------------------------
178 // Generate the parity value for a byte sequence
180 //-----------------------------------------------------------------------------
181 byte_t
oddparity (const byte_t bt
)
183 return OddByteParity
[bt
];
186 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
188 uint16_t paritybit_cnt
= 0;
189 uint16_t paritybyte_cnt
= 0;
190 uint8_t parityBits
= 0;
192 for (uint16_t i
= 0; i
< iLen
; i
++) {
193 // Generate the parity bits
194 parityBits
|= ((OddByteParity
[pbtCmd
[i
]]) << (7-paritybit_cnt
));
195 if (paritybit_cnt
== 7) {
196 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
197 parityBits
= 0; // and advance to next Parity Byte
205 // save remaining parity bits
206 par
[paritybyte_cnt
] = parityBits
;
210 void AppendCrc14443a(uint8_t* data
, int len
)
212 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
215 void AppendCrc14443b(uint8_t* data
, int len
)
217 ComputeCrc14443(CRC_14443_B
,data
,len
,data
+len
,data
+len
+1);
221 //=============================================================================
222 // ISO 14443 Type A - Miller decoder
223 //=============================================================================
225 // This decoder is used when the PM3 acts as a tag.
226 // The reader will generate "pauses" by temporarily switching of the field.
227 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
228 // The FPGA does a comparison with a threshold and would deliver e.g.:
229 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230 // The Miller decoder needs to identify the following sequences:
231 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234 // Note 1: the bitstream may start at any time. We therefore need to sync.
235 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
236 //-----------------------------------------------------------------------------
239 // Lookup-Table to decide if 4 raw bits are a modulation.
240 // We accept the following:
241 // 0001 - a 3 tick wide pause
242 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
243 // 0111 - a 2 tick wide pause shifted left
244 // 1001 - a 2 tick wide pause shifted right
245 const bool Mod_Miller_LUT
[] = {
246 FALSE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, TRUE
,
247 FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
249 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
250 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
254 Uart
.state
= STATE_UNSYNCD
;
256 Uart
.len
= 0; // number of decoded data bytes
257 Uart
.parityLen
= 0; // number of decoded parity bytes
258 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
259 Uart
.parityBits
= 0; // holds 8 parity bits
268 void UartInit(uint8_t *data
, uint8_t *parity
)
271 Uart
.parity
= parity
;
272 Uart
.fourBits
= 0x00000000; // clear the buffer for 4 Bits
276 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
277 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
280 Uart
.fourBits
= (Uart
.fourBits
<< 8) | bit
;
282 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
284 Uart
.syncBit
= 9999; // not set
286 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
287 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
288 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
290 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
291 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
292 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
293 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
295 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
296 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
298 if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 0)) == ISO14443A_STARTBIT_PATTERN
>> 0) Uart
.syncBit
= 7;
299 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 1)) == ISO14443A_STARTBIT_PATTERN
>> 1) Uart
.syncBit
= 6;
300 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 2)) == ISO14443A_STARTBIT_PATTERN
>> 2) Uart
.syncBit
= 5;
301 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 3)) == ISO14443A_STARTBIT_PATTERN
>> 3) Uart
.syncBit
= 4;
302 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 4)) == ISO14443A_STARTBIT_PATTERN
>> 4) Uart
.syncBit
= 3;
303 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 5)) == ISO14443A_STARTBIT_PATTERN
>> 5) Uart
.syncBit
= 2;
304 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 6)) == ISO14443A_STARTBIT_PATTERN
>> 6) Uart
.syncBit
= 1;
305 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 7)) == ISO14443A_STARTBIT_PATTERN
>> 7) Uart
.syncBit
= 0;
307 if (Uart
.syncBit
!= 9999) { // found a sync bit
308 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
309 Uart
.startTime
-= Uart
.syncBit
;
310 Uart
.endTime
= Uart
.startTime
;
311 Uart
.state
= STATE_START_OF_COMMUNICATION
;
316 if (IsMillerModulationNibble1(Uart
.fourBits
>> Uart
.syncBit
)) {
317 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
319 } else { // Modulation in first half = Sequence Z = logic "0"
320 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
324 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
325 Uart
.state
= STATE_MILLER_Z
;
326 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
327 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
328 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
329 Uart
.parityBits
<<= 1; // make room for the parity bit
330 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
333 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
334 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
341 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
343 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
344 Uart
.state
= STATE_MILLER_X
;
345 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
346 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
347 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
348 Uart
.parityBits
<<= 1; // make room for the new parity bit
349 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
352 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
353 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
357 } else { // no modulation in both halves - Sequence Y
358 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
359 Uart
.state
= STATE_UNSYNCD
;
360 Uart
.bitCount
--; // last "0" was part of EOC sequence
361 Uart
.shiftReg
<<= 1; // drop it
362 if(Uart
.bitCount
> 0) { // if we decoded some bits
363 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
364 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
365 Uart
.parityBits
<<= 1; // add a (void) parity bit
366 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
367 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
369 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
370 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
371 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
374 return TRUE
; // we are finished with decoding the raw data sequence
376 UartReset(); // Nothing received - start over
379 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
381 } else { // a logic "0"
383 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
384 Uart
.state
= STATE_MILLER_Y
;
385 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
386 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
387 Uart
.parityBits
<<= 1; // make room for the parity bit
388 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
391 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
392 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
402 return FALSE
; // not finished yet, need more data
407 //=============================================================================
408 // ISO 14443 Type A - Manchester decoder
409 //=============================================================================
411 // This decoder is used when the PM3 acts as a reader.
412 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
413 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
414 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
415 // The Manchester decoder needs to identify the following sequences:
416 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
417 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
418 // 8 ticks unmodulated: Sequence F = end of communication
419 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
420 // Note 1: the bitstream may start at any time. We therefore need to sync.
421 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
424 // Lookup-Table to decide if 4 raw bits are a modulation.
425 // We accept three or four "1" in any position
426 const bool Mod_Manchester_LUT
[] = {
427 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
428 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
431 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
432 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
437 Demod
.state
= DEMOD_UNSYNCD
;
438 Demod
.len
= 0; // number of decoded data bytes
440 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
441 Demod
.parityBits
= 0; //
442 Demod
.collisionPos
= 0; // Position of collision bit
443 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
450 Demod
.syncBit
= 0xFFFF;
454 void DemodInit(uint8_t *data
, uint8_t *parity
)
457 Demod
.parity
= parity
;
461 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
462 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
465 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
467 if (Demod
.state
== DEMOD_UNSYNCD
) {
469 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
470 if (Demod
.twoBits
== 0x0000) {
476 Demod
.syncBit
= 0xFFFF; // not set
477 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
478 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
479 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
480 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
481 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
482 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
483 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
484 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
485 if (Demod
.syncBit
!= 0xFFFF) {
486 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
487 Demod
.startTime
-= Demod
.syncBit
;
488 Demod
.bitCount
= offset
; // number of decoded data bits
489 Demod
.state
= DEMOD_MANCHESTER_DATA
;
495 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
496 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
497 if (!Demod
.collisionPos
) {
498 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
500 } // modulation in first half only - Sequence D = 1
502 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
503 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
504 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
505 Demod
.parityBits
<<= 1; // make room for the parity bit
506 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
509 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
510 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
511 Demod
.parityBits
= 0;
514 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
515 } else { // no modulation in first half
516 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
518 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
519 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
520 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
521 Demod
.parityBits
<<= 1; // make room for the new parity bit
522 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
525 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
526 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
527 Demod
.parityBits
= 0;
530 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
531 } else { // no modulation in both halves - End of communication
532 if(Demod
.bitCount
> 0) { // there are some remaining data bits
533 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
534 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
535 Demod
.parityBits
<<= 1; // add a (void) parity bit
536 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
537 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
539 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
540 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
541 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
544 return TRUE
; // we are finished with decoding the raw data sequence
545 } else { // nothing received. Start over
551 return FALSE
; // not finished yet, need more data
554 //=============================================================================
555 // Finally, a `sniffer' for ISO 14443 Type A
556 // Both sides of communication!
557 //=============================================================================
559 //-----------------------------------------------------------------------------
560 // Record the sequence of commands sent by the reader to the tag, with
561 // triggering so that we start recording at the point that the tag is moved
563 //-----------------------------------------------------------------------------
564 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
566 // bit 0 - trigger from first card answer
567 // bit 1 - trigger from first reader 7-bit request
571 // We won't start recording the frames that we acquire until we trigger;
572 // a good trigger condition to get started is probably when we see a
573 // response from the tag.
574 // triggered == FALSE -- to wait first for card
575 bool triggered
= !(param
& 0x03);
577 // Allocate memory from BigBuf for some buffers
578 // free all previous allocations first
581 // The command (reader -> tag) that we're receiving.
582 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
583 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
585 // The response (tag -> reader) that we're receiving.
586 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
587 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
589 // The DMA buffer, used to stream samples from the FPGA
590 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
596 uint8_t *data
= dmaBuf
;
597 uint8_t previous_data
= 0;
600 bool TagIsActive
= FALSE
;
601 bool ReaderIsActive
= FALSE
;
603 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
605 // Set up the demodulator for tag -> reader responses.
606 DemodInit(receivedResponse
, receivedResponsePar
);
608 // Set up the demodulator for the reader -> tag commands
609 UartInit(receivedCmd
, receivedCmdPar
);
611 // Setup and start DMA.
612 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
614 // And now we loop, receiving samples.
615 for(uint32_t rsamples
= 0; TRUE
; ) {
618 DbpString("cancelled by button");
625 int register readBufDataP
= data
- dmaBuf
;
626 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
627 if (readBufDataP
<= dmaBufDataP
){
628 dataLen
= dmaBufDataP
- readBufDataP
;
630 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
632 // test for length of buffer
633 if(dataLen
> maxDataLen
) {
634 maxDataLen
= dataLen
;
635 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
636 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
640 if(dataLen
< 1) continue;
642 // primary buffer was stopped( <-- we lost data!
643 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
644 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
645 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
646 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
648 // secondary buffer sets as primary, secondary buffer was stopped
649 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
650 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
651 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
656 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
658 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
659 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
660 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
663 // check - if there is a short 7bit request from reader
664 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
667 if (!LogTrace(receivedCmd
,
669 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
670 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
674 /* And ready to receive another command. */
676 /* And also reset the demod code, which might have been */
677 /* false-triggered by the commands from the reader. */
681 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
684 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
685 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
686 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
689 if (!LogTrace(receivedResponse
,
691 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
692 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
696 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
698 // And ready to receive another response.
700 // And reset the Miller decoder including itS (now outdated) input buffer
701 UartInit(receivedCmd
, receivedCmdPar
);
705 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
709 previous_data
= *data
;
712 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
717 DbpString("COMMAND FINISHED");
720 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
721 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
725 //-----------------------------------------------------------------------------
726 // Prepare tag messages
727 //-----------------------------------------------------------------------------
728 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
732 // Correction bit, might be removed when not needed
737 ToSendStuffBit(1); // 1
743 ToSend
[++ToSendMax
] = SEC_D
;
744 LastProxToAirDuration
= 8 * ToSendMax
- 4;
746 for(uint16_t i
= 0; i
< len
; i
++) {
750 for(uint16_t j
= 0; j
< 8; j
++) {
752 ToSend
[++ToSendMax
] = SEC_D
;
754 ToSend
[++ToSendMax
] = SEC_E
;
759 // Get the parity bit
760 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
761 ToSend
[++ToSendMax
] = SEC_D
;
762 LastProxToAirDuration
= 8 * ToSendMax
- 4;
764 ToSend
[++ToSendMax
] = SEC_E
;
765 LastProxToAirDuration
= 8 * ToSendMax
;
770 ToSend
[++ToSendMax
] = SEC_F
;
772 // Convert from last byte pos to length
776 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
)
778 uint8_t par
[MAX_PARITY_SIZE
];
780 GetParity(cmd
, len
, par
);
781 CodeIso14443aAsTagPar(cmd
, len
, par
);
785 static void Code4bitAnswerAsTag(uint8_t cmd
)
791 // Correction bit, might be removed when not needed
796 ToSendStuffBit(1); // 1
802 ToSend
[++ToSendMax
] = SEC_D
;
805 for(i
= 0; i
< 4; i
++) {
807 ToSend
[++ToSendMax
] = SEC_D
;
808 LastProxToAirDuration
= 8 * ToSendMax
- 4;
810 ToSend
[++ToSendMax
] = SEC_E
;
811 LastProxToAirDuration
= 8 * ToSendMax
;
817 ToSend
[++ToSendMax
] = SEC_F
;
819 // Convert from last byte pos to length
823 //-----------------------------------------------------------------------------
824 // Wait for commands from reader
825 // Stop when button is pressed
826 // Or return TRUE when command is captured
827 //-----------------------------------------------------------------------------
828 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
830 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
831 // only, since we are receiving, not transmitting).
832 // Signal field is off with the appropriate LED
834 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
836 // Now run a `software UART' on the stream of incoming samples.
837 UartInit(received
, parity
);
840 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
845 if(BUTTON_PRESS()) return FALSE
;
847 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
848 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
849 if(MillerDecoding(b
, 0)) {
857 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
858 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
859 int EmSend4bit(uint8_t resp
);
860 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
);
861 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
862 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
863 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
864 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
865 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
);
867 static uint8_t* free_buffer_pointer
;
874 uint32_t ProxToAirDuration
;
875 } tag_response_info_t
;
877 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
878 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
879 // This will need the following byte array for a modulation sequence
880 // 144 data bits (18 * 8)
883 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
884 // 1 just for the case
886 // 166 bytes, since every bit that needs to be send costs us a byte
890 // Prepare the tag modulation bits from the message
891 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
893 // Make sure we do not exceed the free buffer space
894 if (ToSendMax
> max_buffer_size
) {
895 Dbprintf("Out of memory, when modulating bits for tag answer:");
896 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
900 // Copy the byte array, used for this modulation to the buffer position
901 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
903 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
904 response_info
->modulation_n
= ToSendMax
;
905 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
911 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
912 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
913 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
914 // -> need 273 bytes buffer
915 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
917 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
918 // Retrieve and store the current buffer index
919 response_info
->modulation
= free_buffer_pointer
;
921 // Determine the maximum size we can use from our buffer
922 size_t max_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
924 // Forward the prepare tag modulation function to the inner function
925 if (prepare_tag_modulation(response_info
, max_buffer_size
)) {
926 // Update the free buffer offset
927 free_buffer_pointer
+= ToSendMax
;
934 //-----------------------------------------------------------------------------
935 // Main loop of simulated tag: receive commands from reader, decide what
936 // response to send, and send it.
937 //-----------------------------------------------------------------------------
938 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
942 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
943 uint8_t response1
[2];
946 case 1: { // MIFARE Classic
947 // Says: I am Mifare 1k - original line
952 case 2: { // MIFARE Ultralight
953 // Says: I am a stupid memory tag, no crypto
958 case 3: { // MIFARE DESFire
959 // Says: I am a DESFire tag, ph33r me
964 case 4: { // ISO/IEC 14443-4
965 // Says: I am a javacard (JCOP)
970 case 5: { // MIFARE TNP3XXX
977 Dbprintf("Error: unkown tagtype (%d)",tagType
);
982 // The second response contains the (mandatory) first 24 bits of the UID
983 uint8_t response2
[5] = {0x00};
985 // Check if the uid uses the (optional) part
986 uint8_t response2a
[5] = {0x00};
990 num_to_bytes(uid_1st
,3,response2
+1);
991 num_to_bytes(uid_2nd
,4,response2a
);
992 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
994 // Configure the ATQA and SAK accordingly
995 response1
[0] |= 0x40;
998 num_to_bytes(uid_1st
,4,response2
);
999 // Configure the ATQA and SAK accordingly
1000 response1
[0] &= 0xBF;
1004 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1005 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
1007 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1008 uint8_t response3
[3] = {0x00};
1010 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
1012 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1013 uint8_t response3a
[3] = {0x00};
1014 response3a
[0] = sak
& 0xFB;
1015 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
1017 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1018 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1019 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1020 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1021 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1022 // TC(1) = 0x02: CID supported, NAD not supported
1023 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1025 #define TAG_RESPONSE_COUNT 7
1026 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1027 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1028 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1029 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1030 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1031 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1032 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1033 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1036 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1037 // Such a response is less time critical, so we can prepare them on the fly
1038 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1039 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1040 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1041 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1042 tag_response_info_t dynamic_response_info
= {
1043 .response
= dynamic_response_buffer
,
1045 .modulation
= dynamic_modulation_buffer
,
1049 BigBuf_free_keep_EM();
1051 // allocate buffers:
1052 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1053 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1054 free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1060 // Prepare the responses of the anticollision phase
1061 // there will be not enough time to do this at the moment the reader sends it REQA
1062 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1063 prepare_allocated_tag_modulation(&responses
[i
]);
1068 // To control where we are in the protocol
1072 // Just to allow some checks
1077 // We need to listen to the high-frequency, peak-detected path.
1078 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1081 tag_response_info_t
* p_response
;
1085 // Clean receive command buffer
1087 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1088 DbpString("Button press");
1094 // Okay, look at the command now.
1096 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1097 p_response
= &responses
[0]; order
= 1;
1098 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1099 p_response
= &responses
[0]; order
= 6;
1100 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1101 p_response
= &responses
[1]; order
= 2;
1102 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1103 p_response
= &responses
[2]; order
= 20;
1104 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1105 p_response
= &responses
[3]; order
= 3;
1106 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1107 p_response
= &responses
[4]; order
= 30;
1108 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1109 EmSendCmdEx(data
+(4*receivedCmd
[1]),16,false);
1110 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1111 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1113 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1116 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1119 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1120 p_response
= &responses
[5]; order
= 7;
1121 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1122 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1123 EmSend4bit(CARD_NACK_NA
);
1126 p_response
= &responses
[6]; order
= 70;
1128 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1130 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1132 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1133 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1134 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1136 // Check for ISO 14443A-4 compliant commands, look at left nibble
1137 switch (receivedCmd
[0]) {
1140 case 0x0A: { // IBlock (command)
1141 dynamic_response_info
.response
[0] = receivedCmd
[0];
1142 dynamic_response_info
.response
[1] = 0x00;
1143 dynamic_response_info
.response
[2] = 0x90;
1144 dynamic_response_info
.response
[3] = 0x00;
1145 dynamic_response_info
.response_n
= 4;
1149 case 0x1B: { // Chaining command
1150 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1151 dynamic_response_info
.response_n
= 2;
1156 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1157 dynamic_response_info
.response_n
= 2;
1161 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1162 dynamic_response_info
.response_n
= 2;
1166 case 0xC2: { // Readers sends deselect command
1167 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1168 dynamic_response_info
.response_n
= 2;
1172 // Never seen this command before
1174 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1176 Dbprintf("Received unknown command (len=%d):",len
);
1177 Dbhexdump(len
,receivedCmd
,false);
1179 dynamic_response_info
.response_n
= 0;
1183 if (dynamic_response_info
.response_n
> 0) {
1184 // Copy the CID from the reader query
1185 dynamic_response_info
.response
[1] = receivedCmd
[1];
1187 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1188 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1189 dynamic_response_info
.response_n
+= 2;
1191 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1192 Dbprintf("Error preparing tag response");
1194 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1198 p_response
= &dynamic_response_info
;
1202 // Count number of wakeups received after a halt
1203 if(order
== 6 && lastorder
== 5) { happened
++; }
1205 // Count number of other messages after a halt
1206 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1208 if(cmdsRecvd
> 999) {
1209 DbpString("1000 commands later...");
1214 if (p_response
!= NULL
) {
1215 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1216 // do the tracing for the previous reader request and this tag answer:
1217 uint8_t par
[MAX_PARITY_SIZE
];
1218 GetParity(p_response
->response
, p_response
->response_n
, par
);
1220 EmLogTrace(Uart
.output
,
1222 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1223 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1225 p_response
->response
,
1226 p_response
->response_n
,
1227 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1228 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1233 Dbprintf("Trace Full. Simulation stopped.");
1238 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1240 BigBuf_free_keep_EM();
1244 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1245 // of bits specified in the delay parameter.
1246 void PrepareDelayedTransfer(uint16_t delay
)
1248 uint8_t bitmask
= 0;
1249 uint8_t bits_to_shift
= 0;
1250 uint8_t bits_shifted
= 0;
1254 for (uint16_t i
= 0; i
< delay
; i
++) {
1255 bitmask
|= (0x01 << i
);
1257 ToSend
[ToSendMax
++] = 0x00;
1258 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1259 bits_to_shift
= ToSend
[i
] & bitmask
;
1260 ToSend
[i
] = ToSend
[i
] >> delay
;
1261 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1262 bits_shifted
= bits_to_shift
;
1268 //-------------------------------------------------------------------------------------
1269 // Transmit the command (to the tag) that was placed in ToSend[].
1270 // Parameter timing:
1271 // if NULL: transfer at next possible time, taking into account
1272 // request guard time and frame delay time
1273 // if == 0: transfer immediately and return time of transfer
1274 // if != 0: delay transfer until time specified
1275 //-------------------------------------------------------------------------------------
1276 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1279 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1281 uint32_t ThisTransferTime
= 0;
1284 if(*timing
== 0) { // Measure time
1285 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1287 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1289 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1290 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1291 LastTimeProxToAirStart
= *timing
;
1293 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1294 while(GetCountSspClk() < ThisTransferTime
);
1295 LastTimeProxToAirStart
= ThisTransferTime
;
1299 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1303 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1304 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1312 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1316 //-----------------------------------------------------------------------------
1317 // Prepare reader command (in bits, support short frames) to send to FPGA
1318 //-----------------------------------------------------------------------------
1319 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1327 // Start of Communication (Seq. Z)
1328 ToSend
[++ToSendMax
] = SEC_Z
;
1329 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1332 size_t bytecount
= nbytes(bits
);
1333 // Generate send structure for the data bits
1334 for (i
= 0; i
< bytecount
; i
++) {
1335 // Get the current byte to send
1337 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1339 for (j
= 0; j
< bitsleft
; j
++) {
1342 ToSend
[++ToSendMax
] = SEC_X
;
1343 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1348 ToSend
[++ToSendMax
] = SEC_Z
;
1349 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1352 ToSend
[++ToSendMax
] = SEC_Y
;
1359 // Only transmit parity bit if we transmitted a complete byte
1360 if (j
== 8 && parity
!= NULL
) {
1361 // Get the parity bit
1362 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1364 ToSend
[++ToSendMax
] = SEC_X
;
1365 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1370 ToSend
[++ToSendMax
] = SEC_Z
;
1371 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1374 ToSend
[++ToSendMax
] = SEC_Y
;
1381 // End of Communication: Logic 0 followed by Sequence Y
1384 ToSend
[++ToSendMax
] = SEC_Z
;
1385 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1388 ToSend
[++ToSendMax
] = SEC_Y
;
1391 ToSend
[++ToSendMax
] = SEC_Y
;
1393 // Convert to length of command:
1397 //-----------------------------------------------------------------------------
1398 // Prepare reader command to send to FPGA
1399 //-----------------------------------------------------------------------------
1400 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
)
1402 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1406 //-----------------------------------------------------------------------------
1407 // Wait for commands from reader
1408 // Stop when button is pressed (return 1) or field was gone (return 2)
1409 // Or return 0 when command is captured
1410 //-----------------------------------------------------------------------------
1411 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1415 uint32_t timer
= 0, vtime
= 0;
1419 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1420 // only, since we are receiving, not transmitting).
1421 // Signal field is off with the appropriate LED
1423 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1425 // Set ADC to read field strength
1426 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1427 AT91C_BASE_ADC
->ADC_MR
=
1428 ADC_MODE_PRESCALE(63) |
1429 ADC_MODE_STARTUP_TIME(1) |
1430 ADC_MODE_SAMPLE_HOLD_TIME(15);
1431 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1433 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1435 // Now run a 'software UART' on the stream of incoming samples.
1436 UartInit(received
, parity
);
1439 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1444 if (BUTTON_PRESS()) return 1;
1446 // test if the field exists
1447 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1449 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1450 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1451 if (analogCnt
>= 32) {
1452 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1453 vtime
= GetTickCount();
1454 if (!timer
) timer
= vtime
;
1455 // 50ms no field --> card to idle state
1456 if (vtime
- timer
> 50) return 2;
1458 if (timer
) timer
= 0;
1464 // receive and test the miller decoding
1465 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1466 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1467 if(MillerDecoding(b
, 0)) {
1477 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
)
1481 uint32_t ThisTransferTime
;
1483 // Modulate Manchester
1484 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1486 // include correction bit if necessary
1487 if (Uart
.parityBits
& 0x01) {
1488 correctionNeeded
= TRUE
;
1490 if(correctionNeeded
) {
1491 // 1236, so correction bit needed
1497 // clear receiving shift register and holding register
1498 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1499 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1500 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1501 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1503 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1504 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1505 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1506 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1509 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1512 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1515 for(; i
< respLen
; ) {
1516 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1517 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1518 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1521 if(BUTTON_PRESS()) {
1526 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1527 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3;
1528 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
1529 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1530 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1531 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1536 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1541 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1542 Code4bitAnswerAsTag(resp
);
1543 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1544 // do the tracing for the previous reader request and this tag answer:
1546 GetParity(&resp
, 1, par
);
1547 EmLogTrace(Uart
.output
,
1549 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1550 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1554 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1555 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1560 int EmSend4bit(uint8_t resp
){
1561 return EmSend4bitEx(resp
, false);
1564 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1565 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1566 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1567 // do the tracing for the previous reader request and this tag answer:
1568 EmLogTrace(Uart
.output
,
1570 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1571 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1575 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1576 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1581 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1582 uint8_t par
[MAX_PARITY_SIZE
];
1583 GetParity(resp
, respLen
, par
);
1584 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1587 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1588 uint8_t par
[MAX_PARITY_SIZE
];
1589 GetParity(resp
, respLen
, par
);
1590 return EmSendCmdExPar(resp
, respLen
, false, par
);
1593 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1594 return EmSendCmdExPar(resp
, respLen
, false, par
);
1597 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1598 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1601 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1602 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1603 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1604 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1605 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1606 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1607 reader_EndTime
= tag_StartTime
- exact_fdt
;
1608 reader_StartTime
= reader_EndTime
- reader_modlen
;
1609 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
)) {
1611 } else return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1617 //-----------------------------------------------------------------------------
1618 // Wait a certain time for tag response
1619 // If a response is captured return TRUE
1620 // If it takes too long return FALSE
1621 //-----------------------------------------------------------------------------
1622 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1626 // Set FPGA mode to "reader listen mode", no modulation (listen
1627 // only, since we are receiving, not transmitting).
1628 // Signal field is on with the appropriate LED
1630 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1632 // Now get the answer from the card
1633 DemodInit(receivedResponse
, receivedResponsePar
);
1636 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1641 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1642 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1643 if(ManchesterDecoding(b
, offset
, 0)) {
1644 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1646 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1654 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1656 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1658 // Send command to tag
1659 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1663 // Log reader command in trace buffer
1665 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1670 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1672 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1676 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1678 // Generate parity and redirect
1679 uint8_t par
[MAX_PARITY_SIZE
];
1680 GetParity(frame
, len
/8, par
);
1681 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1685 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1687 // Generate parity and redirect
1688 uint8_t par
[MAX_PARITY_SIZE
];
1689 GetParity(frame
, len
, par
);
1690 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1693 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1695 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
)) return FALSE
;
1697 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1702 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1704 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return FALSE
;
1706 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1711 /* performs iso14443a anticollision procedure
1712 * fills the uid pointer unless NULL
1713 * fills resp_data unless NULL */
1714 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
) {
1715 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1716 uint8_t sel_all
[] = { 0x93,0x20 };
1717 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1718 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1719 uint8_t resp
[MAX_FRAME_SIZE
]; // theoretically. A usual RATS will be much smaller
1720 uint8_t resp_par
[MAX_PARITY_SIZE
];
1722 size_t uid_resp_len
;
1724 uint8_t sak
= 0x04; // cascade uid
1725 int cascade_level
= 0;
1728 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1729 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1732 if(!ReaderReceive(resp
, resp_par
)) return 0;
1735 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1736 p_hi14a_card
->uidlen
= 0;
1737 memset(p_hi14a_card
->uid
,0,10);
1742 memset(uid_ptr
,0,10);
1745 // check for proprietary anticollision:
1746 if ((resp
[0] & 0x1F) == 0) {
1750 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1751 // which case we need to make a cascade 2 request and select - this is a long UID
1752 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1753 for(; sak
& 0x04; cascade_level
++) {
1754 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1755 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1758 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1759 if (!ReaderReceive(resp
, resp_par
)) return 0;
1761 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1762 memset(uid_resp
, 0, 4);
1763 uint16_t uid_resp_bits
= 0;
1764 uint16_t collision_answer_offset
= 0;
1765 // anti-collision-loop:
1766 while (Demod
.collisionPos
) {
1767 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1768 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1769 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1770 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1772 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1774 // construct anticollosion command:
1775 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1776 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1777 sel_uid
[2+i
] = uid_resp
[i
];
1779 collision_answer_offset
= uid_resp_bits
%8;
1780 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1781 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1783 // finally, add the last bits and BCC of the UID
1784 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1785 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1786 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1789 } else { // no collision, use the response to SELECT_ALL as current uid
1790 memcpy(uid_resp
, resp
, 4);
1794 // calculate crypto UID. Always use last 4 Bytes.
1796 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1799 // Construct SELECT UID command
1800 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1801 memcpy(sel_uid
+2, uid_resp
, 4); // the UID
1802 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1803 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1804 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1807 if (!ReaderReceive(resp
, resp_par
)) return 0;
1810 // Test if more parts of the uid are coming
1811 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1812 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1813 // http://www.nxp.com/documents/application_note/AN10927.pdf
1814 uid_resp
[0] = uid_resp
[1];
1815 uid_resp
[1] = uid_resp
[2];
1816 uid_resp
[2] = uid_resp
[3];
1822 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1826 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1827 p_hi14a_card
->uidlen
+= uid_resp_len
;
1832 p_hi14a_card
->sak
= sak
;
1833 p_hi14a_card
->ats_len
= 0;
1836 // non iso14443a compliant tag
1837 if( (sak
& 0x20) == 0) return 2;
1839 // Request for answer to select
1840 AppendCrc14443a(rats
, 2);
1841 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1843 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1847 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1848 p_hi14a_card
->ats_len
= len
;
1851 // reset the PCB block number
1852 iso14_pcb_blocknum
= 0;
1854 // set default timeout based on ATS
1855 iso14a_set_ATS_timeout(resp
);
1860 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1861 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1862 // Set up the synchronous serial port
1864 // connect Demodulated Signal to ADC:
1865 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1867 // Signal field is on with the appropriate LED
1868 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1869 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1874 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1881 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1882 iso14a_set_timeout(10*106); // 10ms default
1885 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
1886 uint8_t parity
[MAX_PARITY_SIZE
];
1887 uint8_t real_cmd
[cmd_len
+4];
1888 real_cmd
[0] = 0x0a; //I-Block
1889 // put block number into the PCB
1890 real_cmd
[0] |= iso14_pcb_blocknum
;
1891 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1892 memcpy(real_cmd
+2, cmd
, cmd_len
);
1893 AppendCrc14443a(real_cmd
,cmd_len
+2);
1895 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1896 size_t len
= ReaderReceive(data
, parity
);
1897 uint8_t *data_bytes
= (uint8_t *) data
;
1899 return 0; //DATA LINK ERROR
1900 // if we received an I- or R(ACK)-Block with a block number equal to the
1901 // current block number, toggle the current block number
1902 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1903 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1904 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1905 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1907 iso14_pcb_blocknum
^= 1;
1913 //-----------------------------------------------------------------------------
1914 // Read an ISO 14443a tag. Send out commands and store answers.
1916 //-----------------------------------------------------------------------------
1917 void ReaderIso14443a(UsbCommand
*c
)
1919 iso14a_command_t param
= c
->arg
[0];
1920 uint8_t *cmd
= c
->d
.asBytes
;
1921 size_t len
= c
->arg
[1] & 0xffff;
1922 size_t lenbits
= c
->arg
[1] >> 16;
1923 uint32_t timeout
= c
->arg
[2];
1925 byte_t buf
[USB_CMD_DATA_SIZE
];
1926 uint8_t par
[MAX_PARITY_SIZE
];
1928 if(param
& ISO14A_CONNECT
) {
1934 if(param
& ISO14A_REQUEST_TRIGGER
) {
1935 iso14a_set_trigger(TRUE
);
1938 if(param
& ISO14A_CONNECT
) {
1939 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1940 if(!(param
& ISO14A_NO_SELECT
)) {
1941 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1942 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1943 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1947 if(param
& ISO14A_SET_TIMEOUT
) {
1948 iso14a_set_timeout(timeout
);
1951 if(param
& ISO14A_APDU
) {
1952 arg0
= iso14_apdu(cmd
, len
, buf
);
1953 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1956 if(param
& ISO14A_RAW
) {
1957 if(param
& ISO14A_APPEND_CRC
) {
1958 if(param
& ISO14A_TOPAZMODE
) {
1959 AppendCrc14443b(cmd
,len
);
1961 AppendCrc14443a(cmd
,len
);
1964 if (lenbits
) lenbits
+= 16;
1966 if(lenbits
>0) { // want to send a specific number of bits (e.g. short commands)
1967 if(param
& ISO14A_TOPAZMODE
) {
1968 int bits_to_send
= lenbits
;
1970 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 7), NULL
, NULL
); // first byte is always short (7bits) and no parity
1972 while (bits_to_send
> 0) {
1973 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 8), NULL
, NULL
); // following bytes are 8 bit and no parity
1977 GetParity(cmd
, lenbits
/8, par
);
1978 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
); // bytes are 8 bit with odd parity
1980 } else { // want to send complete bytes only
1981 if(param
& ISO14A_TOPAZMODE
) {
1983 ReaderTransmitBitsPar(&cmd
[i
++], 7, NULL
, NULL
); // first byte: 7 bits, no paritiy
1985 ReaderTransmitBitsPar(&cmd
[i
++], 8, NULL
, NULL
); // following bytes: 8 bits, no paritiy
1988 ReaderTransmit(cmd
,len
, NULL
); // 8 bits, odd parity
1991 arg0
= ReaderReceive(buf
, par
);
1992 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1995 if(param
& ISO14A_REQUEST_TRIGGER
) {
1996 iso14a_set_trigger(FALSE
);
1999 if(param
& ISO14A_NO_DISCONNECT
) {
2003 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2008 // Determine the distance between two nonces.
2009 // Assume that the difference is small, but we don't know which is first.
2010 // Therefore try in alternating directions.
2011 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
2014 uint32_t nttmp1
, nttmp2
;
2016 if (nt1
== nt2
) return 0;
2021 for (i
= 1; i
< 32768; i
++) {
2022 nttmp1
= prng_successor(nttmp1
, 1);
2023 if (nttmp1
== nt2
) return i
;
2024 nttmp2
= prng_successor(nttmp2
, 1);
2025 if (nttmp2
== nt1
) return -i
;
2028 return(-99999); // either nt1 or nt2 are invalid nonces
2032 //-----------------------------------------------------------------------------
2033 // Recover several bits of the cypher stream. This implements (first stages of)
2034 // the algorithm described in "The Dark Side of Security by Obscurity and
2035 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2036 // (article by Nicolas T. Courtois, 2009)
2037 //-----------------------------------------------------------------------------
2038 void ReaderMifare(bool first_try
)
2041 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
2042 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2043 static uint8_t mf_nr_ar3
;
2045 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
];
2046 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
];
2048 // free eventually allocated BigBuf memory. We want all for tracing.
2055 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2056 static byte_t par_low
= 0;
2058 uint8_t uid
[10] ={0};
2062 uint32_t previous_nt
= 0;
2063 static uint32_t nt_attacked
= 0;
2064 byte_t par_list
[8] = {0x00};
2065 byte_t ks_list
[8] = {0x00};
2067 static uint32_t sync_time
;
2068 static uint32_t sync_cycles
;
2069 int catch_up_cycles
= 0;
2070 int last_catch_up
= 0;
2071 uint16_t consecutive_resyncs
= 0;
2076 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2077 sync_time
= GetCountSspClk() & 0xfffffff8;
2078 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2084 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2086 mf_nr_ar
[3] = mf_nr_ar3
;
2095 for(uint16_t i
= 0; TRUE
; i
++) {
2099 // Test if the action was cancelled
2100 if(BUTTON_PRESS()) {
2106 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2107 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2111 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2112 catch_up_cycles
= 0;
2114 // if we missed the sync time already, advance to the next nonce repeat
2115 while(GetCountSspClk() > sync_time
) {
2116 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2119 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2120 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2122 // Receive the (4 Byte) "random" nonce
2123 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2124 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2129 nt
= bytes_to_num(receivedAnswer
, 4);
2131 // Transmit reader nonce with fake par
2132 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2134 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2135 int nt_distance
= dist_nt(previous_nt
, nt
);
2136 if (nt_distance
== 0) {
2140 if (nt_distance
== -99999) { // invalid nonce received, try again
2143 sync_cycles
= (sync_cycles
- nt_distance
);
2144 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2149 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2150 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2151 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2152 catch_up_cycles
= 0;
2155 if (catch_up_cycles
== last_catch_up
) {
2156 consecutive_resyncs
++;
2159 last_catch_up
= catch_up_cycles
;
2160 consecutive_resyncs
= 0;
2162 if (consecutive_resyncs
< 3) {
2163 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2166 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2167 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2172 consecutive_resyncs
= 0;
2174 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2175 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
))
2177 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2181 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2185 if(led_on
) LED_B_ON(); else LED_B_OFF();
2187 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2188 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2190 // Test if the information is complete
2191 if (nt_diff
== 0x07) {
2196 nt_diff
= (nt_diff
+ 1) & 0x07;
2197 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2200 if (nt_diff
== 0 && first_try
)
2204 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2210 mf_nr_ar
[3] &= 0x1F;
2213 memcpy(buf
+ 0, uid
, 4);
2214 num_to_bytes(nt
, 4, buf
+ 4);
2215 memcpy(buf
+ 8, par_list
, 8);
2216 memcpy(buf
+ 16, ks_list
, 8);
2217 memcpy(buf
+ 24, mf_nr_ar
, 4);
2219 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2222 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2229 *MIFARE 1K simulate.
2232 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2233 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2234 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2235 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2236 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2238 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2240 int cardSTATE
= MFEMUL_NOFIELD
;
2242 int vHf
= 0; // in mV
2244 uint32_t selTimer
= 0;
2245 uint32_t authTimer
= 0;
2247 uint8_t cardWRBL
= 0;
2248 uint8_t cardAUTHSC
= 0;
2249 uint8_t cardAUTHKEY
= 0xff; // no authentication
2250 uint32_t cardRr
= 0;
2252 //uint32_t rn_enc = 0;
2254 uint32_t cardINTREG
= 0;
2255 uint8_t cardINTBLOCK
= 0;
2256 struct Crypto1State mpcs
= {0, 0};
2257 struct Crypto1State
*pcs
;
2259 uint32_t numReads
= 0;//Counts numer of times reader read a block
2260 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2261 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
];
2262 uint8_t response
[MAX_MIFARE_FRAME_SIZE
];
2263 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
];
2265 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2266 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2267 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2268 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2269 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2271 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2272 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2274 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2275 // This can be used in a reader-only attack.
2276 // (it can also be retrieved via 'hf 14a list', but hey...
2277 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2278 uint8_t ar_nr_collected
= 0;
2280 // free eventually allocated BigBuf memory but keep Emulator Memory
2281 BigBuf_free_keep_EM();
2287 // Authenticate response - nonce
2288 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2290 //-- Determine the UID
2291 // Can be set from emulator memory, incoming data
2292 // and can be 7 or 4 bytes long
2293 if (flags
& FLAG_4B_UID_IN_DATA
)
2295 // 4B uid comes from data-portion of packet
2296 memcpy(rUIDBCC1
,datain
,4);
2297 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2299 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2300 // 7B uid comes from data-portion of packet
2301 memcpy(&rUIDBCC1
[1],datain
,3);
2302 memcpy(rUIDBCC2
, datain
+3, 4);
2305 // get UID from emul memory
2306 emlGetMemBt(receivedCmd
, 7, 1);
2307 _7BUID
= !(receivedCmd
[0] == 0x00);
2308 if (!_7BUID
) { // ---------- 4BUID
2309 emlGetMemBt(rUIDBCC1
, 0, 4);
2310 } else { // ---------- 7BUID
2311 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2312 emlGetMemBt(rUIDBCC2
, 3, 4);
2317 * Regardless of what method was used to set the UID, set fifth byte and modify
2318 * the ATQA for 4 or 7-byte UID
2320 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2324 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2327 // We need to listen to the high-frequency, peak-detected path.
2328 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2331 if (MF_DBGLEVEL
>= 1) {
2333 Dbprintf("4B UID: %02x%02x%02x%02x",
2334 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
2336 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2337 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
2338 rUIDBCC2
[0], rUIDBCC2
[1] ,rUIDBCC2
[2], rUIDBCC2
[3]);
2342 bool finished
= FALSE
;
2343 while (!BUTTON_PRESS() && !finished
) {
2346 // find reader field
2347 if (cardSTATE
== MFEMUL_NOFIELD
) {
2348 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
2349 if (vHf
> MF_MINFIELDV
) {
2350 cardSTATE_TO_IDLE();
2354 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2358 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2359 if (res
== 2) { //Field is off!
2360 cardSTATE
= MFEMUL_NOFIELD
;
2363 } else if (res
== 1) {
2364 break; //return value 1 means button press
2367 // REQ or WUP request in ANY state and WUP in HALTED state
2368 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2369 selTimer
= GetTickCount();
2370 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2371 cardSTATE
= MFEMUL_SELECT1
;
2373 // init crypto block
2376 crypto1_destroy(pcs
);
2381 switch (cardSTATE
) {
2382 case MFEMUL_NOFIELD
:
2385 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2388 case MFEMUL_SELECT1
:{
2390 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2391 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2392 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2396 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2398 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2402 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2403 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2404 cuid
= bytes_to_num(rUIDBCC1
, 4);
2406 cardSTATE
= MFEMUL_WORK
;
2408 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2411 cardSTATE
= MFEMUL_SELECT2
;
2419 cardSTATE_TO_IDLE();
2420 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2424 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2425 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2428 if(ar_nr_collected
< 2 && cardAUTHSC
== 2){
2429 if(ar_nr_responses
[2] != ar
)
2430 {// Avoid duplicates... probably not necessary, ar should vary.
2431 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2432 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2433 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2434 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2437 // Interactive mode flag, means we need to send ACK
2438 if(flags
& FLAG_INTERACTIVE
&& ar_nr_collected
== 2)
2445 crypto1_word(pcs
, ar
, 1);
2446 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2449 if (cardRr
!= prng_successor(nonce
, 64)){
2450 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2451 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2452 cardRr
, prng_successor(nonce
, 64));
2453 // Shouldn't we respond anything here?
2454 // Right now, we don't nack or anything, which causes the
2455 // reader to do a WUPA after a while. /Martin
2456 // -- which is the correct response. /piwi
2457 cardSTATE_TO_IDLE();
2458 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2462 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2464 num_to_bytes(ans
, 4, rAUTH_AT
);
2466 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2468 cardSTATE
= MFEMUL_WORK
;
2469 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2470 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2471 GetTickCount() - authTimer
);
2474 case MFEMUL_SELECT2
:{
2476 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2479 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2480 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2486 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2487 EmSendCmd(rSAK
, sizeof(rSAK
));
2488 cuid
= bytes_to_num(rUIDBCC2
, 4);
2489 cardSTATE
= MFEMUL_WORK
;
2491 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2495 // i guess there is a command). go into the work state.
2497 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2500 cardSTATE
= MFEMUL_WORK
;
2502 //intentional fall-through to the next case-stmt
2507 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2511 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2513 if(encrypted_data
) {
2515 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2518 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2519 authTimer
= GetTickCount();
2520 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2521 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2522 crypto1_destroy(pcs
);//Added by martin
2523 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2525 if (!encrypted_data
) { // first authentication
2526 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2528 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2529 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2530 } else { // nested authentication
2531 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2532 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2533 num_to_bytes(ans
, 4, rAUTH_AT
);
2536 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2537 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2538 cardSTATE
= MFEMUL_AUTH1
;
2542 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2543 // BUT... ACK --> NACK
2544 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2545 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2549 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2550 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2551 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2556 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2560 if(receivedCmd
[0] == 0x30 // read block
2561 || receivedCmd
[0] == 0xA0 // write block
2562 || receivedCmd
[0] == 0xC0 // inc
2563 || receivedCmd
[0] == 0xC1 // dec
2564 || receivedCmd
[0] == 0xC2 // restore
2565 || receivedCmd
[0] == 0xB0) { // transfer
2566 if (receivedCmd
[1] >= 16 * 4) {
2567 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2568 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2572 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2573 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2574 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2579 if (receivedCmd
[0] == 0x30) {
2580 if (MF_DBGLEVEL
>= 4) {
2581 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2583 emlGetMem(response
, receivedCmd
[1], 1);
2584 AppendCrc14443a(response
, 16);
2585 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2586 EmSendCmdPar(response
, 18, response_par
);
2588 if(exitAfterNReads
> 0 && numReads
>= exitAfterNReads
) {
2589 Dbprintf("%d reads done, exiting", numReads
);
2595 if (receivedCmd
[0] == 0xA0) {
2596 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2597 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2598 cardSTATE
= MFEMUL_WRITEBL2
;
2599 cardWRBL
= receivedCmd
[1];
2602 // increment, decrement, restore
2603 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2604 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2605 if (emlCheckValBl(receivedCmd
[1])) {
2606 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2607 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2610 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2611 if (receivedCmd
[0] == 0xC1)
2612 cardSTATE
= MFEMUL_INTREG_INC
;
2613 if (receivedCmd
[0] == 0xC0)
2614 cardSTATE
= MFEMUL_INTREG_DEC
;
2615 if (receivedCmd
[0] == 0xC2)
2616 cardSTATE
= MFEMUL_INTREG_REST
;
2617 cardWRBL
= receivedCmd
[1];
2621 if (receivedCmd
[0] == 0xB0) {
2622 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2623 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2624 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2626 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2630 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2633 cardSTATE
= MFEMUL_HALTED
;
2634 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2635 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2639 if (receivedCmd
[0] == 0xe0) {//RATS
2640 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2643 // command not allowed
2644 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2645 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2648 case MFEMUL_WRITEBL2
:{
2650 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2651 emlSetMem(receivedCmd
, cardWRBL
, 1);
2652 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2653 cardSTATE
= MFEMUL_WORK
;
2655 cardSTATE_TO_IDLE();
2656 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2661 case MFEMUL_INTREG_INC
:{
2662 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2663 memcpy(&ans
, receivedCmd
, 4);
2664 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2665 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2666 cardSTATE_TO_IDLE();
2669 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2670 cardINTREG
= cardINTREG
+ ans
;
2671 cardSTATE
= MFEMUL_WORK
;
2674 case MFEMUL_INTREG_DEC
:{
2675 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2676 memcpy(&ans
, receivedCmd
, 4);
2677 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2678 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2679 cardSTATE_TO_IDLE();
2682 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2683 cardINTREG
= cardINTREG
- ans
;
2684 cardSTATE
= MFEMUL_WORK
;
2687 case MFEMUL_INTREG_REST
:{
2688 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2689 memcpy(&ans
, receivedCmd
, 4);
2690 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2691 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2692 cardSTATE_TO_IDLE();
2695 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2696 cardSTATE
= MFEMUL_WORK
;
2702 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2705 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2707 //May just aswell send the collected ar_nr in the response aswell
2708 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,1,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2711 if(flags
& FLAG_NR_AR_ATTACK
&& MF_DBGLEVEL
>= 1 )
2713 if(ar_nr_collected
> 1 ) {
2714 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2715 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2716 ar_nr_responses
[0], // UID
2717 ar_nr_responses
[1], //NT
2718 ar_nr_responses
[2], //AR1
2719 ar_nr_responses
[3], //NR1
2720 ar_nr_responses
[6], //AR2
2721 ar_nr_responses
[7] //NR2
2724 Dbprintf("Failed to obtain two AR/NR pairs!");
2725 if(ar_nr_collected
> 0 ) {
2726 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2727 ar_nr_responses
[0], // UID
2728 ar_nr_responses
[1], //NT
2729 ar_nr_responses
[2], //AR1
2730 ar_nr_responses
[3] //NR1
2735 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
2741 //-----------------------------------------------------------------------------
2744 //-----------------------------------------------------------------------------
2745 void RAMFUNC
SniffMifare(uint8_t param
) {
2747 // bit 0 - trigger from first card answer
2748 // bit 1 - trigger from first reader 7-bit request
2750 // C(red) A(yellow) B(green)
2752 // init trace buffer
2756 // The command (reader -> tag) that we're receiving.
2757 // The length of a received command will in most cases be no more than 18 bytes.
2758 // So 32 should be enough!
2759 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2760 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
];
2761 // The response (tag -> reader) that we're receiving.
2762 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
];
2763 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
];
2765 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2766 // into trace, along with its length and other annotations.
2767 //uint8_t *trace = (uint8_t *)BigBuf;
2769 // free eventually allocated BigBuf memory
2771 // allocate the DMA buffer, used to stream samples from the FPGA
2772 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
2773 uint8_t *data
= dmaBuf
;
2774 uint8_t previous_data
= 0;
2777 bool ReaderIsActive
= FALSE
;
2778 bool TagIsActive
= FALSE
;
2780 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2782 // Set up the demodulator for tag -> reader responses.
2783 DemodInit(receivedResponse
, receivedResponsePar
);
2785 // Set up the demodulator for the reader -> tag commands
2786 UartInit(receivedCmd
, receivedCmdPar
);
2788 // Setup for the DMA.
2789 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2796 // And now we loop, receiving samples.
2797 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2799 if(BUTTON_PRESS()) {
2800 DbpString("cancelled by button");
2807 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2808 // check if a transaction is completed (timeout after 2000ms).
2809 // if yes, stop the DMA transfer and send what we have so far to the client
2810 if (MfSniffSend(2000)) {
2811 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2815 ReaderIsActive
= FALSE
;
2816 TagIsActive
= FALSE
;
2817 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2821 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2822 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2823 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2824 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2826 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2828 // test for length of buffer
2829 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2830 maxDataLen
= dataLen
;
2831 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
2832 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2836 if(dataLen
< 1) continue;
2838 // primary buffer was stopped ( <-- we lost data!
2839 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2840 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2841 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2842 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2844 // secondary buffer sets as primary, secondary buffer was stopped
2845 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2846 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2847 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2852 if (sniffCounter
& 0x01) {
2854 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2855 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2856 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2858 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
2860 /* And ready to receive another command. */
2861 UartInit(receivedCmd
, receivedCmdPar
);
2863 /* And also reset the demod code */
2866 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2869 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2870 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2871 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2874 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
2876 // And ready to receive another response.
2879 // And reset the Miller decoder including its (now outdated) input buffer
2880 UartInit(receivedCmd
, receivedCmdPar
);
2882 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2886 previous_data
= *data
;
2889 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2895 DbpString("COMMAND FINISHED");
2897 FpgaDisableSscDma();
2900 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);