1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
16 #include "../include/proxmark3.h"
25 #include "../include/hitag2.h"
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
43 struct common_area common_area
__attribute__((section(".commonarea")));
45 void BufferClear(void)
47 memset(BigBuf
,0,sizeof(BigBuf
));
48 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
51 void ToSendReset(void)
57 void ToSendStuffBit(int b
)
61 ToSend
[ToSendMax
] = 0;
66 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
71 if(ToSendBit
>= sizeof(ToSend
)) {
73 DbpString("ToSendStuffBit overflowed!");
77 //=============================================================================
78 // Debug print functions, to go out over USB, to the usual PC-side client.
79 //=============================================================================
81 void DbpString(char *str
)
83 byte_t len
= strlen(str
);
84 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
88 void DbpIntegers(int x1
, int x2
, int x3
)
90 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
94 void Dbprintf(const char *fmt
, ...) {
95 // should probably limit size here; oh well, let's just use a big buffer
96 char output_string
[128];
100 kvsprintf(fmt
, output_string
, 10, ap
);
103 DbpString(output_string
);
106 // prints HEX & ASCII
107 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
120 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
123 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
125 Dbprintf("%*D",l
,d
," ");
133 //-----------------------------------------------------------------------------
134 // Read an ADC channel and block till it completes, then return the result
135 // in ADC units (0 to 1023). Also a routine to average 32 samples and
137 //-----------------------------------------------------------------------------
138 static int ReadAdc(int ch
)
142 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
143 AT91C_BASE_ADC
->ADC_MR
=
144 ADC_MODE_PRESCALE(32) |
145 ADC_MODE_STARTUP_TIME(16) |
146 ADC_MODE_SAMPLE_HOLD_TIME(8);
147 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
149 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
150 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
152 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
157 int AvgAdc(int ch
) // was static - merlok
162 for(i
= 0; i
< 32; i
++) {
166 return (a
+ 15) >> 5;
169 void MeasureAntennaTuning(void)
171 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
172 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
173 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
176 DbpString("Measuring antenna characteristics, please wait...");
177 memset(dest
,0,sizeof(FREE_BUFFER_SIZE
));
180 * Sweeps the useful LF range of the proxmark from
181 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
182 * read the voltage in the antenna, the result left
183 * in the buffer is a graph which should clearly show
184 * the resonating frequency of your LF antenna
185 * ( hopefully around 95 if it is tuned to 125kHz!)
188 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
189 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
190 for (i
=255; i
>19; i
--) {
192 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
194 // Vref = 3.3V, and a 10000:240 voltage divider on the input
195 // can measure voltages up to 137500 mV
196 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
197 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
198 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
200 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
210 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
211 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
214 // Vref = 3300mV, and an 10:1 voltage divider on the input
215 // can measure voltages up to 33000 mV
216 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
218 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
219 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
221 // c.arg[2] = peakf | (peakv << 16);
223 DbpString("Measuring complete, sending report back to host");
224 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),0,0);
225 // UsbSendPacket((uint8_t *)&c, sizeof(c));
226 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
232 void MeasureAntennaTuningHf(void)
234 int vHf
= 0; // in mV
236 DbpString("Measuring HF antenna, press button to exit");
239 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
240 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
241 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
243 // Vref = 3300mV, and an 10:1 voltage divider on the input
244 // can measure voltages up to 33000 mV
245 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
247 Dbprintf("%d mV",vHf
);
248 if (BUTTON_PRESS()) break;
250 DbpString("cancelled");
254 void SimulateTagHfListen(void)
256 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
261 // We're using this mode just so that I can test it out; the simulated
262 // tag mode would work just as well and be simpler.
263 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
264 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
266 // We need to listen to the high-frequency, peak-detected path.
267 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
273 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
274 AT91C_BASE_SSC
->SSC_THR
= 0xff;
276 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
277 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
291 if(i
>= FREE_BUFFER_SIZE
) {
297 DbpString("simulate tag (now type bitsamples)");
300 void ReadMem(int addr
)
302 const uint8_t *data
= ((uint8_t *)addr
);
304 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
305 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
308 /* osimage version information is linked in */
309 extern struct version_information version_information
;
310 /* bootrom version information is pointed to from _bootphase1_version_pointer */
311 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
312 void SendVersion(void)
314 char temp
[256]; /* Limited data payload in USB packets */
315 DbpString("Prox/RFID mark3 RFID instrument");
317 /* Try to find the bootrom version information. Expect to find a pointer at
318 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
319 * pointer, then use it.
321 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
322 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
323 DbpString("bootrom version information appears invalid");
325 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
329 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
332 FpgaGatherVersion(temp
, sizeof(temp
));
335 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
339 // samy's sniff and repeat routine
342 DbpString("Stand-alone mode! No PC necessary.");
343 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
345 // 3 possible options? no just 2 for now
348 int high
[OPTS
], low
[OPTS
];
350 // Oooh pretty -- notify user we're in elite samy mode now
352 LED(LED_ORANGE
, 200);
354 LED(LED_ORANGE
, 200);
356 LED(LED_ORANGE
, 200);
358 LED(LED_ORANGE
, 200);
365 // Turn on selected LED
366 LED(selected
+ 1, 0);
374 // Was our button held down or pressed?
375 int button_pressed
= BUTTON_HELD(1000);
378 // Button was held for a second, begin recording
379 if (button_pressed
> 0 && cardRead
== 0)
382 LED(selected
+ 1, 0);
386 DbpString("Starting recording");
388 // wait for button to be released
389 while(BUTTON_PRESS())
392 /* need this delay to prevent catching some weird data */
395 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
396 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
399 LED(selected
+ 1, 0);
400 // Finished recording
402 // If we were previously playing, set playing off
403 // so next button push begins playing what we recorded
410 else if (button_pressed
> 0 && cardRead
== 1)
413 LED(selected
+ 1, 0);
417 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
419 // wait for button to be released
420 while(BUTTON_PRESS())
423 /* need this delay to prevent catching some weird data */
426 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
427 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
430 LED(selected
+ 1, 0);
431 // Finished recording
433 // If we were previously playing, set playing off
434 // so next button push begins playing what we recorded
441 // Change where to record (or begin playing)
442 else if (button_pressed
)
444 // Next option if we were previously playing
446 selected
= (selected
+ 1) % OPTS
;
450 LED(selected
+ 1, 0);
452 // Begin transmitting
456 DbpString("Playing");
457 // wait for button to be released
458 while(BUTTON_PRESS())
460 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
461 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
462 DbpString("Done playing");
463 if (BUTTON_HELD(1000) > 0)
465 DbpString("Exiting");
470 /* We pressed a button so ignore it here with a delay */
473 // when done, we're done playing, move to next option
474 selected
= (selected
+ 1) % OPTS
;
477 LED(selected
+ 1, 0);
480 while(BUTTON_PRESS())
489 Listen and detect an external reader. Determine the best location
493 Inside the ListenReaderField() function, there is two mode.
494 By default, when you call the function, you will enter mode 1.
495 If you press the PM3 button one time, you will enter mode 2.
496 If you press the PM3 button a second time, you will exit the function.
498 DESCRIPTION OF MODE 1:
499 This mode just listens for an external reader field and lights up green
500 for HF and/or red for LF. This is the original mode of the detectreader
503 DESCRIPTION OF MODE 2:
504 This mode will visually represent, using the LEDs, the actual strength of the
505 current compared to the maximum current detected. Basically, once you know
506 what kind of external reader is present, it will help you spot the best location to place
507 your antenna. You will probably not get some good results if there is a LF and a HF reader
508 at the same place! :-)
512 static const char LIGHT_SCHEME
[] = {
513 0x0, /* ---- | No field detected */
514 0x1, /* X--- | 14% of maximum current detected */
515 0x2, /* -X-- | 29% of maximum current detected */
516 0x4, /* --X- | 43% of maximum current detected */
517 0x8, /* ---X | 57% of maximum current detected */
518 0xC, /* --XX | 71% of maximum current detected */
519 0xE, /* -XXX | 86% of maximum current detected */
520 0xF, /* XXXX | 100% of maximum current detected */
522 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
524 void ListenReaderField(int limit
)
526 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
527 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
528 int mode
=1, display_val
, display_max
, i
;
535 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
537 if(limit
!= HF_ONLY
) {
538 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
542 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
544 if (limit
!= LF_ONLY
) {
545 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
550 if (BUTTON_PRESS()) {
555 DbpString("Signal Strength Mode");
559 DbpString("Stopped");
567 if (limit
!= HF_ONLY
) {
569 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
574 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
575 // see if there's a significant change
576 if(abs(lf_av
- lf_av_new
) > 10) {
577 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
585 if (limit
!= LF_ONLY
) {
587 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
592 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
593 // see if there's a significant change
594 if(abs(hf_av
- hf_av_new
) > 10) {
595 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
604 if (limit
== LF_ONLY
) {
606 display_max
= lf_max
;
607 } else if (limit
== HF_ONLY
) {
609 display_max
= hf_max
;
610 } else { /* Pick one at random */
611 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
613 display_max
= hf_max
;
616 display_max
= lf_max
;
619 for (i
=0; i
<LIGHT_LEN
; i
++) {
620 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
621 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
622 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
623 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
624 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
632 void UsbPacketReceived(uint8_t *packet
, int len
)
634 UsbCommand
*c
= (UsbCommand
*)packet
;
636 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
640 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
641 AcquireRawAdcSamples125k(c
->arg
[0]);
642 cmd_send(CMD_ACK
,0,0,0,0,0);
644 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
645 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
647 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
648 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
649 cmd_send(CMD_ACK
,0,0,0,0,0);
651 case CMD_HID_DEMOD_FSK
:
652 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
654 case CMD_HID_SIM_TAG
:
655 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1); // Simulate HID tag by ID
657 case CMD_HID_CLONE_TAG
: // Clone HID tag by ID to T55x7
658 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
660 case CMD_IO_DEMOD_FSK
:
661 CmdIOdemodFSK(1, 0, 0, 1); // Demodulate IO tag
663 case CMD_IO_CLONE_TAG
: // Clone IO tag by ID to T55x7
664 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
666 case CMD_EM410X_WRITE_TAG
:
667 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
669 case CMD_READ_TI_TYPE
:
672 case CMD_WRITE_TI_TYPE
:
673 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
675 case CMD_SIMULATE_TAG_125K
:
677 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
680 case CMD_LF_SIMULATE_BIDIR
:
681 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
683 case CMD_INDALA_CLONE_TAG
: // Clone Indala 64-bit tag by UID to T55x7
684 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
686 case CMD_INDALA_CLONE_TAG_L
: // Clone Indala 224-bit tag by UID to T55x7
687 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
689 case CMD_T55XX_READ_BLOCK
:
690 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
692 case CMD_T55XX_WRITE_BLOCK
:
693 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
695 case CMD_T55XX_READ_TRACE
: // Clone HID tag by ID to T55x7
698 case CMD_PCF7931_READ
: // Read PCF7931 tag
700 cmd_send(CMD_ACK
,0,0,0,0,0);
702 case CMD_EM4X_READ_WORD
:
703 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
705 case CMD_EM4X_WRITE_WORD
:
706 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
711 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
712 SnoopHitag(c
->arg
[0]);
714 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
715 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
717 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
718 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
723 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
724 AcquireRawAdcSamplesIso15693();
726 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
727 RecordRawAdcSamplesIso15693();
730 case CMD_ISO_15693_COMMAND
:
731 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
734 case CMD_ISO_15693_FIND_AFI
:
735 BruteforceIso15693Afi(c
->arg
[0]);
738 case CMD_ISO_15693_DEBUG
:
739 SetDebugIso15693(c
->arg
[0]);
742 case CMD_READER_ISO_15693
:
743 ReaderIso15693(c
->arg
[0]);
745 case CMD_SIMTAG_ISO_15693
:
746 SimTagIso15693(c
->arg
[0]);
751 case CMD_SIMULATE_TAG_LEGIC_RF
:
752 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
755 case CMD_WRITER_LEGIC_RF
:
756 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
759 case CMD_READER_LEGIC_RF
:
760 LegicRfReader(c
->arg
[0], c
->arg
[1]);
764 #ifdef WITH_ISO14443b
765 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
766 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
768 case CMD_READ_SRI512_TAG
:
769 ReadSTMemoryIso14443(0x0F);
771 case CMD_READ_SRIX4K_TAG
:
772 ReadSTMemoryIso14443(0x7F);
774 case CMD_SNOOP_ISO_14443
:
777 case CMD_SIMULATE_TAG_ISO_14443
:
778 SimulateIso14443Tag();
780 case CMD_ISO_14443B_COMMAND
:
781 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
785 #ifdef WITH_ISO14443a
786 case CMD_SNOOP_ISO_14443a
:
787 SnoopIso14443a(c
->arg
[0]);
789 case CMD_READER_ISO_14443a
:
792 case CMD_SIMULATE_TAG_ISO_14443a
:
793 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
795 case CMD_EPA_PACE_COLLECT_NONCE
:
796 EPA_PACE_Collect_Nonce(c
);
799 case CMD_READER_MIFARE
:
800 ReaderMifare(c
->arg
[0]);
802 case CMD_MIFARE_READBL
:
803 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
805 case CMD_MIFAREU_READBL
:
806 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
808 case CMD_MIFAREUC_AUTH1
:
809 MifareUC_Auth1(c
->arg
[0],c
->d
.asBytes
);
811 case CMD_MIFAREUC_AUTH2
:
812 MifareUC_Auth2(c
->arg
[0],c
->d
.asBytes
);
814 case CMD_MIFAREU_READCARD
:
815 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
817 case CMD_MIFAREUC_READCARD
:
818 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
820 case CMD_MIFARE_READSC
:
821 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
823 case CMD_MIFARE_WRITEBL
:
824 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
826 case CMD_MIFAREU_WRITEBL_COMPAT
:
827 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
829 case CMD_MIFAREU_WRITEBL
:
830 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
832 case CMD_MIFARE_NESTED
:
833 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
835 case CMD_MIFARE_CHKKEYS
:
836 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
838 case CMD_SIMULATE_MIFARE_CARD
:
839 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
843 case CMD_MIFARE_SET_DBGMODE
:
844 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
846 case CMD_MIFARE_EML_MEMCLR
:
847 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
849 case CMD_MIFARE_EML_MEMSET
:
850 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
852 case CMD_MIFARE_EML_MEMGET
:
853 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
855 case CMD_MIFARE_EML_CARDLOAD
:
856 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
859 // Work with "magic Chinese" card
860 case CMD_MIFARE_EML_CSETBLOCK
:
861 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
863 case CMD_MIFARE_EML_CGETBLOCK
:
864 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
868 case CMD_MIFARE_SNIFFER
:
869 SniffMifare(c
->arg
[0]);
873 case CMD_MIFARE_DESFIRE_READBL
:
875 case CMD_MIFARE_DESFIRE_WRITEBL
:
877 case CMD_MIFARE_DESFIRE_AUTH1
:
878 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
880 case CMD_MIFARE_DESFIRE_AUTH2
:
881 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
883 // case CMD_MIFARE_DES_READER:
884 // ReaderMifareDES(c->arg[0], c->arg[1], c->d.asBytes);
886 case CMD_MIFARE_DESFIRE_INFO
:
887 MifareDesfireGetInformation();
889 case CMD_MIFARE_DESFIRE
:
890 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
896 // Makes use of ISO14443a FPGA Firmware
897 case CMD_SNOOP_ICLASS
:
900 case CMD_SIMULATE_TAG_ICLASS
:
901 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
903 case CMD_READER_ICLASS
:
904 ReaderIClass(c
->arg
[0]);
906 case CMD_READER_ICLASS_REPLAY
:
907 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
911 case CMD_SIMULATE_TAG_HF_LISTEN
:
912 SimulateTagHfListen();
919 case CMD_MEASURE_ANTENNA_TUNING
:
920 MeasureAntennaTuning();
923 case CMD_MEASURE_ANTENNA_TUNING_HF
:
924 MeasureAntennaTuningHf();
927 case CMD_LISTEN_READER_FIELD
:
928 ListenReaderField(c
->arg
[0]);
931 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
932 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
934 LED_D_OFF(); // LED D indicates field ON or OFF
937 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
940 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
941 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
942 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
944 // Trigger a finish downloading signal with an ACK frame
945 cmd_send(CMD_ACK
,0,0,0,0,0);
949 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
950 uint8_t *b
= (uint8_t *)BigBuf
;
951 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, 48);
952 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
953 cmd_send(CMD_ACK
,0,0,0,0,0);
960 case CMD_SET_LF_DIVISOR
:
961 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
962 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
965 case CMD_SET_ADC_MUX
:
967 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
968 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
969 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
970 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
986 case CMD_SETUP_WRITE
:
987 case CMD_FINISH_WRITE
:
988 case CMD_HARDWARE_RESET
:
992 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
994 // We're going to reset, and the bootrom will take control.
998 case CMD_START_FLASH
:
999 if(common_area
.flags
.bootrom_present
) {
1000 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1003 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1007 case CMD_DEVICE_INFO
: {
1008 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1009 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1010 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1014 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1019 void __attribute__((noreturn
)) AppMain(void)
1023 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1024 /* Initialize common area */
1025 memset(&common_area
, 0, sizeof(common_area
));
1026 common_area
.magic
= COMMON_AREA_MAGIC
;
1027 common_area
.version
= 1;
1029 common_area
.flags
.osimage_present
= 1;
1039 // The FPGA gets its clock from us from PCK0 output, so set that up.
1040 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1041 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1042 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1043 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1044 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1045 AT91C_PMC_PRES_CLK_4
;
1046 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1049 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1051 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1053 // Load the FPGA image, which we have stored in our flash.
1054 // (the HF version by default)
1055 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1063 byte_t rx
[sizeof(UsbCommand
)];
1068 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1070 UsbPacketReceived(rx
,rx_len
);
1076 if (BUTTON_HELD(1000) > 0)