1 //-----------------------------------------------------------------------------
2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // LEGIC RF simulation code
10 //-----------------------------------------------------------------------------
13 static struct legic_frame
{
24 static crc_t legic_crc
;
25 static int legic_read_count
;
26 static uint32_t legic_prng_bc
;
27 static uint32_t legic_prng_iv
;
29 static int legic_phase_drift
;
30 static int legic_frame_drift
;
31 static int legic_reqresp_drift
;
37 static void setup_timer(void) {
38 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
39 // this it won't be terribly accurate but should be good enough.
41 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
42 timer = AT91C_BASE_TC1;
43 timer->TC_CCR = AT91C_TC_CLKDIS;
44 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
45 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
48 // Set up Timer 2 to use for measuring time between frames in
49 // tag simulation mode. Runs 4x faster as Timer 1
51 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
52 prng_timer = AT91C_BASE_TC2;
53 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
54 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
55 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
58 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
59 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
62 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
63 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
64 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
65 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
66 AT91C_BASE_TC0->TC_RA = 1;
67 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
71 // At TIMER_CLOCK3 (MCK/32)
72 // testing calculating in (us) microseconds.
73 #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
74 #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
75 #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
76 #define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks
77 #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
79 #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
81 #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
82 #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
84 #define OFFSET_LOG 1024
86 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
89 # define SHORT_COIL LOW(GPIO_SSC_DOUT);
92 # define OPEN_COIL HIGH(GPIO_SSC_DOUT);
95 // Pause pulse, off in 20us / 30ticks,
96 // ONE / ZERO bit pulse,
97 // one == 80us / 120ticks
98 // zero == 40us / 60ticks
100 # define COIL_PULSE(x) \
103 WaitTicks( (RWD_TIME_PAUSE) ); \
109 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
110 // Historically it used to be FREE_BUFFER_SIZE, which was 2744.
111 #define LEGIC_CARD_MEMSIZE 1024
112 static uint8_t* cardmem
;
114 static void frame_append_bit(struct legic_frame
* const f
, uint8_t bit
) {
115 // Overflow, won't happen
116 if (f
->bits
>= 31) return;
118 f
->data
|= (bit
<< f
->bits
);
122 static void frame_clean(struct legic_frame
* const f
) {
127 // Prng works when waiting in 99.1us cycles.
128 // and while sending/receiving in bit frames (100, 60)
129 /*static void CalibratePrng( uint32_t time){
130 // Calculate Cycles based on timer 100us
131 uint32_t i = (time - sendFrameStop) / 100 ;
133 // substract cycles of finished frames
134 int k = i - legic_prng_count()+1;
136 // substract current frame length, rewind to beginning
138 legic_prng_forward(k);
142 /* Generate Keystream */
143 uint32_t get_key_stream(int skip
, int count
) {
147 // Use int to enlarge timer tc to 32bit
148 legic_prng_bc
+= prng_timer
->TC_CV
;
150 // reset the prng timer.
152 /* If skip == -1, forward prng time based */
154 i
= (legic_prng_bc
+ SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */
155 i
-= legic_prng_count(); /* substract cycles of finished frames */
156 i
-= count
; /* substract current frame length, rewind to beginning */
157 legic_prng_forward(i
);
159 legic_prng_forward(skip
);
162 i
= (count
== 6) ? -1 : legic_read_count
;
165 //uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1), BYTEx(send, 0), BYTEx(send, 1), legic_prng_count()};
166 //LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE);
168 /* Generate KeyStream */
169 return legic_prng_get_bits(count
);
172 /* Send a frame in tag mode, the FPGA must have been set up by
175 void frame_send_tag(uint16_t response
, uint8_t bits
) {
179 /* Bitbang the response */
181 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
182 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
184 /* TAG_FRAME_WAIT -> shift by 2 */
185 legic_prng_forward(2);
186 response
^= legic_prng_get_bits(bits
);
188 /* Wait for the frame start */
189 WaitTicks( TAG_FRAME_WAIT
);
191 for (; mask
< BITMASK(bits
); mask
<<= 1) {
196 WaitTicks(TAG_BIT_PERIOD
);
201 /* Send a frame in reader mode, the FPGA must have been set up by
204 void frame_sendAsReader(uint32_t data
, uint8_t bits
){
206 uint32_t starttime
= GET_TICKS
, send
= 0;
209 // xor lsfr onto data.
210 send
= data
^ legic_prng_get_bits(bits
);
212 for (; mask
< BITMASK(bits
); mask
<<= 1) {
214 COIL_PULSE(RWD_TIME_1
)
216 COIL_PULSE(RWD_TIME_0
)
219 // Final pause to mark the end of the frame
223 uint8_t cmdbytes
[] = {bits
, BYTEx(data
, 0), BYTEx(data
, 1), BYTEx(send
, 0), BYTEx(send
, 1)};
224 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, GET_TICKS
, NULL
, TRUE
);
227 /* Receive a frame from the card in reader emulation mode, the FPGA and
228 * timer must have been set up by LegicRfReader and frame_sendAsReader.
230 * The LEGIC RF protocol from card to reader does not include explicit
231 * frame start/stop information or length information. The reader must
232 * know beforehand how many bits it wants to receive. (Notably: a card
233 * sending a stream of 0-bits is indistinguishable from no card present.)
235 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
236 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
237 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
238 * for edges. Count the edges in each bit interval. If they are approximately
239 * 0 this was a 0-bit, if they are approximately equal to the number of edges
240 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
241 * timer that's still running from frame_sendAsReader in order to get a synchronization
242 * with the frame that we just sent.
244 * FIXME: Because we're relying on the hysteresis to just do the right thing
245 * the range is severely reduced (and you'll probably also need a good antenna).
246 * So this should be fixed some time in the future for a proper receiver.
248 static void frame_receiveAsReader(struct legic_frame
* const f
, uint8_t bits
) {
250 if ( bits
> 32 ) return;
252 uint8_t i
= bits
, edges
= 0;
253 uint32_t the_bit
= 1, next_bit_at
= 0, data
= 0;
254 uint32_t old_level
= 0;
255 volatile uint32_t level
= 0;
259 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
260 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
262 // calibrate the prng.
263 legic_prng_forward(2);
264 data
= legic_prng_get_bits(bits
);
266 //FIXED time between sending frame and now listening frame. 330us
267 uint32_t starttime
= GET_TICKS
;
268 // its about 9+9 ticks delay from end-send to here.
271 next_bit_at
= GET_TICKS
+ TAG_BIT_PERIOD
;
275 while ( GET_TICKS
< next_bit_at
) {
277 level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
279 if (level
!= old_level
)
285 next_bit_at
+= TAG_BIT_PERIOD
;
287 // We expect 42 edges (ONE)
299 uint8_t cmdbytes
[] = {bits
, BYTEx(data
, 0), BYTEx(data
, 1)};
300 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, GET_TICKS
, NULL
, FALSE
);
303 // Setup pm3 as a Legic Reader
304 static uint32_t setup_phase_reader(uint8_t iv
) {
306 // Switch on carrier and let the tag charge for 1ms
316 frame_sendAsReader(iv
, 7);
318 // Now both tag and reader has same IV. Prng can start.
321 frame_receiveAsReader(¤t_frame
, 6);
323 // 292us (438t) - fixed delay before sending ack.
324 // minus log and stuff 100tick?
326 legic_prng_forward(3);
328 // Send obsfuscated acknowledgment frame.
329 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
330 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
331 switch ( current_frame
.data
) {
332 case 0x0D: frame_sendAsReader(0x19, 6); break;
334 case 0x3D: frame_sendAsReader(0x39, 6); break;
338 legic_prng_forward(2);
339 return current_frame
.data
;
342 static void LegicCommonInit(void) {
344 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
345 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
);
346 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
348 /* Bitbang the transmitter */
350 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
351 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
353 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
354 cardmem
= BigBuf_get_EM_addr();
355 memset(cardmem
, 0x00, LEGIC_CARD_MEMSIZE
);
359 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
364 // Switch off carrier, make sure tag is reset
365 static void switch_off_tag_rwd(void) {
371 // calculate crc4 for a legic READ command
372 static uint32_t legic4Crc(uint8_t cmd
, uint16_t byte_index
, uint8_t value
, uint8_t cmd_sz
) {
373 crc_clear(&legic_crc
);
374 uint32_t temp
= (value
<< cmd_sz
) | (byte_index
<< 1) | cmd
;
375 crc_update(&legic_crc
, temp
, cmd_sz
+ 8 );
376 return crc_finish(&legic_crc
);
379 int legic_read_byte( uint16_t index
, uint8_t cmd_sz
) {
381 uint8_t byte
, crc
, calcCrc
= 0;
382 uint32_t cmd
= (index
<< 1) | LEGIC_READ
;
384 // 90ticks = 60us (should be 100us but crc calc takes time.)
385 //WaitTicks(330); // 330ticks prng(4) - works
386 WaitTicks(240); // 240ticks prng(3) - works
388 frame_sendAsReader(cmd
, cmd_sz
);
389 frame_receiveAsReader(¤t_frame
, 12);
392 byte
= BYTEx(current_frame
.data
, 0);
393 crc
= BYTEx(current_frame
.data
, 1);
394 calcCrc
= legic4Crc(LEGIC_READ
, index
, byte
, cmd_sz
);
396 if( calcCrc
!= crc
) {
397 Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc
, crc
);
401 legic_prng_forward(3);
406 * - assemble a write_cmd_frame with crc and send it
407 * - wait until the tag sends back an ACK ('1' bit unencrypted)
408 * - forward the prng based on the timing
410 int legic_write_byte(uint16_t index
, uint8_t byte
, uint8_t addr_sz
) {
413 crc_clear(&legic_crc
);
414 crc_update(&legic_crc
, 0, 1); /* CMD_WRITE */
415 crc_update(&legic_crc
, index
, addr_sz
);
416 crc_update(&legic_crc
, byte
, 8);
417 uint32_t crc
= crc_finish(&legic_crc
);
418 uint32_t crc2
= legic4Crc(LEGIC_WRITE
, index
, byte
, addr_sz
+1);
420 Dbprintf("crc is missmatch");
423 // send write command
424 uint32_t cmd
= ((crc
<<(addr_sz
+1+8)) //CRC
425 |(byte
<<(addr_sz
+1)) //Data
427 | LEGIC_WRITE
); //CMD = Write
429 uint32_t cmd_sz
= addr_sz
+1+8+4; //crc+data+cmd
431 legic_prng_forward(2);
435 frame_sendAsReader(cmd
, cmd_sz
);
438 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
439 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
441 int t
, old_level
= 0, edges
= 0;
444 // ACK 3.6ms = 3600us * 1.5 = 5400ticks.
447 for( t
= 0; t
< 80; ++t
) {
449 next_bit_at
+= TAG_BIT_PERIOD
;
450 while(timer
->TC_CV
< next_bit_at
) {
451 volatile uint32_t level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
452 if(level
!= old_level
)
457 /* expected are 42 edges (ONE) */
459 int t
= timer
->TC_CV
;
460 int c
= t
/ TAG_BIT_PERIOD
;
463 legic_prng_forward(c
);
471 int LegicRfReader(uint16_t offset
, uint16_t len
, uint8_t iv
) {
475 legic_card_select_t card
;
479 if ( legic_select_card_iv(&card
, iv
) ) {
484 switch_off_tag_rwd();
486 if (len
+ offset
>= card
.cardsize
)
487 len
= card
.cardsize
- offset
;
489 setup_phase_reader(iv
);
493 int r
= legic_read_byte(offset
+ i
, card
.cmdsize
);
495 if (r
== -1 || BUTTON_PRESS()) {
496 if ( MF_DBGLEVEL
>= 2) DbpString("operation aborted");
506 switch_off_tag_rwd();
508 cmd_send(CMD_ACK
, isOK
, len
, 0, cardmem
, len
);
512 void LegicRfWriter(uint16_t offset
, uint16_t len
, uint8_t iv
, uint8_t *data
) {
516 // UID not is writeable.
522 legic_card_select_t card
;
526 if ( legic_select_card_iv(&card
, iv
) ) {
531 if (len
+ offset
>= card
.cardsize
)
532 len
= card
.cardsize
- offset
;
534 setup_phase_reader(iv
);
538 // how about we write backwards instead. no need for this extra DCF check.
539 // index = len - cardsize
546 if ( index > cardsize ) return -1;
549 write( cardmem[index], index , card.addrsize);
553 uint16_t index
= len
;
556 r
= legic_write_byte( index
, cardmem
[ index
], card
.addrsize
);
559 Dbprintf("operation aborted @ 0x%03.3x", index
);
568 cmd_send(CMD_ACK
, isOK
, 0,0,0,0);
569 switch_off_tag_rwd();
573 int legic_select_card_iv(legic_card_select_t
*p_card
, uint8_t iv
){
575 if ( p_card
== NULL
) return 1;
577 p_card
->tagtype
= setup_phase_reader(iv
);
579 switch(p_card
->tagtype
) {
582 p_card
->addrsize
= 5;
583 p_card
->cardsize
= 22;
587 p_card
->addrsize
= 8;
588 p_card
->cardsize
= 256;
591 p_card
->cmdsize
= 11;
592 p_card
->addrsize
= 10;
593 p_card
->cardsize
= 1024;
597 p_card
->addrsize
= 0;
598 p_card
->cardsize
= 0;
603 int legic_select_card(legic_card_select_t
*p_card
){
604 return legic_select_card_iv(p_card
, 0x01);
607 //-----------------------------------------------------------------------------
608 // Work with emulator memory
610 // Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
611 // involved in dealing with emulator memory. But if it is called later, it might
612 // destroy the Emulator Memory.
613 //-----------------------------------------------------------------------------
615 // arg1 = num of bytes
616 void LegicEMemSet(uint32_t arg0
, uint32_t arg1
, uint8_t *data
) {
617 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
618 legic_emlset_mem(data
, arg0
, arg1
);
621 // arg1 = num of bytes
622 void LegicEMemGet(uint32_t arg0
, uint32_t arg1
) {
623 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
624 uint8_t buf
[USB_CMD_DATA_SIZE
] = {0x00};
625 legic_emlget_mem(buf
, arg0
, arg1
);
627 cmd_send(CMD_ACK
, arg0
, arg1
, 0, buf
, USB_CMD_DATA_SIZE
);
630 void legic_emlset_mem(uint8_t *data
, int offset
, int numofbytes
) {
631 cardmem
= BigBuf_get_EM_addr();
632 memcpy(cardmem
+ offset
, data
, numofbytes
);
634 void legic_emlget_mem(uint8_t *data
, int offset
, int numofbytes
) {
635 cardmem
= BigBuf_get_EM_addr();
636 memcpy(data
, cardmem
+ offset
, numofbytes
);
639 void LegicRfInfo(void){
643 uint8_t buf
[sizeof(legic_card_select_t
)] = {0x00};
644 legic_card_select_t
*card
= (legic_card_select_t
*) buf
;
648 if ( legic_select_card(card
) ) {
649 cmd_send(CMD_ACK
,0,0,0,0,0);
654 for ( uint8_t i
= 0; i
< sizeof(card
->uid
); ++i
) {
655 r
= legic_read_byte(i
, card
->cmdsize
);
657 cmd_send(CMD_ACK
,0,0,0,0,0);
660 card
->uid
[i
] = r
& 0xFF;
664 r
= legic_read_byte(4, card
->cmdsize
);
665 uint32_t calc_mcc
= CRC8Legic(card
->uid
, 4);;
666 if ( r
!= calc_mcc
) {
667 cmd_send(CMD_ACK
,0,0,0,0,0);
672 cmd_send(CMD_ACK
, 1, 0, 0, buf
, sizeof(legic_card_select_t
));
675 switch_off_tag_rwd();
679 /* Handle (whether to respond) a frame in tag mode
680 * Only called when simulating a tag.
682 static void frame_handle_tag(struct legic_frame
const * const f
)
684 uint8_t *BigBuf
= BigBuf_get_addr();
686 /* First Part of Handshake (IV) */
692 ResetTimer(prng_timer
);
694 legic_prng_init(f
->data
);
695 frame_send_tag(0x3d, 6); /* 0x3d^0x26 = 0x1B */
696 legic_state
= STATE_IV
;
697 legic_read_count
= 0;
699 legic_prng_iv
= f
->data
;
708 if(legic_state
== STATE_IV
) {
709 int local_key
= get_key_stream(3, 6);
710 int xored
= 0x39 ^ local_key
;
711 if((f
->bits
== 6) && (f
->data
== xored
)) {
712 legic_state
= STATE_CON
;
719 legic_state
= STATE_DISCON
;
721 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
);
728 if(legic_state
== STATE_CON
) {
729 int key
= get_key_stream(2, 11); //legic_phase_drift, 11);
730 int addr
= f
->data
^ key
; addr
= addr
>> 1;
731 int data
= BigBuf
[addr
];
732 int hash
= legic4Crc(LEGIC_READ
, addr
, data
, 11) << 8;
733 BigBuf
[OFFSET_LOG
+legic_read_count
] = (uint8_t)addr
;
736 //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
737 legic_prng_forward(legic_reqresp_drift
);
739 frame_send_tag(hash
| data
, 12);
742 legic_prng_forward(2);
750 int key
= get_key_stream(-1, 23); //legic_frame_drift, 23);
751 int addr
= f
->data
^ key
; addr
= addr
>> 1; addr
= addr
& 0x3ff;
752 int data
= f
->data
^ key
; data
= data
>> 11; data
= data
& 0xff;
755 legic_state
= STATE_DISCON
;
757 Dbprintf("write - addr: %x, data: %x", addr
, data
);
761 if(legic_state
!= STATE_DISCON
) {
762 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
);
764 Dbprintf("IV: %03.3x", legic_prng_iv
);
765 for(i
= 0; i
<legic_read_count
; i
++) {
766 Dbprintf("Read Nb: %u, Addr: %u", i
, BigBuf
[OFFSET_LOG
+i
]);
769 for(i
= -1; i
<legic_read_count
; i
++) {
771 t
= BigBuf
[OFFSET_LOG
+256+i
*4];
772 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+1] << 8;
773 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+2] <<16;
774 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+3] <<24;
776 Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",
777 BigBuf
[OFFSET_LOG
+128+i
],
778 BigBuf
[OFFSET_LOG
+384+i
],
782 legic_state
= STATE_DISCON
;
783 legic_read_count
= 0;
789 /* Read bit by bit untill full frame is received
790 * Call to process frame end answer
792 static void emit(int bit
) {
796 frame_append_bit(¤t_frame
, 1);
799 frame_append_bit(¤t_frame
, 0);
802 if(current_frame
.bits
<= 4) {
803 frame_clean(¤t_frame
);
805 frame_handle_tag(¤t_frame
);
806 frame_clean(¤t_frame
);
813 void LegicRfSimulate(int phase
, int frame
, int reqresp
)
815 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
816 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
817 * envelope waveform on DIN and should send our response on DOUT.
819 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
820 * measure the time between two rising edges on DIN, and no encoding on the
821 * subcarrier from card to reader, so we'll just shift out our verbatim data
822 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
823 * seems to be 300us-ish.
826 legic_phase_drift
= phase
;
827 legic_frame_drift
= frame
;
828 legic_reqresp_drift
= reqresp
;
830 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
831 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
833 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_212K
);
835 /* Bitbang the receiver */
836 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
837 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
840 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
844 legic_state
= STATE_DISCON
;
847 DbpString("Starting Legic emulator, press button to end");
849 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
850 int level
= !!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
851 int time
= timer
->TC_CV
;
853 if(level
!= old_level
) {
855 timer
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
857 if (FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) {
862 } else if (FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) {
877 if(time
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) {
883 if(time
>= (20*RWD_TIME_1
) && (timer
->TC_SR
& AT91C_TC_CLKSTA
)) {
884 timer
->TC_CCR
= AT91C_TC_CLKDIS
;
890 if ( MF_DBGLEVEL
>= 1) DbpString("Stopped");
894 //-----------------------------------------------------------------------------
895 // Code up a string of octets at layer 2 (including CRC, we don't generate
896 // that here) so that they can be transmitted to the reader. Doesn't transmit
897 // them yet, just leaves them ready to send in ToSend[].
898 //-----------------------------------------------------------------------------
899 // static void CodeLegicAsTag(const uint8_t *cmd, int len)
905 // // Transmit a burst of ones, as the initial thing that lets the
906 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
907 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
909 // for(i = 0; i < 20; i++) {
910 // ToSendStuffBit(1);
911 // ToSendStuffBit(1);
912 // ToSendStuffBit(1);
913 // ToSendStuffBit(1);
917 // for(i = 0; i < 10; i++) {
918 // ToSendStuffBit(0);
919 // ToSendStuffBit(0);
920 // ToSendStuffBit(0);
921 // ToSendStuffBit(0);
923 // for(i = 0; i < 2; i++) {
924 // ToSendStuffBit(1);
925 // ToSendStuffBit(1);
926 // ToSendStuffBit(1);
927 // ToSendStuffBit(1);
930 // for(i = 0; i < len; i++) {
932 // uint8_t b = cmd[i];
935 // ToSendStuffBit(0);
936 // ToSendStuffBit(0);
937 // ToSendStuffBit(0);
938 // ToSendStuffBit(0);
941 // for(j = 0; j < 8; j++) {
943 // ToSendStuffBit(1);
944 // ToSendStuffBit(1);
945 // ToSendStuffBit(1);
946 // ToSendStuffBit(1);
948 // ToSendStuffBit(0);
949 // ToSendStuffBit(0);
950 // ToSendStuffBit(0);
951 // ToSendStuffBit(0);
957 // ToSendStuffBit(1);
958 // ToSendStuffBit(1);
959 // ToSendStuffBit(1);
960 // ToSendStuffBit(1);
964 // for(i = 0; i < 10; i++) {
965 // ToSendStuffBit(0);
966 // ToSendStuffBit(0);
967 // ToSendStuffBit(0);
968 // ToSendStuffBit(0);
970 // for(i = 0; i < 2; i++) {
971 // ToSendStuffBit(1);
972 // ToSendStuffBit(1);
973 // ToSendStuffBit(1);
974 // ToSendStuffBit(1);
977 // // Convert from last byte pos to length
981 //-----------------------------------------------------------------------------
982 // The software UART that receives commands from the reader, and its state
984 //-----------------------------------------------------------------------------
989 STATE_GOT_FALLING_EDGE_OF_SOF,
990 STATE_AWAITING_START_BIT,
1001 /* Receive & handle a bit coming from the reader.
1003 * This function is called 4 times per bit (every 2 subcarrier cycles).
1004 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1007 * LED A -> ON once we have received the SOF and are expecting the rest.
1008 * LED A -> OFF once we have received EOF or are in error state or unsynced
1010 * Returns: true if we received a EOF
1011 * false if we are still waiting for some more
1013 // static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1015 // switch(Uart.state) {
1016 // case STATE_UNSYNCD:
1018 // // we went low, so this could be the beginning of an SOF
1019 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1025 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1027 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1029 // if(Uart.bitCnt > 9) {
1030 // // we've seen enough consecutive
1031 // // zeros that it's a valid SOF
1033 // Uart.byteCnt = 0;
1034 // Uart.state = STATE_AWAITING_START_BIT;
1035 // LED_A_ON(); // Indicate we got a valid SOF
1037 // // didn't stay down long enough
1038 // // before going high, error
1039 // Uart.state = STATE_UNSYNCD;
1042 // // do nothing, keep waiting
1046 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1047 // if(Uart.bitCnt > 12) {
1048 // // Give up if we see too many zeros without
1051 // Uart.state = STATE_UNSYNCD;
1055 // case STATE_AWAITING_START_BIT:
1058 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1059 // // stayed high for too long between
1060 // // characters, error
1061 // Uart.state = STATE_UNSYNCD;
1064 // // falling edge, this starts the data byte
1067 // Uart.shiftReg = 0;
1068 // Uart.state = STATE_RECEIVING_DATA;
1072 // case STATE_RECEIVING_DATA:
1074 // if(Uart.posCnt == 2) {
1075 // // time to sample a bit
1076 // Uart.shiftReg >>= 1;
1078 // Uart.shiftReg |= 0x200;
1082 // if(Uart.posCnt >= 4) {
1085 // if(Uart.bitCnt == 10) {
1086 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1088 // // this is a data byte, with correct
1089 // // start and stop bits
1090 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1093 // if(Uart.byteCnt >= Uart.byteCntMax) {
1094 // // Buffer overflowed, give up
1096 // Uart.state = STATE_UNSYNCD;
1098 // // so get the next byte now
1100 // Uart.state = STATE_AWAITING_START_BIT;
1102 // } else if (Uart.shiftReg == 0x000) {
1103 // // this is an EOF byte
1104 // LED_A_OFF(); // Finished receiving
1105 // Uart.state = STATE_UNSYNCD;
1106 // if (Uart.byteCnt != 0) {
1110 // // this is an error
1112 // Uart.state = STATE_UNSYNCD;
1119 // Uart.state = STATE_UNSYNCD;
1127 static void UartReset() {
1128 Uart.byteCntMax = 3;
1129 Uart.state = STATE_UNSYNCD;
1133 memset(Uart.output, 0x00, 3);
1136 // static void UartInit(uint8_t *data) {
1137 // Uart.output = data;
1141 //=============================================================================
1142 // An LEGIC reader. We take layer two commands, code them
1143 // appropriately, and then send them to the tag. We then listen for the
1144 // tag's response, which we leave in the buffer to be demodulated on the
1146 //=============================================================================
1151 DEMOD_PHASE_REF_TRAINING,
1152 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
1153 DEMOD_GOT_FALLING_EDGE_OF_SOF,
1154 DEMOD_AWAITING_START_BIT,
1155 DEMOD_RECEIVING_DATA
1168 * Handles reception of a bit from the tag
1170 * This function is called 2 times per bit (every 4 subcarrier cycles).
1171 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1174 * LED C -> ON once we have received the SOF and are expecting the rest.
1175 * LED C -> OFF once we have received EOF or are unsynced
1177 * Returns: true if we received a EOF
1178 * false if we are still waiting for some more
1183 static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
1188 int halfci = (ai >> 1);
1189 int halfcq = (aq >> 1);
1191 switch(Demod.state) {
1194 CHECK_FOR_SUBCARRIER()
1196 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
1197 Demod.state = DEMOD_PHASE_REF_TRAINING;
1204 case DEMOD_PHASE_REF_TRAINING:
1205 if(Demod.posCount < 8) {
1207 CHECK_FOR_SUBCARRIER()
1209 if (v > SUBCARRIER_DETECT_THRESHOLD) {
1210 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1211 // note: synchronization time > 80 1/fs
1217 Demod.state = DEMOD_UNSYNCD;
1220 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
1224 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
1226 MAKE_SOFT_DECISION()
1228 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1229 // logic '0' detected
1232 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
1234 // start of SOF sequence
1237 // maximum length of TR1 = 200 1/fs
1238 if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
1243 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
1246 MAKE_SOFT_DECISION()
1249 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1250 if(Demod.posCount < 10*2) {
1251 Demod.state = DEMOD_UNSYNCD;
1253 LED_C_ON(); // Got SOF
1254 Demod.state = DEMOD_AWAITING_START_BIT;
1259 // low phase of SOF too long (> 12 etu)
1260 if(Demod.posCount > 13*2) {
1261 Demod.state = DEMOD_UNSYNCD;
1267 case DEMOD_AWAITING_START_BIT:
1270 MAKE_SOFT_DECISION()
1273 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1274 if(Demod.posCount > 3*2) {
1275 Demod.state = DEMOD_UNSYNCD;
1279 // start bit detected
1281 Demod.posCount = 1; // this was the first half
1284 Demod.state = DEMOD_RECEIVING_DATA;
1288 case DEMOD_RECEIVING_DATA:
1290 MAKE_SOFT_DECISION()
1292 if(Demod.posCount == 0) {
1293 // first half of bit
1297 // second half of bit
1299 Demod.shiftReg >>= 1;
1301 if(Demod.thisBit > 0)
1302 Demod.shiftReg |= 0x200;
1306 if(Demod.bitCount == 10) {
1308 uint16_t s = Demod.shiftReg;
1310 if((s & 0x200) && !(s & 0x001)) {
1311 // stop bit == '1', start bit == '0'
1312 uint8_t b = (s >> 1);
1313 Demod.output[Demod.len] = b;
1315 Demod.state = DEMOD_AWAITING_START_BIT;
1317 Demod.state = DEMOD_UNSYNCD;
1321 // This is EOF (start, stop and all data bits == '0'
1331 Demod.state = DEMOD_UNSYNCD;
1339 // Clear out the state of the "UART" that receives from the tag.
1340 static void DemodReset() {
1342 Demod.state = DEMOD_UNSYNCD;
1349 memset(Demod.output, 0x00, 3);
1352 static void DemodInit(uint8_t *data) {
1353 Demod.output = data;
1359 * Demodulate the samples we received from the tag, also log to tracebuffer
1360 * quiet: set to 'TRUE' to disable debug output
1364 #define LEGIC_DMA_BUFFER_SIZE 256
1366 static void GetSamplesForLegicDemod(int n, bool quiet)
1369 bool gotFrame = FALSE;
1370 int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1371 int ci, cq, samples = 0;
1375 // And put the FPGA in the appropriate mode
1376 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
1378 // The response (tag -> reader) that we're receiving.
1379 // Set up the demodulator for tag -> reader responses.
1380 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1382 // The DMA buffer, used to stream samples from the FPGA
1383 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
1384 int8_t *upTo = dmaBuf;
1386 // Setup and start DMA.
1387 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
1388 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1392 // Signal field is ON with the appropriate LED:
1395 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
1396 if(behindBy > max) max = behindBy;
1398 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
1402 if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
1404 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
1405 AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
1408 if(lastRxCounter <= 0)
1409 lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1413 gotFrame = HandleLegicSamplesDemod(ci , cq );
1418 if(samples > n || gotFrame)
1422 FpgaDisableSscDma();
1424 if (!quiet && Demod.len == 0) {
1425 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1436 if (Demod.len > 0) {
1437 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
1438 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
1444 //-----------------------------------------------------------------------------
1445 // Transmit the command (to the tag) that was placed in ToSend[].
1446 //-----------------------------------------------------------------------------
1448 static void TransmitForLegic(void)
1454 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
1455 AT91C_BASE_SSC->SSC_THR = 0xff;
1457 // Signal field is ON with the appropriate Red LED
1460 // Signal we are transmitting with the Green LED
1462 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1464 for(c = 0; c < 10;) {
1465 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1466 AT91C_BASE_SSC->SSC_THR = 0xff;
1469 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1470 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1478 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1479 AT91C_BASE_SSC->SSC_THR = ToSend[c];
1480 legic_prng_forward(1); // forward the lfsr
1482 if(c >= ToSendMax) {
1486 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1487 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1496 //-----------------------------------------------------------------------------
1497 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
1498 // so that it is ready to transmit to the tag using TransmitForLegic().
1499 //-----------------------------------------------------------------------------
1501 static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
1509 for(i = 0; i < 7; i++)
1513 for(i = 0; i < cmdlen; i++) {
1519 for(j = 0; j < bits; j++) {
1529 // Convert from last character reference to length
1534 Convenience function to encode, transmit and trace Legic comms
1537 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
1539 CodeLegicBitsAsReader(cmd, cmdlen, bits);
1542 uint8_t parity[1] = {0x00};
1543 LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
1548 // Set up LEGIC communication
1550 void ice_legic_setup() {
1553 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1554 BigBuf_free(); BigBuf_Clear_ext(false);
1560 // Set up the synchronous serial port
1563 // connect Demodulated Signal to ADC:
1564 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1566 // Signal field is on with the appropriate LED
1568 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1571 //StartCountSspClk();
1574 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);