]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
git housekeeping:
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17
18 void AcquireRawAdcSamples125k(int divisor)
19 {
20 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
21 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
22 else if (divisor == 0)
23 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
24 else
25 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
26
27 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
28
29 // Connect the A/D to the peak-detected low-frequency path.
30 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
31
32 // Give it a bit of time for the resonant antenna to settle.
33 SpinDelay(50);
34
35 // Now set up the SSC to get the ADC samples that are now streaming at us.
36 FpgaSetupSsc();
37
38 // Now call the acquisition routine
39 DoAcquisition125k();
40 }
41
42 // split into two routines so we can avoid timing issues after sending commands //
43 void DoAcquisition125k(void)
44 {
45 uint8_t *dest = (uint8_t *)BigBuf;
46 int n = sizeof(BigBuf);
47 int i;
48
49 memset(dest, 0, n);
50 i = 0;
51 for(;;) {
52 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
53 AT91C_BASE_SSC->SSC_THR = 0x43;
54 LED_D_ON();
55 }
56 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
57 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
58 i++;
59 LED_D_OFF();
60 if (i >= n) break;
61 }
62 }
63 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
64 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
65 }
66
67 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
68 {
69 int at134khz;
70
71 /* Make sure the tag is reset */
72 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
73 SpinDelay(2500);
74
75 // see if 'h' was specified
76 if (command[strlen((char *) command) - 1] == 'h')
77 at134khz = TRUE;
78 else
79 at134khz = FALSE;
80
81 if (at134khz)
82 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
83 else
84 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
85
86 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
87
88 // Give it a bit of time for the resonant antenna to settle.
89 SpinDelay(50);
90 // And a little more time for the tag to fully power up
91 SpinDelay(2000);
92
93 // Now set up the SSC to get the ADC samples that are now streaming at us.
94 FpgaSetupSsc();
95
96 // now modulate the reader field
97 while(*command != '\0' && *command != ' ') {
98 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
99 LED_D_OFF();
100 SpinDelayUs(delay_off);
101 if (at134khz)
102 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
103 else
104 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
105
106 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
107 LED_D_ON();
108 if(*(command++) == '0')
109 SpinDelayUs(period_0);
110 else
111 SpinDelayUs(period_1);
112 }
113 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
114 LED_D_OFF();
115 SpinDelayUs(delay_off);
116 if (at134khz)
117 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
118 else
119 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
120
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
122
123 // now do the read
124 DoAcquisition125k();
125 }
126
127 /* blank r/w tag data stream
128 ...0000000000000000 01111111
129 1010101010101010101010101010101010101010101010101010101010101010
130 0011010010100001
131 01111111
132 101010101010101[0]000...
133
134 [5555fe852c5555555555555555fe0000]
135 */
136 void ReadTItag(void)
137 {
138 // some hardcoded initial params
139 // when we read a TI tag we sample the zerocross line at 2Mhz
140 // TI tags modulate a 1 as 16 cycles of 123.2Khz
141 // TI tags modulate a 0 as 16 cycles of 134.2Khz
142 #define FSAMPLE 2000000
143 #define FREQLO 123200
144 #define FREQHI 134200
145
146 signed char *dest = (signed char *)BigBuf;
147 int n = sizeof(BigBuf);
148 // int *dest = GraphBuffer;
149 // int n = GraphTraceLen;
150
151 // 128 bit shift register [shift3:shift2:shift1:shift0]
152 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
153
154 int i, cycles=0, samples=0;
155 // how many sample points fit in 16 cycles of each frequency
156 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
157 // when to tell if we're close enough to one freq or another
158 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
159
160 // TI tags charge at 134.2Khz
161 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
162
163 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
164 // connects to SSP_DIN and the SSP_DOUT logic level controls
165 // whether we're modulating the antenna (high)
166 // or listening to the antenna (low)
167 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
168
169 // get TI tag data into the buffer
170 AcquireTiType();
171
172 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
173
174 for (i=0; i<n-1; i++) {
175 // count cycles by looking for lo to hi zero crossings
176 if ( (dest[i]<0) && (dest[i+1]>0) ) {
177 cycles++;
178 // after 16 cycles, measure the frequency
179 if (cycles>15) {
180 cycles=0;
181 samples=i-samples; // number of samples in these 16 cycles
182
183 // TI bits are coming to us lsb first so shift them
184 // right through our 128 bit right shift register
185 shift0 = (shift0>>1) | (shift1 << 31);
186 shift1 = (shift1>>1) | (shift2 << 31);
187 shift2 = (shift2>>1) | (shift3 << 31);
188 shift3 >>= 1;
189
190 // check if the cycles fall close to the number
191 // expected for either the low or high frequency
192 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
193 // low frequency represents a 1
194 shift3 |= (1<<31);
195 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
196 // high frequency represents a 0
197 } else {
198 // probably detected a gay waveform or noise
199 // use this as gaydar or discard shift register and start again
200 shift3 = shift2 = shift1 = shift0 = 0;
201 }
202 samples = i;
203
204 // for each bit we receive, test if we've detected a valid tag
205
206 // if we see 17 zeroes followed by 6 ones, we might have a tag
207 // remember the bits are backwards
208 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
209 // if start and end bytes match, we have a tag so break out of the loop
210 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
211 cycles = 0xF0B; //use this as a flag (ugly but whatever)
212 break;
213 }
214 }
215 }
216 }
217 }
218
219 // if flag is set we have a tag
220 if (cycles!=0xF0B) {
221 DbpString("Info: No valid tag detected.");
222 } else {
223 // put 64 bit data into shift1 and shift0
224 shift0 = (shift0>>24) | (shift1 << 8);
225 shift1 = (shift1>>24) | (shift2 << 8);
226
227 // align 16 bit crc into lower half of shift2
228 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
229
230 // if r/w tag, check ident match
231 if ( shift3&(1<<15) ) {
232 DbpString("Info: TI tag is rewriteable");
233 // only 15 bits compare, last bit of ident is not valid
234 if ( ((shift3>>16)^shift0)&0x7fff ) {
235 DbpString("Error: Ident mismatch!");
236 } else {
237 DbpString("Info: TI tag ident is valid");
238 }
239 } else {
240 DbpString("Info: TI tag is readonly");
241 }
242
243 // WARNING the order of the bytes in which we calc crc below needs checking
244 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
245 // bytes in reverse or something
246 // calculate CRC
247 uint32_t crc=0;
248
249 crc = update_crc16(crc, (shift0)&0xff);
250 crc = update_crc16(crc, (shift0>>8)&0xff);
251 crc = update_crc16(crc, (shift0>>16)&0xff);
252 crc = update_crc16(crc, (shift0>>24)&0xff);
253 crc = update_crc16(crc, (shift1)&0xff);
254 crc = update_crc16(crc, (shift1>>8)&0xff);
255 crc = update_crc16(crc, (shift1>>16)&0xff);
256 crc = update_crc16(crc, (shift1>>24)&0xff);
257
258 Dbprintf("Info: Tag data: %x%08x, crc=%x",
259 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
260 if (crc != (shift2&0xffff)) {
261 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
262 } else {
263 DbpString("Info: CRC is good");
264 }
265 }
266 }
267
268 void WriteTIbyte(uint8_t b)
269 {
270 int i = 0;
271
272 // modulate 8 bits out to the antenna
273 for (i=0; i<8; i++)
274 {
275 if (b&(1<<i)) {
276 // stop modulating antenna
277 LOW(GPIO_SSC_DOUT);
278 SpinDelayUs(1000);
279 // modulate antenna
280 HIGH(GPIO_SSC_DOUT);
281 SpinDelayUs(1000);
282 } else {
283 // stop modulating antenna
284 LOW(GPIO_SSC_DOUT);
285 SpinDelayUs(300);
286 // modulate antenna
287 HIGH(GPIO_SSC_DOUT);
288 SpinDelayUs(1700);
289 }
290 }
291 }
292
293 void AcquireTiType(void)
294 {
295 int i, j, n;
296 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
297 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
298 #define TIBUFLEN 1250
299
300 // clear buffer
301 memset(BigBuf,0,sizeof(BigBuf));
302
303 // Set up the synchronous serial port
304 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
305 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
306
307 // steal this pin from the SSP and use it to control the modulation
308 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
309 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
310
311 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
312 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
313
314 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
315 // 48/2 = 24 MHz clock must be divided by 12
316 AT91C_BASE_SSC->SSC_CMR = 12;
317
318 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
319 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
320 AT91C_BASE_SSC->SSC_TCMR = 0;
321 AT91C_BASE_SSC->SSC_TFMR = 0;
322
323 LED_D_ON();
324
325 // modulate antenna
326 HIGH(GPIO_SSC_DOUT);
327
328 // Charge TI tag for 50ms.
329 SpinDelay(50);
330
331 // stop modulating antenna and listen
332 LOW(GPIO_SSC_DOUT);
333
334 LED_D_OFF();
335
336 i = 0;
337 for(;;) {
338 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
339 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
340 i++; if(i >= TIBUFLEN) break;
341 }
342 WDT_HIT();
343 }
344
345 // return stolen pin to SSP
346 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
347 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
348
349 char *dest = (char *)BigBuf;
350 n = TIBUFLEN*32;
351 // unpack buffer
352 for (i=TIBUFLEN-1; i>=0; i--) {
353 for (j=0; j<32; j++) {
354 if(BigBuf[i] & (1 << j)) {
355 dest[--n] = 1;
356 } else {
357 dest[--n] = -1;
358 }
359 }
360 }
361 }
362
363 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
364 // if crc provided, it will be written with the data verbatim (even if bogus)
365 // if not provided a valid crc will be computed from the data and written.
366 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
367 {
368 if(crc == 0) {
369 crc = update_crc16(crc, (idlo)&0xff);
370 crc = update_crc16(crc, (idlo>>8)&0xff);
371 crc = update_crc16(crc, (idlo>>16)&0xff);
372 crc = update_crc16(crc, (idlo>>24)&0xff);
373 crc = update_crc16(crc, (idhi)&0xff);
374 crc = update_crc16(crc, (idhi>>8)&0xff);
375 crc = update_crc16(crc, (idhi>>16)&0xff);
376 crc = update_crc16(crc, (idhi>>24)&0xff);
377 }
378 Dbprintf("Writing to tag: %x%08x, crc=%x",
379 (unsigned int) idhi, (unsigned int) idlo, crc);
380
381 // TI tags charge at 134.2Khz
382 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
383 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
384 // connects to SSP_DIN and the SSP_DOUT logic level controls
385 // whether we're modulating the antenna (high)
386 // or listening to the antenna (low)
387 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
388 LED_A_ON();
389
390 // steal this pin from the SSP and use it to control the modulation
391 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
392 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
393
394 // writing algorithm:
395 // a high bit consists of a field off for 1ms and field on for 1ms
396 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
397 // initiate a charge time of 50ms (field on) then immediately start writing bits
398 // start by writing 0xBB (keyword) and 0xEB (password)
399 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
400 // finally end with 0x0300 (write frame)
401 // all data is sent lsb firts
402 // finish with 15ms programming time
403
404 // modulate antenna
405 HIGH(GPIO_SSC_DOUT);
406 SpinDelay(50); // charge time
407
408 WriteTIbyte(0xbb); // keyword
409 WriteTIbyte(0xeb); // password
410 WriteTIbyte( (idlo )&0xff );
411 WriteTIbyte( (idlo>>8 )&0xff );
412 WriteTIbyte( (idlo>>16)&0xff );
413 WriteTIbyte( (idlo>>24)&0xff );
414 WriteTIbyte( (idhi )&0xff );
415 WriteTIbyte( (idhi>>8 )&0xff );
416 WriteTIbyte( (idhi>>16)&0xff );
417 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
418 WriteTIbyte( (crc )&0xff ); // crc lo
419 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
420 WriteTIbyte(0x00); // write frame lo
421 WriteTIbyte(0x03); // write frame hi
422 HIGH(GPIO_SSC_DOUT);
423 SpinDelay(50); // programming time
424
425 LED_A_OFF();
426
427 // get TI tag data into the buffer
428 AcquireTiType();
429
430 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
431 DbpString("Now use tiread to check");
432 }
433
434 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
435 {
436 int i;
437 uint8_t *tab = (uint8_t *)BigBuf;
438
439 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
440
441 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
442
443 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
444 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
445
446 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
447 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
448
449 i = 0;
450 for(;;) {
451 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
452 if(BUTTON_PRESS()) {
453 DbpString("Stopped");
454 return;
455 }
456 WDT_HIT();
457 }
458
459 if (ledcontrol)
460 LED_D_ON();
461
462 if(tab[i])
463 OPEN_COIL();
464 else
465 SHORT_COIL();
466
467 if (ledcontrol)
468 LED_D_OFF();
469
470 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
471 if(BUTTON_PRESS()) {
472 DbpString("Stopped");
473 return;
474 }
475 WDT_HIT();
476 }
477
478 i++;
479 if(i == period) {
480 i = 0;
481 if (gap) {
482 SHORT_COIL();
483 SpinDelayUs(gap);
484 }
485 }
486 }
487 }
488
489 #define DEBUG_FRAME_CONTENTS 1
490 void SimulateTagLowFrequencyBidir(int divisor, int t0)
491 {
492 }
493
494 // compose fc/8 fc/10 waveform
495 static void fc(int c, int *n) {
496 uint8_t *dest = (uint8_t *)BigBuf;
497 int idx;
498
499 // for when we want an fc8 pattern every 4 logical bits
500 if(c==0) {
501 dest[((*n)++)]=1;
502 dest[((*n)++)]=1;
503 dest[((*n)++)]=0;
504 dest[((*n)++)]=0;
505 dest[((*n)++)]=0;
506 dest[((*n)++)]=0;
507 dest[((*n)++)]=0;
508 dest[((*n)++)]=0;
509 }
510 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
511 if(c==8) {
512 for (idx=0; idx<6; idx++) {
513 dest[((*n)++)]=1;
514 dest[((*n)++)]=1;
515 dest[((*n)++)]=0;
516 dest[((*n)++)]=0;
517 dest[((*n)++)]=0;
518 dest[((*n)++)]=0;
519 dest[((*n)++)]=0;
520 dest[((*n)++)]=0;
521 }
522 }
523
524 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
525 if(c==10) {
526 for (idx=0; idx<5; idx++) {
527 dest[((*n)++)]=1;
528 dest[((*n)++)]=1;
529 dest[((*n)++)]=1;
530 dest[((*n)++)]=0;
531 dest[((*n)++)]=0;
532 dest[((*n)++)]=0;
533 dest[((*n)++)]=0;
534 dest[((*n)++)]=0;
535 dest[((*n)++)]=0;
536 dest[((*n)++)]=0;
537 }
538 }
539 }
540
541 // prepare a waveform pattern in the buffer based on the ID given then
542 // simulate a HID tag until the button is pressed
543 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
544 {
545 int n=0, i=0;
546 /*
547 HID tag bitstream format
548 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
549 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
550 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
551 A fc8 is inserted before every 4 bits
552 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
553 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
554 */
555
556 if (hi>0xFFF) {
557 DbpString("Tags can only have 44 bits.");
558 return;
559 }
560 fc(0,&n);
561 // special start of frame marker containing invalid bit sequences
562 fc(8, &n); fc(8, &n); // invalid
563 fc(8, &n); fc(10, &n); // logical 0
564 fc(10, &n); fc(10, &n); // invalid
565 fc(8, &n); fc(10, &n); // logical 0
566
567 WDT_HIT();
568 // manchester encode bits 43 to 32
569 for (i=11; i>=0; i--) {
570 if ((i%4)==3) fc(0,&n);
571 if ((hi>>i)&1) {
572 fc(10, &n); fc(8, &n); // low-high transition
573 } else {
574 fc(8, &n); fc(10, &n); // high-low transition
575 }
576 }
577
578 WDT_HIT();
579 // manchester encode bits 31 to 0
580 for (i=31; i>=0; i--) {
581 if ((i%4)==3) fc(0,&n);
582 if ((lo>>i)&1) {
583 fc(10, &n); fc(8, &n); // low-high transition
584 } else {
585 fc(8, &n); fc(10, &n); // high-low transition
586 }
587 }
588
589 if (ledcontrol)
590 LED_A_ON();
591 SimulateTagLowFrequency(n, 0, ledcontrol);
592
593 if (ledcontrol)
594 LED_A_OFF();
595 }
596
597
598 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
599 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
600 {
601 uint8_t *dest = (uint8_t *)BigBuf;
602 int m=0, n=0, i=0, idx=0, found=0, lastval=0;
603 uint32_t hi2=0, hi=0, lo=0;
604
605 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
606 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
607
608 // Connect the A/D to the peak-detected low-frequency path.
609 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
610
611 // Give it a bit of time for the resonant antenna to settle.
612 SpinDelay(50);
613
614 // Now set up the SSC to get the ADC samples that are now streaming at us.
615 FpgaSetupSsc();
616
617 for(;;) {
618 WDT_HIT();
619 if (ledcontrol)
620 LED_A_ON();
621 if(BUTTON_PRESS()) {
622 DbpString("Stopped");
623 if (ledcontrol)
624 LED_A_OFF();
625 return;
626 }
627
628 i = 0;
629 m = sizeof(BigBuf);
630 memset(dest,128,m);
631 for(;;) {
632 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
633 AT91C_BASE_SSC->SSC_THR = 0x43;
634 if (ledcontrol)
635 LED_D_ON();
636 }
637 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
638 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
639 // we don't care about actual value, only if it's more or less than a
640 // threshold essentially we capture zero crossings for later analysis
641 if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
642 i++;
643 if (ledcontrol)
644 LED_D_OFF();
645 if(i >= m) {
646 break;
647 }
648 }
649 }
650
651 // FSK demodulator
652
653 // sync to first lo-hi transition
654 for( idx=1; idx<m; idx++) {
655 if (dest[idx-1]<dest[idx])
656 lastval=idx;
657 break;
658 }
659 WDT_HIT();
660
661 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
662 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
663 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
664 for( i=0; idx<m; idx++) {
665 if (dest[idx-1]<dest[idx]) {
666 dest[i]=idx-lastval;
667 if (dest[i] <= 8) {
668 dest[i]=1;
669 } else {
670 dest[i]=0;
671 }
672
673 lastval=idx;
674 i++;
675 }
676 }
677 m=i;
678 WDT_HIT();
679
680 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
681 lastval=dest[0];
682 idx=0;
683 i=0;
684 n=0;
685 for( idx=0; idx<m; idx++) {
686 if (dest[idx]==lastval) {
687 n++;
688 } else {
689 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
690 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
691 // swallowed up by rounding
692 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
693 // special start of frame markers use invalid manchester states (no transitions) by using sequences
694 // like 111000
695 if (dest[idx-1]) {
696 n=(n+1)/6; // fc/8 in sets of 6
697 } else {
698 n=(n+1)/5; // fc/10 in sets of 5
699 }
700 switch (n) { // stuff appropriate bits in buffer
701 case 0:
702 case 1: // one bit
703 dest[i++]=dest[idx-1];
704 break;
705 case 2: // two bits
706 dest[i++]=dest[idx-1];
707 dest[i++]=dest[idx-1];
708 break;
709 case 3: // 3 bit start of frame markers
710 dest[i++]=dest[idx-1];
711 dest[i++]=dest[idx-1];
712 dest[i++]=dest[idx-1];
713 break;
714 // When a logic 0 is immediately followed by the start of the next transmisson
715 // (special pattern) a pattern of 4 bit duration lengths is created.
716 case 4:
717 dest[i++]=dest[idx-1];
718 dest[i++]=dest[idx-1];
719 dest[i++]=dest[idx-1];
720 dest[i++]=dest[idx-1];
721 break;
722 default: // this shouldn't happen, don't stuff any bits
723 break;
724 }
725 n=0;
726 lastval=dest[idx];
727 }
728 }
729 m=i;
730 WDT_HIT();
731
732 // final loop, go over previously decoded manchester data and decode into usable tag ID
733 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
734 for( idx=0; idx<m-6; idx++) {
735 // search for a start of frame marker
736 if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
737 {
738 found=1;
739 idx+=6;
740 if (found && (hi2|hi|lo)) {
741 if (hi2 != 0){
742 Dbprintf("TAG ID: %x%08x%08x (%d)",
743 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
744 }
745 else {
746 Dbprintf("TAG ID: %x%08x (%d)",
747 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
748 }
749 /* if we're only looking for one tag */
750 if (findone)
751 {
752 *high = hi;
753 *low = lo;
754 return;
755 }
756 hi2=0;
757 hi=0;
758 lo=0;
759 found=0;
760 }
761 }
762 if (found) {
763 if (dest[idx] && (!dest[idx+1]) ) {
764 hi2=(hi2<<1)|(hi>>31);
765 hi=(hi<<1)|(lo>>31);
766 lo=(lo<<1)|0;
767 } else if ( (!dest[idx]) && dest[idx+1]) {
768 hi2=(hi2<<1)|(hi>>31);
769 hi=(hi<<1)|(lo>>31);
770 lo=(lo<<1)|1;
771 } else {
772 found=0;
773 hi2=0;
774 hi=0;
775 lo=0;
776 }
777 idx++;
778 }
779 if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
780 {
781 found=1;
782 idx+=6;
783 if (found && (hi|lo)) {
784 if (hi2 != 0){
785 Dbprintf("TAG ID: %x%08x%08x (%d)",
786 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
787 }
788 else {
789 Dbprintf("TAG ID: %x%08x (%d)",
790 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
791 }
792 /* if we're only looking for one tag */
793 if (findone)
794 {
795 *high = hi;
796 *low = lo;
797 return;
798 }
799 hi2=0;
800 hi=0;
801 lo=0;
802 found=0;
803 }
804 }
805 }
806 WDT_HIT();
807 }
808 }
809
810 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
811 {
812 uint8_t *dest = (uint8_t *)BigBuf;
813 int m=0, n=0, i=0, idx=0, lastval=0;
814 int found=0;
815 uint32_t code=0, code2=0;
816 //uint32_t hi2=0, hi=0, lo=0;
817
818 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
819 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
820
821 // Connect the A/D to the peak-detected low-frequency path.
822 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
823
824 // Give it a bit of time for the resonant antenna to settle.
825 SpinDelay(50);
826
827 // Now set up the SSC to get the ADC samples that are now streaming at us.
828 FpgaSetupSsc();
829
830 for(;;) {
831 WDT_HIT();
832 if (ledcontrol)
833 LED_A_ON();
834 if(BUTTON_PRESS()) {
835 DbpString("Stopped");
836 if (ledcontrol)
837 LED_A_OFF();
838 return;
839 }
840
841 i = 0;
842 m = sizeof(BigBuf);
843 memset(dest,128,m);
844 for(;;) {
845 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
846 AT91C_BASE_SSC->SSC_THR = 0x43;
847 if (ledcontrol)
848 LED_D_ON();
849 }
850 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
851 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
852 // we don't care about actual value, only if it's more or less than a
853 // threshold essentially we capture zero crossings for later analysis
854 if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
855 i++;
856 if (ledcontrol)
857 LED_D_OFF();
858 if(i >= m) {
859 break;
860 }
861 }
862 }
863
864 // FSK demodulator
865
866 // sync to first lo-hi transition
867 for( idx=1; idx<m; idx++) {
868 if (dest[idx-1]<dest[idx])
869 lastval=idx;
870 break;
871 }
872 WDT_HIT();
873
874 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
875 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
876 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
877 for( i=0; idx<m; idx++) {
878 if (dest[idx-1]<dest[idx]) {
879 dest[i]=idx-lastval;
880 if (dest[i] <= 8) {
881 dest[i]=1;
882 } else {
883 dest[i]=0;
884 }
885
886 lastval=idx;
887 i++;
888 }
889 }
890 m=i;
891 WDT_HIT();
892
893 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
894 lastval=dest[0];
895 idx=0;
896 i=0;
897 n=0;
898 for( idx=0; idx<m; idx++) {
899 if (dest[idx]==lastval) {
900 n++;
901 } else {
902 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
903 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
904 // swallowed up by rounding
905 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
906 // special start of frame markers use invalid manchester states (no transitions) by using sequences
907 // like 111000
908 if (dest[idx-1]) {
909 n=(n+1)/7; // fc/8 in sets of 7
910 } else {
911 n=(n+1)/6; // fc/10 in sets of 6
912 }
913 switch (n) { // stuff appropriate bits in buffer
914 case 0:
915 case 1: // one bit
916 dest[i++]=dest[idx-1]^1;
917 //Dbprintf("%d",dest[idx-1]);
918 break;
919 case 2: // two bits
920 dest[i++]=dest[idx-1]^1;
921 dest[i++]=dest[idx-1]^1;
922 //Dbprintf("%d",dest[idx-1]);
923 //Dbprintf("%d",dest[idx-1]);
924 break;
925 case 3: // 3 bit start of frame markers
926 for(int j=0; j<3; j++){
927 dest[i++]=dest[idx-1]^1;
928 // Dbprintf("%d",dest[idx-1]);
929 }
930 break;
931 case 4:
932 for(int j=0; j<4; j++){
933 dest[i++]=dest[idx-1]^1;
934 // Dbprintf("%d",dest[idx-1]);
935 }
936 break;
937 case 5:
938 for(int j=0; j<5; j++){
939 dest[i++]=dest[idx-1]^1;
940 // Dbprintf("%d",dest[idx-1]);
941 }
942 break;
943 case 6:
944 for(int j=0; j<6; j++){
945 dest[i++]=dest[idx-1]^1;
946 // Dbprintf("%d",dest[idx-1]);
947 }
948 break;
949 case 7:
950 for(int j=0; j<7; j++){
951 dest[i++]=dest[idx-1]^1;
952 // Dbprintf("%d",dest[idx-1]);
953 }
954 break;
955 case 8:
956 for(int j=0; j<8; j++){
957 dest[i++]=dest[idx-1]^1;
958 // Dbprintf("%d",dest[idx-1]);
959 }
960 break;
961 case 9:
962 for(int j=0; j<9; j++){
963 dest[i++]=dest[idx-1]^1;
964 // Dbprintf("%d",dest[idx-1]);
965 }
966 break;
967 case 10:
968 for(int j=0; j<10; j++){
969 dest[i++]=dest[idx-1]^1;
970 // Dbprintf("%d",dest[idx-1]);
971 }
972 break;
973 case 11:
974 for(int j=0; j<11; j++){
975 dest[i++]=dest[idx-1]^1;
976 // Dbprintf("%d",dest[idx-1]);
977 }
978 break;
979 case 12:
980 for(int j=0; j<12; j++){
981 dest[i++]=dest[idx-1]^1;
982 // Dbprintf("%d",dest[idx-1]);
983 }
984 break;
985 default: // this shouldn't happen, don't stuff any bits
986 //Dbprintf("%d",dest[idx-1]);
987 break;
988 }
989 n=0;
990 lastval=dest[idx];
991 }
992 }//end for
993 /*for(int j=0; j<64;j+=8){
994 Dbprintf("%d%d%d%d%d%d%d%d",dest[j],dest[j+1],dest[j+2],dest[j+3],dest[j+4],dest[j+5],dest[j+6],dest[j+7]);
995 }
996 Dbprintf("\n");*/
997 m=i;
998 WDT_HIT();
999
1000 for( idx=0; idx<m-9; idx++) {
1001 if ( !(dest[idx]) && !(dest[idx+1]) && !(dest[idx+2]) && !(dest[idx+3]) && !(dest[idx+4]) && !(dest[idx+5]) && !(dest[idx+6]) && !(dest[idx+7]) && !(dest[idx+8])&& (dest[idx+9])){
1002 found=1;
1003 //idx+=9;
1004 if (found) {
1005 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
1006 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);
1007 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
1008 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]);
1009 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]);
1010 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]);
1011 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
1012 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1013
1014 short version='\x00';
1015 char unknown='\x00';
1016 uint16_t number=0;
1017 for(int j=14;j<18;j++){
1018 //Dbprintf("%d",dest[idx+j]);
1019 version <<=1;
1020 if (dest[idx+j]) version |= 1;
1021 }
1022 for(int j=19;j<27;j++){
1023 //Dbprintf("%d",dest[idx+j]);
1024 unknown <<=1;
1025 if (dest[idx+j]) unknown |= 1;
1026 }
1027 for(int j=36;j<45;j++){
1028 //Dbprintf("%d",dest[idx+j]);
1029 number <<=1;
1030 if (dest[idx+j]) number |= 1;
1031 }
1032 for(int j=46;j<53;j++){
1033 //Dbprintf("%d",dest[idx+j]);
1034 number <<=1;
1035 if (dest[idx+j]) number |= 1;
1036 }
1037 for(int j=0; j<32; j++){
1038 code <<=1;
1039 if(dest[idx+j]) code |= 1;
1040 }
1041 for(int j=32; j<64; j++){
1042 code2 <<=1;
1043 if(dest[idx+j]) code2 |= 1;
1044 }
1045
1046 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
1047 if (ledcontrol)
1048 LED_D_OFF();
1049 }
1050 // if we're only looking for one tag
1051 if (findone){
1052 //*high = hi;
1053 //*low = lo;
1054 LED_A_OFF();
1055 return;
1056 }
1057
1058 //hi=0;
1059 //lo=0;
1060 found=0;
1061 }
1062
1063 }
1064 }
1065 WDT_HIT();
1066 }
1067
1068 /*------------------------------
1069 * T5555/T5557/T5567 routines
1070 *------------------------------
1071 */
1072
1073 /* T55x7 configuration register definitions */
1074 #define T55x7_POR_DELAY 0x00000001
1075 #define T55x7_ST_TERMINATOR 0x00000008
1076 #define T55x7_PWD 0x00000010
1077 #define T55x7_MAXBLOCK_SHIFT 5
1078 #define T55x7_AOR 0x00000200
1079 #define T55x7_PSKCF_RF_2 0
1080 #define T55x7_PSKCF_RF_4 0x00000400
1081 #define T55x7_PSKCF_RF_8 0x00000800
1082 #define T55x7_MODULATION_DIRECT 0
1083 #define T55x7_MODULATION_PSK1 0x00001000
1084 #define T55x7_MODULATION_PSK2 0x00002000
1085 #define T55x7_MODULATION_PSK3 0x00003000
1086 #define T55x7_MODULATION_FSK1 0x00004000
1087 #define T55x7_MODULATION_FSK2 0x00005000
1088 #define T55x7_MODULATION_FSK1a 0x00006000
1089 #define T55x7_MODULATION_FSK2a 0x00007000
1090 #define T55x7_MODULATION_MANCHESTER 0x00008000
1091 #define T55x7_MODULATION_BIPHASE 0x00010000
1092 #define T55x7_BITRATE_RF_8 0
1093 #define T55x7_BITRATE_RF_16 0x00040000
1094 #define T55x7_BITRATE_RF_32 0x00080000
1095 #define T55x7_BITRATE_RF_40 0x000C0000
1096 #define T55x7_BITRATE_RF_50 0x00100000
1097 #define T55x7_BITRATE_RF_64 0x00140000
1098 #define T55x7_BITRATE_RF_100 0x00180000
1099 #define T55x7_BITRATE_RF_128 0x001C0000
1100
1101 /* T5555 (Q5) configuration register definitions */
1102 #define T5555_ST_TERMINATOR 0x00000001
1103 #define T5555_MAXBLOCK_SHIFT 0x00000001
1104 #define T5555_MODULATION_MANCHESTER 0
1105 #define T5555_MODULATION_PSK1 0x00000010
1106 #define T5555_MODULATION_PSK2 0x00000020
1107 #define T5555_MODULATION_PSK3 0x00000030
1108 #define T5555_MODULATION_FSK1 0x00000040
1109 #define T5555_MODULATION_FSK2 0x00000050
1110 #define T5555_MODULATION_BIPHASE 0x00000060
1111 #define T5555_MODULATION_DIRECT 0x00000070
1112 #define T5555_INVERT_OUTPUT 0x00000080
1113 #define T5555_PSK_RF_2 0
1114 #define T5555_PSK_RF_4 0x00000100
1115 #define T5555_PSK_RF_8 0x00000200
1116 #define T5555_USE_PWD 0x00000400
1117 #define T5555_USE_AOR 0x00000800
1118 #define T5555_BITRATE_SHIFT 12
1119 #define T5555_FAST_WRITE 0x00004000
1120 #define T5555_PAGE_SELECT 0x00008000
1121
1122 /*
1123 * Relevant times in microsecond
1124 * To compensate antenna falling times shorten the write times
1125 * and enlarge the gap ones.
1126 */
1127 #define START_GAP 250
1128 #define WRITE_GAP 160
1129 #define WRITE_0 144 // 192
1130 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
1131
1132 // Write one bit to card
1133 void T55xxWriteBit(int bit)
1134 {
1135 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1136 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
1137 if (bit == 0)
1138 SpinDelayUs(WRITE_0);
1139 else
1140 SpinDelayUs(WRITE_1);
1141 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1142 SpinDelayUs(WRITE_GAP);
1143 }
1144
1145 // Write one card block in page 0, no lock
1146 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1147 {
1148 unsigned int i;
1149
1150 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1151 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
1152
1153 // Give it a bit of time for the resonant antenna to settle.
1154 // And for the tag to fully power up
1155 SpinDelay(150);
1156
1157 // Now start writting
1158 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1159 SpinDelayUs(START_GAP);
1160
1161 // Opcode
1162 T55xxWriteBit(1);
1163 T55xxWriteBit(0); //Page 0
1164 if (PwdMode == 1){
1165 // Pwd
1166 for (i = 0x80000000; i != 0; i >>= 1)
1167 T55xxWriteBit(Pwd & i);
1168 }
1169 // Lock bit
1170 T55xxWriteBit(0);
1171
1172 // Data
1173 for (i = 0x80000000; i != 0; i >>= 1)
1174 T55xxWriteBit(Data & i);
1175
1176 // Block
1177 for (i = 0x04; i != 0; i >>= 1)
1178 T55xxWriteBit(Block & i);
1179
1180 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1181 // so wait a little more)
1182 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1183 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
1184 SpinDelay(20);
1185 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1186 }
1187
1188 // Read one card block in page 0
1189 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1190 {
1191 uint8_t *dest = (uint8_t *)BigBuf;
1192 int m=0, i=0;
1193
1194 m = sizeof(BigBuf);
1195 // Clear destination buffer before sending the command
1196 memset(dest, 128, m);
1197 // Connect the A/D to the peak-detected low-frequency path.
1198 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1199 // Now set up the SSC to get the ADC samples that are now streaming at us.
1200 FpgaSetupSsc();
1201
1202 LED_D_ON();
1203 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1204 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
1205
1206 // Give it a bit of time for the resonant antenna to settle.
1207 // And for the tag to fully power up
1208 SpinDelay(150);
1209
1210 // Now start writting
1211 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1212 SpinDelayUs(START_GAP);
1213
1214 // Opcode
1215 T55xxWriteBit(1);
1216 T55xxWriteBit(0); //Page 0
1217 if (PwdMode == 1){
1218 // Pwd
1219 for (i = 0x80000000; i != 0; i >>= 1)
1220 T55xxWriteBit(Pwd & i);
1221 }
1222 // Lock bit
1223 T55xxWriteBit(0);
1224 // Block
1225 for (i = 0x04; i != 0; i >>= 1)
1226 T55xxWriteBit(Block & i);
1227
1228 // Turn field on to read the response
1229 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1230 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
1231
1232 // Now do the acquisition
1233 i = 0;
1234 for(;;) {
1235 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1236 AT91C_BASE_SSC->SSC_THR = 0x43;
1237 }
1238 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1239 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1240 // we don't care about actual value, only if it's more or less than a
1241 // threshold essentially we capture zero crossings for later analysis
1242 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1243 i++;
1244 if (i >= m) break;
1245 }
1246 }
1247
1248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1249 LED_D_OFF();
1250 DbpString("DONE!");
1251 }
1252
1253 // Read card traceability data (page 1)
1254 void T55xxReadTrace(void){
1255 uint8_t *dest = (uint8_t *)BigBuf;
1256 int m=0, i=0;
1257
1258 m = sizeof(BigBuf);
1259 // Clear destination buffer before sending the command
1260 memset(dest, 128, m);
1261 // Connect the A/D to the peak-detected low-frequency path.
1262 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1263 // Now set up the SSC to get the ADC samples that are now streaming at us.
1264 FpgaSetupSsc();
1265
1266 LED_D_ON();
1267 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1268 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
1269
1270 // Give it a bit of time for the resonant antenna to settle.
1271 // And for the tag to fully power up
1272 SpinDelay(150);
1273
1274 // Now start writting
1275 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1276 SpinDelayUs(START_GAP);
1277
1278 // Opcode
1279 T55xxWriteBit(1);
1280 T55xxWriteBit(1); //Page 1
1281
1282 // Turn field on to read the response
1283 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1284 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
1285
1286 // Now do the acquisition
1287 i = 0;
1288 for(;;) {
1289 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1290 AT91C_BASE_SSC->SSC_THR = 0x43;
1291 }
1292 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1293 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1294 i++;
1295 if (i >= m) break;
1296 }
1297 }
1298
1299 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1300 LED_D_OFF();
1301 DbpString("DONE!");
1302 }
1303
1304 /*-------------- Cloning routines -----------*/
1305 // Copy HID id to card and setup block 0 config
1306 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1307 {
1308 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1309 int last_block = 0;
1310
1311 if (longFMT){
1312 // Ensure no more than 84 bits supplied
1313 if (hi2>0xFFFFF) {
1314 DbpString("Tags can only have 84 bits.");
1315 return;
1316 }
1317 // Build the 6 data blocks for supplied 84bit ID
1318 last_block = 6;
1319 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1320 for (int i=0;i<4;i++) {
1321 if (hi2 & (1<<(19-i)))
1322 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1323 else
1324 data1 |= (1<<((3-i)*2)); // 0 -> 01
1325 }
1326
1327 data2 = 0;
1328 for (int i=0;i<16;i++) {
1329 if (hi2 & (1<<(15-i)))
1330 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1331 else
1332 data2 |= (1<<((15-i)*2)); // 0 -> 01
1333 }
1334
1335 data3 = 0;
1336 for (int i=0;i<16;i++) {
1337 if (hi & (1<<(31-i)))
1338 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1339 else
1340 data3 |= (1<<((15-i)*2)); // 0 -> 01
1341 }
1342
1343 data4 = 0;
1344 for (int i=0;i<16;i++) {
1345 if (hi & (1<<(15-i)))
1346 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1347 else
1348 data4 |= (1<<((15-i)*2)); // 0 -> 01
1349 }
1350
1351 data5 = 0;
1352 for (int i=0;i<16;i++) {
1353 if (lo & (1<<(31-i)))
1354 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1355 else
1356 data5 |= (1<<((15-i)*2)); // 0 -> 01
1357 }
1358
1359 data6 = 0;
1360 for (int i=0;i<16;i++) {
1361 if (lo & (1<<(15-i)))
1362 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1363 else
1364 data6 |= (1<<((15-i)*2)); // 0 -> 01
1365 }
1366 }
1367 else {
1368 // Ensure no more than 44 bits supplied
1369 if (hi>0xFFF) {
1370 DbpString("Tags can only have 44 bits.");
1371 return;
1372 }
1373
1374 // Build the 3 data blocks for supplied 44bit ID
1375 last_block = 3;
1376
1377 data1 = 0x1D000000; // load preamble
1378
1379 for (int i=0;i<12;i++) {
1380 if (hi & (1<<(11-i)))
1381 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1382 else
1383 data1 |= (1<<((11-i)*2)); // 0 -> 01
1384 }
1385
1386 data2 = 0;
1387 for (int i=0;i<16;i++) {
1388 if (lo & (1<<(31-i)))
1389 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1390 else
1391 data2 |= (1<<((15-i)*2)); // 0 -> 01
1392 }
1393
1394 data3 = 0;
1395 for (int i=0;i<16;i++) {
1396 if (lo & (1<<(15-i)))
1397 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1398 else
1399 data3 |= (1<<((15-i)*2)); // 0 -> 01
1400 }
1401 }
1402
1403 LED_D_ON();
1404 // Program the data blocks for supplied ID
1405 // and the block 0 for HID format
1406 T55xxWriteBlock(data1,1,0,0);
1407 T55xxWriteBlock(data2,2,0,0);
1408 T55xxWriteBlock(data3,3,0,0);
1409
1410 if (longFMT) { // if long format there are 6 blocks
1411 T55xxWriteBlock(data4,4,0,0);
1412 T55xxWriteBlock(data5,5,0,0);
1413 T55xxWriteBlock(data6,6,0,0);
1414 }
1415
1416 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1417 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1418 T55x7_MODULATION_FSK2a |
1419 last_block << T55x7_MAXBLOCK_SHIFT,
1420 0,0,0);
1421
1422 LED_D_OFF();
1423
1424 DbpString("DONE!");
1425 }
1426
1427 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1428 {
1429 int data1=0, data2=0; //up to six blocks for long format
1430
1431 data1 = hi; // load preamble
1432 data2 = lo;
1433
1434 LED_D_ON();
1435 // Program the data blocks for supplied ID
1436 // and the block 0 for HID format
1437 T55xxWriteBlock(data1,1,0,0);
1438 T55xxWriteBlock(data2,2,0,0);
1439
1440 //Config Block
1441 T55xxWriteBlock(0x00147040,0,0,0);
1442 LED_D_OFF();
1443
1444 DbpString("DONE!");
1445 }
1446
1447 // Define 9bit header for EM410x tags
1448 #define EM410X_HEADER 0x1FF
1449 #define EM410X_ID_LENGTH 40
1450
1451 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1452 {
1453 int i, id_bit;
1454 uint64_t id = EM410X_HEADER;
1455 uint64_t rev_id = 0; // reversed ID
1456 int c_parity[4]; // column parity
1457 int r_parity = 0; // row parity
1458 uint32_t clock = 0;
1459
1460 // Reverse ID bits given as parameter (for simpler operations)
1461 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1462 if (i < 32) {
1463 rev_id = (rev_id << 1) | (id_lo & 1);
1464 id_lo >>= 1;
1465 } else {
1466 rev_id = (rev_id << 1) | (id_hi & 1);
1467 id_hi >>= 1;
1468 }
1469 }
1470
1471 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1472 id_bit = rev_id & 1;
1473
1474 if (i % 4 == 0) {
1475 // Don't write row parity bit at start of parsing
1476 if (i)
1477 id = (id << 1) | r_parity;
1478 // Start counting parity for new row
1479 r_parity = id_bit;
1480 } else {
1481 // Count row parity
1482 r_parity ^= id_bit;
1483 }
1484
1485 // First elements in column?
1486 if (i < 4)
1487 // Fill out first elements
1488 c_parity[i] = id_bit;
1489 else
1490 // Count column parity
1491 c_parity[i % 4] ^= id_bit;
1492
1493 // Insert ID bit
1494 id = (id << 1) | id_bit;
1495 rev_id >>= 1;
1496 }
1497
1498 // Insert parity bit of last row
1499 id = (id << 1) | r_parity;
1500
1501 // Fill out column parity at the end of tag
1502 for (i = 0; i < 4; ++i)
1503 id = (id << 1) | c_parity[i];
1504
1505 // Add stop bit
1506 id <<= 1;
1507
1508 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1509 LED_D_ON();
1510
1511 // Write EM410x ID
1512 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1513 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1514
1515 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1516 if (card) {
1517 // Clock rate is stored in bits 8-15 of the card value
1518 clock = (card & 0xFF00) >> 8;
1519 Dbprintf("Clock rate: %d", clock);
1520 switch (clock)
1521 {
1522 case 32:
1523 clock = T55x7_BITRATE_RF_32;
1524 break;
1525 case 16:
1526 clock = T55x7_BITRATE_RF_16;
1527 break;
1528 case 0:
1529 // A value of 0 is assumed to be 64 for backwards-compatibility
1530 // Fall through...
1531 case 64:
1532 clock = T55x7_BITRATE_RF_64;
1533 break;
1534 default:
1535 Dbprintf("Invalid clock rate: %d", clock);
1536 return;
1537 }
1538
1539 // Writing configuration for T55x7 tag
1540 T55xxWriteBlock(clock |
1541 T55x7_MODULATION_MANCHESTER |
1542 2 << T55x7_MAXBLOCK_SHIFT,
1543 0, 0, 0);
1544 }
1545 else
1546 // Writing configuration for T5555(Q5) tag
1547 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1548 T5555_MODULATION_MANCHESTER |
1549 2 << T5555_MAXBLOCK_SHIFT,
1550 0, 0, 0);
1551
1552 LED_D_OFF();
1553 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1554 (uint32_t)(id >> 32), (uint32_t)id);
1555 }
1556
1557 // Clone Indala 64-bit tag by UID to T55x7
1558 void CopyIndala64toT55x7(int hi, int lo)
1559 {
1560
1561 //Program the 2 data blocks for supplied 64bit UID
1562 // and the block 0 for Indala64 format
1563 T55xxWriteBlock(hi,1,0,0);
1564 T55xxWriteBlock(lo,2,0,0);
1565 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1566 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1567 T55x7_MODULATION_PSK1 |
1568 2 << T55x7_MAXBLOCK_SHIFT,
1569 0, 0, 0);
1570 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1571 // T5567WriteBlock(0x603E1042,0);
1572
1573 DbpString("DONE!");
1574
1575 }
1576
1577 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1578 {
1579
1580 //Program the 7 data blocks for supplied 224bit UID
1581 // and the block 0 for Indala224 format
1582 T55xxWriteBlock(uid1,1,0,0);
1583 T55xxWriteBlock(uid2,2,0,0);
1584 T55xxWriteBlock(uid3,3,0,0);
1585 T55xxWriteBlock(uid4,4,0,0);
1586 T55xxWriteBlock(uid5,5,0,0);
1587 T55xxWriteBlock(uid6,6,0,0);
1588 T55xxWriteBlock(uid7,7,0,0);
1589 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1590 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1591 T55x7_MODULATION_PSK1 |
1592 7 << T55x7_MAXBLOCK_SHIFT,
1593 0,0,0);
1594 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1595 // T5567WriteBlock(0x603E10E2,0);
1596
1597 DbpString("DONE!");
1598
1599 }
1600
1601
1602 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1603 #define max(x,y) ( x<y ? y:x)
1604
1605 int DemodPCF7931(uint8_t **outBlocks) {
1606 uint8_t BitStream[256];
1607 uint8_t Blocks[8][16];
1608 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1609 int GraphTraceLen = sizeof(BigBuf);
1610 int i, j, lastval, bitidx, half_switch;
1611 int clock = 64;
1612 int tolerance = clock / 8;
1613 int pmc, block_done;
1614 int lc, warnings = 0;
1615 int num_blocks = 0;
1616 int lmin=128, lmax=128;
1617 uint8_t dir;
1618
1619 AcquireRawAdcSamples125k(0);
1620
1621 lmin = 64;
1622 lmax = 192;
1623
1624 i = 2;
1625
1626 /* Find first local max/min */
1627 if(GraphBuffer[1] > GraphBuffer[0]) {
1628 while(i < GraphTraceLen) {
1629 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1630 break;
1631 i++;
1632 }
1633 dir = 0;
1634 }
1635 else {
1636 while(i < GraphTraceLen) {
1637 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1638 break;
1639 i++;
1640 }
1641 dir = 1;
1642 }
1643
1644 lastval = i++;
1645 half_switch = 0;
1646 pmc = 0;
1647 block_done = 0;
1648
1649 for (bitidx = 0; i < GraphTraceLen; i++)
1650 {
1651 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1652 {
1653 lc = i - lastval;
1654 lastval = i;
1655
1656 // Switch depending on lc length:
1657 // Tolerance is 1/8 of clock rate (arbitrary)
1658 if (abs(lc-clock/4) < tolerance) {
1659 // 16T0
1660 if((i - pmc) == lc) { /* 16T0 was previous one */
1661 /* It's a PMC ! */
1662 i += (128+127+16+32+33+16)-1;
1663 lastval = i;
1664 pmc = 0;
1665 block_done = 1;
1666 }
1667 else {
1668 pmc = i;
1669 }
1670 } else if (abs(lc-clock/2) < tolerance) {
1671 // 32TO
1672 if((i - pmc) == lc) { /* 16T0 was previous one */
1673 /* It's a PMC ! */
1674 i += (128+127+16+32+33)-1;
1675 lastval = i;
1676 pmc = 0;
1677 block_done = 1;
1678 }
1679 else if(half_switch == 1) {
1680 BitStream[bitidx++] = 0;
1681 half_switch = 0;
1682 }
1683 else
1684 half_switch++;
1685 } else if (abs(lc-clock) < tolerance) {
1686 // 64TO
1687 BitStream[bitidx++] = 1;
1688 } else {
1689 // Error
1690 warnings++;
1691 if (warnings > 10)
1692 {
1693 Dbprintf("Error: too many detection errors, aborting.");
1694 return 0;
1695 }
1696 }
1697
1698 if(block_done == 1) {
1699 if(bitidx == 128) {
1700 for(j=0; j<16; j++) {
1701 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1702 64*BitStream[j*8+6]+
1703 32*BitStream[j*8+5]+
1704 16*BitStream[j*8+4]+
1705 8*BitStream[j*8+3]+
1706 4*BitStream[j*8+2]+
1707 2*BitStream[j*8+1]+
1708 BitStream[j*8];
1709 }
1710 num_blocks++;
1711 }
1712 bitidx = 0;
1713 block_done = 0;
1714 half_switch = 0;
1715 }
1716 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1717 else dir = 1;
1718 }
1719 if(bitidx==255)
1720 bitidx=0;
1721 warnings = 0;
1722 if(num_blocks == 4) break;
1723 }
1724 memcpy(outBlocks, Blocks, 16*num_blocks);
1725 return num_blocks;
1726 }
1727
1728 int IsBlock0PCF7931(uint8_t *Block) {
1729 // Assume RFU means 0 :)
1730 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1731 return 1;
1732 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1733 return 1;
1734 return 0;
1735 }
1736
1737 int IsBlock1PCF7931(uint8_t *Block) {
1738 // Assume RFU means 0 :)
1739 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1740 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1741 return 1;
1742
1743 return 0;
1744 }
1745
1746 #define ALLOC 16
1747
1748 void ReadPCF7931() {
1749 uint8_t Blocks[8][17];
1750 uint8_t tmpBlocks[4][16];
1751 int i, j, ind, ind2, n;
1752 int num_blocks = 0;
1753 int max_blocks = 8;
1754 int ident = 0;
1755 int error = 0;
1756 int tries = 0;
1757
1758 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1759
1760 do {
1761 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1762 n = DemodPCF7931((uint8_t**)tmpBlocks);
1763 if(!n)
1764 error++;
1765 if(error==10 && num_blocks == 0) {
1766 Dbprintf("Error, no tag or bad tag");
1767 return;
1768 }
1769 else if (tries==20 || error==10) {
1770 Dbprintf("Error reading the tag");
1771 Dbprintf("Here is the partial content");
1772 goto end;
1773 }
1774
1775 for(i=0; i<n; i++)
1776 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1777 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1778 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1779 if(!ident) {
1780 for(i=0; i<n; i++) {
1781 if(IsBlock0PCF7931(tmpBlocks[i])) {
1782 // Found block 0 ?
1783 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1784 // Found block 1!
1785 // \o/
1786 ident = 1;
1787 memcpy(Blocks[0], tmpBlocks[i], 16);
1788 Blocks[0][ALLOC] = 1;
1789 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1790 Blocks[1][ALLOC] = 1;
1791 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1792 // Debug print
1793 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1794 num_blocks = 2;
1795 // Handle following blocks
1796 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1797 if(j==n) j=0;
1798 if(j==i) break;
1799 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1800 Blocks[ind2][ALLOC] = 1;
1801 }
1802 break;
1803 }
1804 }
1805 }
1806 }
1807 else {
1808 for(i=0; i<n; i++) { // Look for identical block in known blocks
1809 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1810 for(j=0; j<max_blocks; j++) {
1811 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1812 // Found an identical block
1813 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1814 if(ind2 < 0)
1815 ind2 = max_blocks;
1816 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1817 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1818 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1819 Blocks[ind2][ALLOC] = 1;
1820 num_blocks++;
1821 if(num_blocks == max_blocks) goto end;
1822 }
1823 }
1824 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1825 if(ind2 > max_blocks)
1826 ind2 = 0;
1827 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1828 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1829 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1830 Blocks[ind2][ALLOC] = 1;
1831 num_blocks++;
1832 if(num_blocks == max_blocks) goto end;
1833 }
1834 }
1835 }
1836 }
1837 }
1838 }
1839 }
1840 tries++;
1841 if (BUTTON_PRESS()) return;
1842 } while (num_blocks != max_blocks);
1843 end:
1844 Dbprintf("-----------------------------------------");
1845 Dbprintf("Memory content:");
1846 Dbprintf("-----------------------------------------");
1847 for(i=0; i<max_blocks; i++) {
1848 if(Blocks[i][ALLOC]==1)
1849 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1850 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1851 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1852 else
1853 Dbprintf("<missing block %d>", i);
1854 }
1855 Dbprintf("-----------------------------------------");
1856
1857 return ;
1858 }
1859
1860
1861 //-----------------------------------
1862 // EM4469 / EM4305 routines
1863 //-----------------------------------
1864 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1865 #define FWD_CMD_WRITE 0xA
1866 #define FWD_CMD_READ 0x9
1867 #define FWD_CMD_DISABLE 0x5
1868
1869
1870 uint8_t forwardLink_data[64]; //array of forwarded bits
1871 uint8_t * forward_ptr; //ptr for forward message preparation
1872 uint8_t fwd_bit_sz; //forwardlink bit counter
1873 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1874
1875 //====================================================================
1876 // prepares command bits
1877 // see EM4469 spec
1878 //====================================================================
1879 //--------------------------------------------------------------------
1880 uint8_t Prepare_Cmd( uint8_t cmd ) {
1881 //--------------------------------------------------------------------
1882
1883 *forward_ptr++ = 0; //start bit
1884 *forward_ptr++ = 0; //second pause for 4050 code
1885
1886 *forward_ptr++ = cmd;
1887 cmd >>= 1;
1888 *forward_ptr++ = cmd;
1889 cmd >>= 1;
1890 *forward_ptr++ = cmd;
1891 cmd >>= 1;
1892 *forward_ptr++ = cmd;
1893
1894 return 6; //return number of emited bits
1895 }
1896
1897 //====================================================================
1898 // prepares address bits
1899 // see EM4469 spec
1900 //====================================================================
1901
1902 //--------------------------------------------------------------------
1903 uint8_t Prepare_Addr( uint8_t addr ) {
1904 //--------------------------------------------------------------------
1905
1906 register uint8_t line_parity;
1907
1908 uint8_t i;
1909 line_parity = 0;
1910 for(i=0;i<6;i++) {
1911 *forward_ptr++ = addr;
1912 line_parity ^= addr;
1913 addr >>= 1;
1914 }
1915
1916 *forward_ptr++ = (line_parity & 1);
1917
1918 return 7; //return number of emited bits
1919 }
1920
1921 //====================================================================
1922 // prepares data bits intreleaved with parity bits
1923 // see EM4469 spec
1924 //====================================================================
1925
1926 //--------------------------------------------------------------------
1927 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1928 //--------------------------------------------------------------------
1929
1930 register uint8_t line_parity;
1931 register uint8_t column_parity;
1932 register uint8_t i, j;
1933 register uint16_t data;
1934
1935 data = data_low;
1936 column_parity = 0;
1937
1938 for(i=0; i<4; i++) {
1939 line_parity = 0;
1940 for(j=0; j<8; j++) {
1941 line_parity ^= data;
1942 column_parity ^= (data & 1) << j;
1943 *forward_ptr++ = data;
1944 data >>= 1;
1945 }
1946 *forward_ptr++ = line_parity;
1947 if(i == 1)
1948 data = data_hi;
1949 }
1950
1951 for(j=0; j<8; j++) {
1952 *forward_ptr++ = column_parity;
1953 column_parity >>= 1;
1954 }
1955 *forward_ptr = 0;
1956
1957 return 45; //return number of emited bits
1958 }
1959
1960 //====================================================================
1961 // Forward Link send function
1962 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1963 // fwd_bit_count set with number of bits to be sent
1964 //====================================================================
1965 void SendForward(uint8_t fwd_bit_count) {
1966
1967 fwd_write_ptr = forwardLink_data;
1968 fwd_bit_sz = fwd_bit_count;
1969
1970 LED_D_ON();
1971
1972 //Field on
1973 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1974 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
1975
1976 // Give it a bit of time for the resonant antenna to settle.
1977 // And for the tag to fully power up
1978 SpinDelay(150);
1979
1980 // force 1st mod pulse (start gap must be longer for 4305)
1981 fwd_bit_sz--; //prepare next bit modulation
1982 fwd_write_ptr++;
1983 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1984 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1985 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1986 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on
1987 SpinDelayUs(16*8); //16 cycles on (8us each)
1988
1989 // now start writting
1990 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1991 if(((*fwd_write_ptr++) & 1) == 1)
1992 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1993 else {
1994 //These timings work for 4469/4269/4305 (with the 55*8 above)
1995 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1996 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1997 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1998 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on
1999 SpinDelayUs(9*8); //16 cycles on (8us each)
2000 }
2001 }
2002 }
2003
2004 void EM4xLogin(uint32_t Password) {
2005
2006 uint8_t fwd_bit_count;
2007
2008 forward_ptr = forwardLink_data;
2009 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
2010 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
2011
2012 SendForward(fwd_bit_count);
2013
2014 //Wait for command to complete
2015 SpinDelay(20);
2016
2017 }
2018
2019 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2020
2021 uint8_t fwd_bit_count;
2022 uint8_t *dest = (uint8_t *)BigBuf;
2023 int m=0, i=0;
2024
2025 //If password mode do login
2026 if (PwdMode == 1) EM4xLogin(Pwd);
2027
2028 forward_ptr = forwardLink_data;
2029 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
2030 fwd_bit_count += Prepare_Addr( Address );
2031
2032 m = sizeof(BigBuf);
2033 // Clear destination buffer before sending the command
2034 memset(dest, 128, m);
2035 // Connect the A/D to the peak-detected low-frequency path.
2036 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
2037 // Now set up the SSC to get the ADC samples that are now streaming at us.
2038 FpgaSetupSsc();
2039
2040 SendForward(fwd_bit_count);
2041
2042 // Now do the acquisition
2043 i = 0;
2044 for(;;) {
2045 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
2046 AT91C_BASE_SSC->SSC_THR = 0x43;
2047 }
2048 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
2049 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2050 i++;
2051 if (i >= m) break;
2052 }
2053 }
2054 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2055 LED_D_OFF();
2056 }
2057
2058 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2059
2060 uint8_t fwd_bit_count;
2061
2062 //If password mode do login
2063 if (PwdMode == 1) EM4xLogin(Pwd);
2064
2065 forward_ptr = forwardLink_data;
2066 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
2067 fwd_bit_count += Prepare_Addr( Address );
2068 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
2069
2070 SendForward(fwd_bit_count);
2071
2072 //Wait for write to complete
2073 SpinDelay(20);
2074 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2075 LED_D_OFF();
2076 }
Impressum, Datenschutz