]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/nonce2key/crapto1.c
Reworked how to call 'standard' stuff from within lua scripts, so now it's much simpl...
[proxmark3-svn] / client / nonce2key / crapto1.c
1 /* crapto1.c
2
3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
7
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
12
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
17
18 Copyright (C) 2008-2008 bla <blapost@gmail.com>
19 */
20 #include "crapto1.h"
21 #include <stdlib.h>
22
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut[1 << 20];
25 static void __attribute__((constructor)) fill_lut()
26 {
27 uint32_t i;
28 for(i = 0; i < 1 << 20; ++i)
29 filterlut[i] = filter(i);
30 }
31 #define filter(x) (filterlut[(x) & 0xfffff])
32 #endif
33
34
35
36 typedef struct bucket {
37 uint32_t *head;
38 uint32_t *bp;
39 } bucket_t;
40
41 typedef bucket_t bucket_array_t[2][0x100];
42
43 typedef struct bucket_info {
44 struct {
45 uint32_t *head, *tail;
46 } bucket_info[2][0x100];
47 uint32_t numbuckets;
48 } bucket_info_t;
49
50
51 static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,
52 uint32_t* const ostart, uint32_t* const ostop,
53 bucket_info_t *bucket_info, bucket_array_t bucket)
54 {
55 uint32_t *p1, *p2;
56 uint32_t *start[2];
57 uint32_t *stop[2];
58
59 start[0] = estart;
60 stop[0] = estop;
61 start[1] = ostart;
62 stop[1] = ostop;
63
64 // init buckets to be empty
65 for (uint32_t i = 0; i < 2; i++) {
66 for (uint32_t j = 0x00; j <= 0xff; j++) {
67 bucket[i][j].bp = bucket[i][j].head;
68 }
69 }
70
71 // sort the lists into the buckets based on the MSB (contribution bits)
72 for (uint32_t i = 0; i < 2; i++) {
73 for (p1 = start[i]; p1 <= stop[i]; p1++) {
74 uint32_t bucket_index = (*p1 & 0xff000000) >> 24;
75 *(bucket[i][bucket_index].bp++) = *p1;
76 }
77 }
78
79
80 // write back intersecting buckets as sorted list.
81 // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
82 uint32_t nonempty_bucket;
83 for (uint32_t i = 0; i < 2; i++) {
84 p1 = start[i];
85 nonempty_bucket = 0;
86 for (uint32_t j = 0x00; j <= 0xff; j++) {
87 if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only
88 bucket_info->bucket_info[i][nonempty_bucket].head = p1;
89 for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);
90 bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;
91 nonempty_bucket++;
92 }
93 }
94 bucket_info->numbuckets = nonempty_bucket;
95 }
96 }
97
98
99 static void quicksort(uint32_t* const start, uint32_t* const stop)
100 {
101 uint32_t *it = start + 1, *rit = stop;
102
103 if(it > rit)
104 return;
105
106 while(it < rit)
107 if(*it <= *start)
108 ++it;
109 else if(*rit > *start)
110 --rit;
111 else
112 *it ^= (*it ^= *rit, *rit ^= *it);
113
114 if(*rit >= *start)
115 --rit;
116 if(rit != start)
117 *rit ^= (*rit ^= *start, *start ^= *rit);
118
119 quicksort(start, rit - 1);
120 quicksort(rit + 1, stop);
121 }
122
123
124 /** binsearch
125 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
126 */
127 static inline uint32_t*
128 binsearch(uint32_t *start, uint32_t *stop)
129 {
130 uint32_t mid, val = *stop & 0xff000000;
131 while(start != stop)
132 if(start[mid = (stop - start) >> 1] > val)
133 stop = &start[mid];
134 else
135 start += mid + 1;
136
137 return start;
138 }
139
140 /** update_contribution
141 * helper, calculates the partial linear feedback contributions and puts in MSB
142 */
143 static inline void
144 update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
145 {
146 uint32_t p = *item >> 25;
147
148 p = p << 1 | parity(*item & mask1);
149 p = p << 1 | parity(*item & mask2);
150 *item = p << 24 | (*item & 0xffffff);
151 }
152
153 /** extend_table
154 * using a bit of the keystream extend the table of possible lfsr states
155 */
156 static inline void
157 extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
158 {
159 in <<= 24;
160
161 for(uint32_t *p = tbl; p <= *end; p++) {
162 *p <<= 1;
163 if(filter(*p) != filter(*p | 1)) { // replace
164 *p |= filter(*p) ^ bit;
165 update_contribution(p, m1, m2);
166 *p ^= in;
167 } else if(filter(*p) == bit) { // insert
168 *++*end = p[1];
169 p[1] = p[0] | 1;
170 update_contribution(p, m1, m2);
171 *p++ ^= in;
172 update_contribution(p, m1, m2);
173 *p ^= in;
174 } else { // drop
175 *p-- = *(*end)--;
176 }
177 }
178
179 }
180
181
182 /** extend_table_simple
183 * using a bit of the keystream extend the table of possible lfsr states
184 */
185 static inline void
186 extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
187 {
188 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
189 if(filter(*tbl) ^ filter(*tbl | 1)) { // replace
190 *tbl |= filter(*tbl) ^ bit;
191 } else if(filter(*tbl) == bit) { // insert
192 *++*end = *++tbl;
193 *tbl = tbl[-1] | 1;
194 } else // drop
195 *tbl-- = *(*end)--;
196 }
197
198
199 /** recover
200 * recursively narrow down the search space, 4 bits of keystream at a time
201 */
202 static struct Crypto1State*
203 recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
204 uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
205 struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)
206 {
207 uint32_t *o, *e;
208 bucket_info_t bucket_info;
209
210 if(rem == -1) {
211 for(e = e_head; e <= e_tail; ++e) {
212 *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
213 for(o = o_head; o <= o_tail; ++o, ++sl) {
214 sl->even = *o;
215 sl->odd = *e ^ parity(*o & LF_POLY_ODD);
216 }
217 }
218 sl->odd = sl->even = 0;
219 return sl;
220 }
221
222 for(uint32_t i = 0; i < 4 && rem--; i++) {
223 extend_table(o_head, &o_tail, (oks >>= 1) & 1,
224 LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
225 if(o_head > o_tail)
226 return sl;
227
228 extend_table(e_head, &e_tail, (eks >>= 1) & 1,
229 LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
230 if(e_head > e_tail)
231 return sl;
232 }
233
234 bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
235
236 for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
237 sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,
238 bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,
239 rem, sl, in, bucket);
240 }
241
242 return sl;
243 }
244 /** lfsr_recovery
245 * recover the state of the lfsr given 32 bits of the keystream
246 * additionally you can use the in parameter to specify the value
247 * that was fed into the lfsr at the time the keystream was generated
248 */
249 struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
250 {
251 struct Crypto1State *statelist;
252 uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
253 uint32_t *even_head = 0, *even_tail = 0, eks = 0;
254 int i;
255
256 // split the keystream into an odd and even part
257 for(i = 31; i >= 0; i -= 2)
258 oks = oks << 1 | BEBIT(ks2, i);
259 for(i = 30; i >= 0; i -= 2)
260 eks = eks << 1 | BEBIT(ks2, i);
261
262 odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
263 even_head = even_tail = malloc(sizeof(uint32_t) << 21);
264 statelist = malloc(sizeof(struct Crypto1State) << 18);
265 if(!odd_tail-- || !even_tail-- || !statelist) {
266 goto out;
267 }
268 statelist->odd = statelist->even = 0;
269
270 // allocate memory for out of place bucket_sort
271 bucket_array_t bucket;
272 for (uint32_t i = 0; i < 2; i++)
273 for (uint32_t j = 0; j <= 0xff; j++) {
274 bucket[i][j].head = malloc(sizeof(uint32_t)<<14);
275 if (!bucket[i][j].head) {
276 goto out;
277 }
278 }
279
280
281 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
282 for(i = 1 << 20; i >= 0; --i) {
283 if(filter(i) == (oks & 1))
284 *++odd_tail = i;
285 if(filter(i) == (eks & 1))
286 *++even_tail = i;
287 }
288
289 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
290 for(i = 0; i < 4; i++) {
291 extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
292 extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
293 }
294
295 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
296 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
297 // parameter into account.
298
299 in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping
300
301 recover(odd_head, odd_tail, oks,
302 even_head, even_tail, eks, 11, statelist, in << 1, bucket);
303
304
305 out:
306 free(odd_head);
307 free(even_head);
308 for (uint32_t i = 0; i < 2; i++)
309 for (uint32_t j = 0; j <= 0xff; j++)
310 free(bucket[i][j].head);
311
312 return statelist;
313 }
314
315 static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
316 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
317 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
318 static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
319 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
320 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
321 0x7EC7EE90, 0x7F63F748, 0x79117020};
322 static const uint32_t T1[] = {
323 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
324 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
325 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
326 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
327 static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
328 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
329 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
330 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
331 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
332 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
333 static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
334 static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
335 /** Reverse 64 bits of keystream into possible cipher states
336 * Variation mentioned in the paper. Somewhat optimized version
337 */
338 struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
339 {
340 struct Crypto1State *statelist, *sl;
341 uint8_t oks[32], eks[32], hi[32];
342 uint32_t low = 0, win = 0;
343 uint32_t *tail, table[1 << 16];
344 int i, j;
345
346 sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
347 if(!sl)
348 return 0;
349 sl->odd = sl->even = 0;
350
351 for(i = 30; i >= 0; i -= 2) {
352 oks[i >> 1] = BIT(ks2, i ^ 24);
353 oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
354 }
355 for(i = 31; i >= 0; i -= 2) {
356 eks[i >> 1] = BIT(ks2, i ^ 24);
357 eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
358 }
359
360 for(i = 0xfffff; i >= 0; --i) {
361 if (filter(i) != oks[0])
362 continue;
363
364 *(tail = table) = i;
365 for(j = 1; tail >= table && j < 29; ++j)
366 extend_table_simple(table, &tail, oks[j]);
367
368 if(tail < table)
369 continue;
370
371 for(j = 0; j < 19; ++j)
372 low = low << 1 | parity(i & S1[j]);
373 for(j = 0; j < 32; ++j)
374 hi[j] = parity(i & T1[j]);
375
376 for(; tail >= table; --tail) {
377 for(j = 0; j < 3; ++j) {
378 *tail = *tail << 1;
379 *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
380 if(filter(*tail) != oks[29 + j])
381 goto continue2;
382 }
383
384 for(j = 0; j < 19; ++j)
385 win = win << 1 | parity(*tail & S2[j]);
386
387 win ^= low;
388 for(j = 0; j < 32; ++j) {
389 win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
390 if(filter(win) != eks[j])
391 goto continue2;
392 }
393
394 *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
395 sl->odd = *tail ^ parity(LF_POLY_ODD & win);
396 sl->even = win;
397 ++sl;
398 sl->odd = sl->even = 0;
399 continue2:;
400 }
401 }
402 return statelist;
403 }
404
405 /** lfsr_rollback_bit
406 * Rollback the shift register in order to get previous states
407 */
408 void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
409 {
410 int out;
411
412 s->odd &= 0xffffff;
413 s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
414
415 out = s->even & 1;
416 out ^= LF_POLY_EVEN & (s->even >>= 1);
417 out ^= LF_POLY_ODD & s->odd;
418 out ^= !!in;
419 out ^= filter(s->odd) & !!fb;
420
421 s->even |= parity(out) << 23;
422 }
423 /** lfsr_rollback_byte
424 * Rollback the shift register in order to get previous states
425 */
426 void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
427 {
428 int i;
429 for (i = 7; i >= 0; --i)
430 lfsr_rollback_bit(s, BEBIT(in, i), fb);
431 }
432 /** lfsr_rollback_word
433 * Rollback the shift register in order to get previous states
434 */
435 void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
436 {
437 int i;
438 for (i = 31; i >= 0; --i)
439 lfsr_rollback_bit(s, BEBIT(in, i), fb);
440 }
441
442 /** nonce_distance
443 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
444 */
445 static uint16_t *dist = 0;
446 int nonce_distance(uint32_t from, uint32_t to)
447 {
448 uint16_t x, i;
449 if(!dist) {
450 dist = malloc(2 << 16);
451 if(!dist)
452 return -1;
453 for (x = i = 1; i; ++i) {
454 dist[(x & 0xff) << 8 | x >> 8] = i;
455 x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
456 }
457 }
458 return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
459 }
460
461
462 static uint32_t fastfwd[2][8] = {
463 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
464 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
465
466
467 /** lfsr_prefix_ks
468 *
469 * Is an exported helper function from the common prefix attack
470 * Described in the "dark side" paper. It returns an -1 terminated array
471 * of possible partial(21 bit) secret state.
472 * The required keystream(ks) needs to contain the keystream that was used to
473 * encrypt the NACK which is observed when varying only the 4 last bits of Nr
474 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
475 */
476 uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
477 {
478 uint32_t *candidates = malloc(4 << 21);
479 uint32_t c, entry;
480 int size, i;
481
482 if(!candidates)
483 return 0;
484
485 size = (1 << 21) - 1;
486 for(i = 0; i <= size; ++i)
487 candidates[i] = i;
488
489 for(c = 0; c < 8; ++c)
490 for(i = 0;i <= size; ++i) {
491 entry = candidates[i] ^ fastfwd[isodd][c];
492
493 if(filter(entry >> 1) == BIT(ks[c], isodd))
494 if(filter(entry) == BIT(ks[c], isodd + 2))
495 continue;
496
497 candidates[i--] = candidates[size--];
498 }
499
500 candidates[size + 1] = -1;
501
502 return candidates;
503 }
504
505 /** brute_top
506 * helper function which eliminates possible secret states using parity bits
507 */
508 static struct Crypto1State*
509 brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],
510 uint32_t odd, uint32_t even, struct Crypto1State* sl, uint8_t no_chk)
511 {
512 struct Crypto1State s;
513 uint32_t ks1, nr, ks2, rr, ks3, good, c;
514
515 for(c = 0; c < 8; ++c) {
516 s.odd = odd ^ fastfwd[1][c];
517 s.even = even ^ fastfwd[0][c];
518
519 lfsr_rollback_bit(&s, 0, 0);
520 lfsr_rollback_bit(&s, 0, 0);
521 lfsr_rollback_bit(&s, 0, 0);
522
523 lfsr_rollback_word(&s, 0, 0);
524 lfsr_rollback_word(&s, prefix | c << 5, 1);
525
526 sl->odd = s.odd;
527 sl->even = s.even;
528
529 if (no_chk)
530 break;
531
532 ks1 = crypto1_word(&s, prefix | c << 5, 1);
533 ks2 = crypto1_word(&s,0,0);
534 ks3 = crypto1_word(&s, 0,0);
535 nr = ks1 ^ (prefix | c << 5);
536 rr = ks2 ^ rresp;
537
538 good = 1;
539 good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
540 good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
541 good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
542 good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
543 good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24);
544
545 if(!good)
546 return sl;
547 }
548
549 return ++sl;
550 }
551
552
553 /** lfsr_common_prefix
554 * Implentation of the common prefix attack.
555 * Requires the 28 bit constant prefix used as reader nonce (pfx)
556 * The reader response used (rr)
557 * The keystream used to encrypt the observed NACK's (ks)
558 * The parity bits (par)
559 * It returns a zero terminated list of possible cipher states after the
560 * tag nonce was fed in
561 */
562 struct Crypto1State*
563 lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par)
564 {
565 struct Crypto1State *statelist, *s;
566 uint32_t *odd, *even, *o, *e, top;
567
568 odd = lfsr_prefix_ks(ks, 1);
569 even = lfsr_prefix_ks(ks, 0);
570
571 statelist = malloc((sizeof *statelist) << 21); //how large should be?
572 if(!statelist || !odd || !even)
573 return 0;
574
575 s = statelist;
576 for(o = odd; *o != -1; ++o)
577 for(e = even; *e != -1; ++e)
578 for(top = 0; top < 64; ++top) {
579 *o = (*o & 0x1fffff) | (top << 21);
580 *e = (*e & 0x1fffff) | (top >> 3) << 21;
581 s = brute_top(pfx, rr, par, *o, *e, s, no_par);
582 }
583
584 s->odd = s->even = -1;
585 //printf("state count = %d\n",s-statelist);
586
587 free(odd);
588 free(even);
589
590 return statelist;
591 }
Impressum, Datenschutz