1 //-----------------------------------------------------------------------------
2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // LEGIC RF simulation code
9 //-----------------------------------------------------------------------------
13 static struct legic_frame
{
24 static crc_t legic_crc
;
25 static int legic_read_count
;
26 static uint32_t legic_prng_bc
;
27 static uint32_t legic_prng_iv
;
29 static int legic_phase_drift
;
30 static int legic_frame_drift
;
31 static int legic_reqresp_drift
;
37 static void setup_timer(void) {
38 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
39 // this it won't be terribly accurate but should be good enough.
41 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
42 timer = AT91C_BASE_TC1;
43 timer->TC_CCR = AT91C_TC_CLKDIS;
44 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
45 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
48 // Set up Timer 2 to use for measuring time between frames in
49 // tag simulation mode. Runs 4x faster as Timer 1
51 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
52 prng_timer = AT91C_BASE_TC2;
53 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
54 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
55 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
58 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
59 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
62 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
63 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
64 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
65 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
66 AT91C_BASE_TC0->TC_RA = 1;
67 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
71 // At TIMER_CLOCK3 (MCK/32)
72 //#define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */
73 //#define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */
74 //#define RWD_TIME_PAUSE 30 /* 20us */
76 // testing calculating in ticks instead of (us) microseconds.
77 #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
78 #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
79 #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
80 #define TAG_BIT_PERIOD 150 // 100us == 100 * 1.5 == 150ticks
81 #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
83 #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
85 #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
86 #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
88 #define OFFSET_LOG 1024
90 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
93 //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x)
94 # define SHORT_COIL LOW(GPIO_SSC_DOUT);
97 //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x)
98 # define OPEN_COIL HIGH(GPIO_SSC_DOUT);
101 uint32_t stop_send_frame_us
= 0;
103 // Pause pulse, off in 20us / 30ticks,
104 // ONE / ZERO bit pulse,
105 // one == 80us / 120ticks
106 // zero == 40us / 60ticks
108 # define COIL_PULSE(x) { \
110 Wait(RWD_TIME_PAUSE); \
116 # define GET_TICKS AT91C_BASE_TC0->TC_CV
119 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
120 // Historically it used to be FREE_BUFFER_SIZE, which was 2744.
121 #define LEGIC_CARD_MEMSIZE 1024
122 static uint8_t* cardmem
;
124 static void Wait(uint32_t time
){
125 if ( time
== 0 ) return;
127 while (GET_TICKS
< time
);
129 // Starts Clock and waits until its reset
130 static void Reset(AT91PS_TC clock
){
131 clock
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
132 while(clock
->TC_CV
> 1) ;
135 // Starts Clock and waits until its reset
136 static void ResetClock(void){
140 static void frame_append_bit(struct legic_frame
* const f
, int bit
) {
141 // Overflow, won't happen
142 if (f
->bits
>= 31) return;
144 f
->data
|= (bit
<< f
->bits
);
148 static void frame_clean(struct legic_frame
* const f
) {
153 // Prng works when waiting in 99.1us cycles.
154 // and while sending/receiving in bit frames (100, 60)
155 /*static void CalibratePrng( uint32_t time){
156 // Calculate Cycles based on timer 100us
157 uint32_t i = (time - stop_send_frame_us) / 100 ;
159 // substract cycles of finished frames
160 int k = i - legic_prng_count()+1;
162 // substract current frame length, rewind to beginning
164 legic_prng_forward(k);
168 /* Generate Keystream */
169 static uint32_t get_key_stream(int skip
, int count
)
174 // Use int to enlarge timer tc to 32bit
175 legic_prng_bc
+= prng_timer
->TC_CV
;
177 // reset the prng timer.
180 /* If skip == -1, forward prng time based */
182 i
= (legic_prng_bc
+ SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */
183 i
-= legic_prng_count(); /* substract cycles of finished frames */
184 i
-= count
; /* substract current frame length, rewind to beginning */
185 legic_prng_forward(i
);
187 legic_prng_forward(skip
);
190 i
= (count
== 6) ? -1 : legic_read_count
;
192 /* Write Time Data into LOG */
193 // uint8_t *BigBuf = BigBuf_get_addr();
194 // BigBuf[OFFSET_LOG+128+i] = legic_prng_count();
195 // BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff;
196 // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff;
197 // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff;
198 // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff;
199 // BigBuf[OFFSET_LOG+384+i] = count;
201 /* Generate KeyStream */
202 for(i
=0; i
<count
; i
++) {
203 key
|= legic_prng_get_bit() << i
;
204 legic_prng_forward(1);
209 /* Send a frame in tag mode, the FPGA must have been set up by
212 static void frame_send_tag(uint16_t response
, uint8_t bits
, uint8_t crypt
) {
213 /* Bitbang the response */
215 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
216 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
218 /* Use time to crypt frame */
220 legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */
221 response
^= legic_prng_get_bits(bits
);
224 /* Wait for the frame start */
225 Wait( TAG_FRAME_WAIT
);
228 for(int i
= 0; i
< bits
; i
++) {
243 /* Send a frame in reader mode, the FPGA must have been set up by
246 static void frame_sendAsReader(uint32_t data
, uint8_t bits
){
248 uint32_t starttime
= GET_TICKS
, send
= 0;
250 uint8_t prng1
= legic_prng_count() ;
252 // xor lsfr onto data.
253 send
= data
^ legic_prng_get_bits(bits
);
255 for (; mask
< BITMASK(bits
); mask
<<= 1) {
257 COIL_PULSE(RWD_TIME_1
);
259 COIL_PULSE(RWD_TIME_0
);
263 // Final pause to mark the end of the frame
266 stop_send_frame_us
= GET_TICKS
;
267 uint8_t cmdbytes
[] = {
274 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, stop_send_frame_us
, NULL
, TRUE
);
277 /* Receive a frame from the card in reader emulation mode, the FPGA and
278 * timer must have been set up by LegicRfReader and frame_sendAsReader.
280 * The LEGIC RF protocol from card to reader does not include explicit
281 * frame start/stop information or length information. The reader must
282 * know beforehand how many bits it wants to receive. (Notably: a card
283 * sending a stream of 0-bits is indistinguishable from no card present.)
285 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
286 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
287 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
288 * for edges. Count the edges in each bit interval. If they are approximately
289 * 0 this was a 0-bit, if they are approximately equal to the number of edges
290 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
291 * timer that's still running from frame_sendAsReader in order to get a synchronization
292 * with the frame that we just sent.
294 * FIXME: Because we're relying on the hysteresis to just do the right thing
295 * the range is severely reduced (and you'll probably also need a good antenna).
296 * So this should be fixed some time in the future for a proper receiver.
298 static void frame_receiveAsReader(struct legic_frame
* const f
, uint8_t bits
) {
302 uint8_t i
= 0, edges
= 0;
304 uint32_t the_bit
= 1, next_bit_at
= 0, data
;
305 int old_level
= 0, level
= 0;
307 if(bits
> 32) bits
= 32;
309 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
310 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
312 // calibrate the prng.
313 legic_prng_forward(2);
315 // precompute the cipher
316 uint8_t prng_before
= legic_prng_count() ;
318 lsfr
= legic_prng_get_bits(bits
);
322 //FIXED time between sending frame and now listening frame. 330us
323 Wait( TAG_FRAME_WAIT
);
325 uint32_t starttime
= GET_TICKS
;
327 next_bit_at
= GET_TICKS
+ TAG_BIT_PERIOD
;
329 for( i
= 0; i
< bits
; i
++) {
331 while ( GET_TICKS
< next_bit_at
) {
333 level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
335 if (level
!= old_level
)
340 next_bit_at
+= TAG_BIT_PERIOD
;
342 // We expect 42 edges == ONE
343 if(edges
> 20 && edges
< 60) {
354 stop_send_frame_us
= GET_TICKS
;
356 uint8_t cmdbytes
[] = {
365 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, stop_send_frame_us
, NULL
, FALSE
);
368 // Setup pm3 as a Legic Reader
369 static uint32_t perform_setup_phase_rwd(uint8_t iv
) {
371 // Switch on carrier and let the tag charge for 1ms
381 frame_sendAsReader(iv
, 7);
383 // Now both tag and reader has same IV. Prng can start.
386 frame_receiveAsReader(¤t_frame
, 6);
388 // fixed delay before sending ack.
389 Wait(TAG_FRAME_WAIT
);
390 legic_prng_forward(4);
392 // Send obsfuscated acknowledgment frame.
393 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
394 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
395 switch ( current_frame
.data
) {
397 frame_sendAsReader(0x19, 6);
401 frame_sendAsReader(0x39, 6);
406 return current_frame
.data
;
409 static void LegicCommonInit(void) {
410 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
411 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
);
412 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
415 /* Bitbang the transmitter */
417 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
418 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
420 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
421 cardmem
= BigBuf_malloc(LEGIC_CARD_MEMSIZE
);
422 memset(cardmem
, 0x00, LEGIC_CARD_MEMSIZE
);
426 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
431 // Switch off carrier, make sure tag is reset
432 static void switch_off_tag_rwd(void) {
438 // calculate crc4 for a legic READ command
439 // 5,8,10 address size.
440 static uint32_t legic4Crc(uint8_t legicCmd
, uint16_t byte_index
, uint8_t value
, uint8_t cmd_sz
) {
441 crc_clear(&legic_crc
);
442 uint32_t temp
= (value
<< cmd_sz
) | (byte_index
<< 1) | legicCmd
;
443 crc_update(&legic_crc
, temp
, cmd_sz
+ 8 );
444 return crc_finish(&legic_crc
);
447 int legic_read_byte(int byte_index
, int cmd_sz
) {
449 uint8_t byte
= 0, crc
= 0;
450 uint32_t calcCrc
= 0;
451 uint32_t cmd
= (byte_index
<< 1) | LEGIC_READ
;
453 Wait(TAG_FRAME_WAIT
);
455 frame_sendAsReader(cmd
, cmd_sz
);
456 frame_receiveAsReader(¤t_frame
, 12);
458 byte
= BYTEx(current_frame
.data
, 0);
459 calcCrc
= legic4Crc(LEGIC_READ
, byte_index
, byte
, cmd_sz
);
460 crc
= BYTEx(current_frame
.data
, 1);
462 if( calcCrc
!= crc
) {
463 Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc
, crc
);
466 legic_prng_forward(4);
471 * - assemble a write_cmd_frame with crc and send it
472 * - wait until the tag sends back an ACK ('1' bit unencrypted)
473 * - forward the prng based on the timing
475 //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
476 int legic_write_byte(uint8_t byte
, uint16_t addr
, uint8_t addr_sz
) {
478 //do not write UID, CRC at offset 0-4.
479 if (addr
<= 4) return 0;
482 crc_clear(&legic_crc
);
483 crc_update(&legic_crc
, 0, 1); /* CMD_WRITE */
484 crc_update(&legic_crc
, addr
, addr_sz
);
485 crc_update(&legic_crc
, byte
, 8);
486 uint32_t crc
= crc_finish(&legic_crc
);
488 uint32_t crc2
= legic4Crc(LEGIC_WRITE
, addr
, byte
, addr_sz
+1);
490 Dbprintf("crc is missmatch");
492 // send write command
493 uint32_t cmd
= ((crc
<<(addr_sz
+1+8)) //CRC
494 |(byte
<<(addr_sz
+1)) //Data
495 |(addr
<<1) //Address
496 | LEGIC_WRITE
); //CMD = Write
498 uint32_t cmd_sz
= addr_sz
+1+8+4; //crc+data+cmd
500 legic_prng_forward(2); /* we wait anyways */
502 Wait(TAG_FRAME_WAIT
);
504 frame_sendAsReader(cmd
, cmd_sz
);
506 // wllm-rbnt doesnt have these
507 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
508 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
511 int t
, old_level
= 0, edges
= 0;
514 Wait(TAG_FRAME_WAIT
);
516 for( t
= 0; t
< 80; ++t
) {
518 next_bit_at
+= TAG_BIT_PERIOD
;
519 while(timer
->TC_CV
< next_bit_at
) {
520 int level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
521 if(level
!= old_level
)
526 if(edges
> 20 && edges
< 60) { /* expected are 42 edges */
527 int t
= timer
->TC_CV
;
528 int c
= t
/ TAG_BIT_PERIOD
;
531 legic_prng_forward(c
);
540 int LegicRfReader(int offset
, int bytes
, int iv
) {
542 uint16_t byte_index
= 0;
546 if ( MF_DBGLEVEL
>= 2)
547 Dbprintf("setting up legic card, IV = 0x%03.3x", iv
);
551 uint32_t tag_type
= perform_setup_phase_rwd(iv
);
553 //we lose to mutch time with dprintf
554 switch_off_tag_rwd();
558 if ( MF_DBGLEVEL
>= 2) DbpString("MIM22 card found, reading card");
563 if ( MF_DBGLEVEL
>= 2) DbpString("MIM256 card found, reading card");
568 if ( MF_DBGLEVEL
>= 2) DbpString("MIM1024 card found, reading card");
573 if ( MF_DBGLEVEL
>= 1) Dbprintf("Unknown card format: %x", tag_type
);
579 if (bytes
+ offset
>= card_sz
)
580 bytes
= card_sz
- offset
;
582 // Start setup and read bytes.
583 perform_setup_phase_rwd(iv
);
586 while (byte_index
< bytes
) {
587 int r
= legic_read_byte(byte_index
+ offset
, cmd_sz
);
589 if (r
== -1 || BUTTON_PRESS()) {
590 switch_off_tag_rwd();
592 if ( MF_DBGLEVEL
>= 2) DbpString("operation aborted");
593 cmd_send(CMD_ACK
,0,0,0,0,0);
596 cardmem
[++byte_index
] = r
;
601 switch_off_tag_rwd();
603 uint8_t len
= (bytes
& 0x3FF);
604 cmd_send(CMD_ACK
,1,len
,0,0,0);
608 /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
612 perform_setup_phase_rwd(iv);
613 //legic_prng_forward(2);
614 while(byte_index < bytes) {
617 //check if the DCF should be changed
618 if ( (offset == 0x05) && (bytes == 0x02) ) {
619 //write DCF in reverse order (addr 0x06 before 0x05)
620 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
621 //legic_prng_forward(1);
624 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
626 //legic_prng_forward(1);
629 r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
631 if((r != 0) || BUTTON_PRESS()) {
632 Dbprintf("operation aborted @ 0x%03.3x", byte_index);
633 switch_off_tag_rwd();
641 if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
645 DbpString("write successful");
649 void LegicRfWriter(int offset
, int bytes
, int iv
) {
651 int byte_index
= 0, addr_sz
= 0;
655 if ( MF_DBGLEVEL
>= 2) DbpString("setting up legic card");
657 uint32_t tag_type
= perform_setup_phase_rwd(iv
);
659 switch_off_tag_rwd();
663 if(offset
+bytes
> 22) {
664 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset
+ bytes
);
668 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+ bytes
);
671 if(offset
+bytes
> 0x100) {
672 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset
+ bytes
);
676 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+ bytes
);
679 if(offset
+bytes
> 0x400) {
680 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset
+ bytes
);
684 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset
, offset
+ bytes
);
687 Dbprintf("No or unknown card found, aborting");
692 perform_setup_phase_rwd(iv
);
694 while(byte_index
< bytes
) {
696 //check if the DCF should be changed
697 if ( ((byte_index
+offset
) == 0x05) && (bytes
>= 0x02) ) {
698 //write DCF in reverse order (addr 0x06 before 0x05)
699 r
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
);
701 // write second byte on success...
704 r
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
);
708 r
= legic_write_byte(cardmem
[byte_index
+offset
], byte_index
+offset
, addr_sz
);
711 if ((r
!= 0) || BUTTON_PRESS()) {
712 Dbprintf("operation aborted @ 0x%03.3x", byte_index
);
713 switch_off_tag_rwd();
722 if ( MF_DBGLEVEL
>= 1) DbpString("write successful");
725 void LegicRfRawWriter(int address
, int byte
, int iv
) {
727 int byte_index
= 0, addr_sz
= 0;
731 if ( MF_DBGLEVEL
>= 2) DbpString("setting up legic card");
733 uint32_t tag_type
= perform_setup_phase_rwd(iv
);
735 switch_off_tag_rwd();
740 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address
);
744 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
);
747 if(address
> 0x100) {
748 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address
);
752 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
);
755 if(address
> 0x400) {
756 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address
);
760 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address
, byte
);
763 Dbprintf("No or unknown card found, aborting");
767 Dbprintf("integer value: %d address: %d addr_sz: %d", byte
, address
, addr_sz
);
770 perform_setup_phase_rwd(iv
);
772 int r
= legic_write_byte(byte
, address
, addr_sz
);
774 if((r
!= 0) || BUTTON_PRESS()) {
775 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index
, r
);
776 switch_off_tag_rwd();
782 if ( MF_DBGLEVEL
>= 1) DbpString("write successful");
785 /* Handle (whether to respond) a frame in tag mode
786 * Only called when simulating a tag.
788 static void frame_handle_tag(struct legic_frame
const * const f
)
790 uint8_t *BigBuf
= BigBuf_get_addr();
792 /* First Part of Handshake (IV) */
800 legic_prng_init(f
->data
);
801 frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */
802 legic_state
= STATE_IV
;
803 legic_read_count
= 0;
805 legic_prng_iv
= f
->data
;
814 if(legic_state
== STATE_IV
) {
815 int local_key
= get_key_stream(3, 6);
816 int xored
= 0x39 ^ local_key
;
817 if((f
->bits
== 6) && (f
->data
== xored
)) {
818 legic_state
= STATE_CON
;
825 legic_state
= STATE_DISCON
;
827 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
);
834 if(legic_state
== STATE_CON
) {
835 int key
= get_key_stream(2, 11); //legic_phase_drift, 11);
836 int addr
= f
->data
^ key
; addr
= addr
>> 1;
837 int data
= BigBuf
[addr
];
838 int hash
= legic4Crc(LEGIC_READ
, addr
, data
, 11) << 8;
839 BigBuf
[OFFSET_LOG
+legic_read_count
] = (uint8_t)addr
;
842 //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
843 legic_prng_forward(legic_reqresp_drift
);
845 frame_send_tag(hash
| data
, 12, 1);
848 legic_prng_forward(2);
856 int key
= get_key_stream(-1, 23); //legic_frame_drift, 23);
857 int addr
= f
->data
^ key
; addr
= addr
>> 1; addr
= addr
& 0x3ff;
858 int data
= f
->data
^ key
; data
= data
>> 11; data
= data
& 0xff;
861 legic_state
= STATE_DISCON
;
863 Dbprintf("write - addr: %x, data: %x", addr
, data
);
867 if(legic_state
!= STATE_DISCON
) {
868 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
);
870 Dbprintf("IV: %03.3x", legic_prng_iv
);
871 for(i
= 0; i
<legic_read_count
; i
++) {
872 Dbprintf("Read Nb: %u, Addr: %u", i
, BigBuf
[OFFSET_LOG
+i
]);
875 for(i
= -1; i
<legic_read_count
; i
++) {
877 t
= BigBuf
[OFFSET_LOG
+256+i
*4];
878 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+1] << 8;
879 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+2] <<16;
880 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+3] <<24;
882 Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",
883 BigBuf
[OFFSET_LOG
+128+i
],
884 BigBuf
[OFFSET_LOG
+384+i
],
888 legic_state
= STATE_DISCON
;
889 legic_read_count
= 0;
895 /* Read bit by bit untill full frame is received
896 * Call to process frame end answer
898 static void emit(int bit
) {
902 frame_append_bit(¤t_frame
, 1);
905 frame_append_bit(¤t_frame
, 0);
908 if(current_frame
.bits
<= 4) {
909 frame_clean(¤t_frame
);
911 frame_handle_tag(¤t_frame
);
912 frame_clean(¤t_frame
);
919 void LegicRfSimulate(int phase
, int frame
, int reqresp
)
921 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
922 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
923 * envelope waveform on DIN and should send our response on DOUT.
925 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
926 * measure the time between two rising edges on DIN, and no encoding on the
927 * subcarrier from card to reader, so we'll just shift out our verbatim data
928 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
929 * seems to be 300us-ish.
932 legic_phase_drift
= phase
;
933 legic_frame_drift
= frame
;
934 legic_reqresp_drift
= reqresp
;
936 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
937 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
939 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_212K
);
941 /* Bitbang the receiver */
942 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
943 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
946 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
950 legic_state
= STATE_DISCON
;
953 DbpString("Starting Legic emulator, press button to end");
955 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
956 int level
= !!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
957 int time
= timer
->TC_CV
;
959 if(level
!= old_level
) {
961 timer
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
963 if (FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) {
968 } else if (FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) {
983 if(time
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) {
989 if(time
>= (20*RWD_TIME_1
) && (timer
->TC_SR
& AT91C_TC_CLKSTA
)) {
990 timer
->TC_CCR
= AT91C_TC_CLKDIS
;
996 if ( MF_DBGLEVEL
>= 1) DbpString("Stopped");
1000 //-----------------------------------------------------------------------------
1001 //-----------------------------------------------------------------------------
1004 //-----------------------------------------------------------------------------
1005 // Code up a string of octets at layer 2 (including CRC, we don't generate
1006 // that here) so that they can be transmitted to the reader. Doesn't transmit
1007 // them yet, just leaves them ready to send in ToSend[].
1008 //-----------------------------------------------------------------------------
1009 // static void CodeLegicAsTag(const uint8_t *cmd, int len)
1015 // // Transmit a burst of ones, as the initial thing that lets the
1016 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
1017 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
1018 // // so I will too.
1019 // for(i = 0; i < 20; i++) {
1020 // ToSendStuffBit(1);
1021 // ToSendStuffBit(1);
1022 // ToSendStuffBit(1);
1023 // ToSendStuffBit(1);
1027 // for(i = 0; i < 10; i++) {
1028 // ToSendStuffBit(0);
1029 // ToSendStuffBit(0);
1030 // ToSendStuffBit(0);
1031 // ToSendStuffBit(0);
1033 // for(i = 0; i < 2; i++) {
1034 // ToSendStuffBit(1);
1035 // ToSendStuffBit(1);
1036 // ToSendStuffBit(1);
1037 // ToSendStuffBit(1);
1040 // for(i = 0; i < len; i++) {
1042 // uint8_t b = cmd[i];
1045 // ToSendStuffBit(0);
1046 // ToSendStuffBit(0);
1047 // ToSendStuffBit(0);
1048 // ToSendStuffBit(0);
1051 // for(j = 0; j < 8; j++) {
1053 // ToSendStuffBit(1);
1054 // ToSendStuffBit(1);
1055 // ToSendStuffBit(1);
1056 // ToSendStuffBit(1);
1058 // ToSendStuffBit(0);
1059 // ToSendStuffBit(0);
1060 // ToSendStuffBit(0);
1061 // ToSendStuffBit(0);
1067 // ToSendStuffBit(1);
1068 // ToSendStuffBit(1);
1069 // ToSendStuffBit(1);
1070 // ToSendStuffBit(1);
1074 // for(i = 0; i < 10; i++) {
1075 // ToSendStuffBit(0);
1076 // ToSendStuffBit(0);
1077 // ToSendStuffBit(0);
1078 // ToSendStuffBit(0);
1080 // for(i = 0; i < 2; i++) {
1081 // ToSendStuffBit(1);
1082 // ToSendStuffBit(1);
1083 // ToSendStuffBit(1);
1084 // ToSendStuffBit(1);
1087 // // Convert from last byte pos to length
1091 //-----------------------------------------------------------------------------
1092 // The software UART that receives commands from the reader, and its state
1094 //-----------------------------------------------------------------------------
1098 STATE_GOT_FALLING_EDGE_OF_SOF
,
1099 STATE_AWAITING_START_BIT
,
1100 STATE_RECEIVING_DATA
1110 /* Receive & handle a bit coming from the reader.
1112 * This function is called 4 times per bit (every 2 subcarrier cycles).
1113 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1116 * LED A -> ON once we have received the SOF and are expecting the rest.
1117 * LED A -> OFF once we have received EOF or are in error state or unsynced
1119 * Returns: true if we received a EOF
1120 * false if we are still waiting for some more
1122 // static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1124 // switch(Uart.state) {
1125 // case STATE_UNSYNCD:
1127 // // we went low, so this could be the beginning of an SOF
1128 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1134 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1136 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1138 // if(Uart.bitCnt > 9) {
1139 // // we've seen enough consecutive
1140 // // zeros that it's a valid SOF
1142 // Uart.byteCnt = 0;
1143 // Uart.state = STATE_AWAITING_START_BIT;
1144 // LED_A_ON(); // Indicate we got a valid SOF
1146 // // didn't stay down long enough
1147 // // before going high, error
1148 // Uart.state = STATE_UNSYNCD;
1151 // // do nothing, keep waiting
1155 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1156 // if(Uart.bitCnt > 12) {
1157 // // Give up if we see too many zeros without
1160 // Uart.state = STATE_UNSYNCD;
1164 // case STATE_AWAITING_START_BIT:
1167 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1168 // // stayed high for too long between
1169 // // characters, error
1170 // Uart.state = STATE_UNSYNCD;
1173 // // falling edge, this starts the data byte
1176 // Uart.shiftReg = 0;
1177 // Uart.state = STATE_RECEIVING_DATA;
1181 // case STATE_RECEIVING_DATA:
1183 // if(Uart.posCnt == 2) {
1184 // // time to sample a bit
1185 // Uart.shiftReg >>= 1;
1187 // Uart.shiftReg |= 0x200;
1191 // if(Uart.posCnt >= 4) {
1194 // if(Uart.bitCnt == 10) {
1195 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1197 // // this is a data byte, with correct
1198 // // start and stop bits
1199 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1202 // if(Uart.byteCnt >= Uart.byteCntMax) {
1203 // // Buffer overflowed, give up
1205 // Uart.state = STATE_UNSYNCD;
1207 // // so get the next byte now
1209 // Uart.state = STATE_AWAITING_START_BIT;
1211 // } else if (Uart.shiftReg == 0x000) {
1212 // // this is an EOF byte
1213 // LED_A_OFF(); // Finished receiving
1214 // Uart.state = STATE_UNSYNCD;
1215 // if (Uart.byteCnt != 0) {
1219 // // this is an error
1221 // Uart.state = STATE_UNSYNCD;
1228 // Uart.state = STATE_UNSYNCD;
1236 static void UartReset() {
1237 Uart
.byteCntMax
= 3;
1238 Uart
.state
= STATE_UNSYNCD
;
1242 memset(Uart
.output
, 0x00, 3);
1245 // static void UartInit(uint8_t *data) {
1246 // Uart.output = data;
1250 //=============================================================================
1251 // An LEGIC reader. We take layer two commands, code them
1252 // appropriately, and then send them to the tag. We then listen for the
1253 // tag's response, which we leave in the buffer to be demodulated on the
1255 //=============================================================================
1260 DEMOD_PHASE_REF_TRAINING
,
1261 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
1262 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
1263 DEMOD_AWAITING_START_BIT
,
1264 DEMOD_RECEIVING_DATA
1277 * Handles reception of a bit from the tag
1279 * This function is called 2 times per bit (every 4 subcarrier cycles).
1280 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1283 * LED C -> ON once we have received the SOF and are expecting the rest.
1284 * LED C -> OFF once we have received EOF or are unsynced
1286 * Returns: true if we received a EOF
1287 * false if we are still waiting for some more
1291 #ifndef SUBCARRIER_DETECT_THRESHOLD
1292 # define SUBCARRIER_DETECT_THRESHOLD 8
1295 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
1296 #ifndef CHECK_FOR_SUBCARRIER
1297 # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); }
1300 // The soft decision on the bit uses an estimate of just the
1301 // quadrant of the reference angle, not the exact angle.
1302 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
1303 #define MAKE_SOFT_DECISION() { \
1304 if(Demod.sumI > 0) \
1309 if(Demod.sumQ > 0) \
1316 static RAMFUNC
int HandleLegicSamplesDemod(int ci
, int cq
)
1321 int halfci
= (ai
>> 1);
1322 int halfcq
= (aq
>> 1);
1324 switch(Demod
.state
) {
1327 CHECK_FOR_SUBCARRIER()
1329 if(v
> SUBCARRIER_DETECT_THRESHOLD
) { // subcarrier detected
1330 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
1337 case DEMOD_PHASE_REF_TRAINING
:
1338 if(Demod
.posCount
< 8) {
1340 CHECK_FOR_SUBCARRIER()
1342 if (v
> SUBCARRIER_DETECT_THRESHOLD
) {
1343 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1344 // note: synchronization time > 80 1/fs
1350 Demod
.state
= DEMOD_UNSYNCD
;
1353 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
1357 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
1359 MAKE_SOFT_DECISION()
1361 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1362 // logic '0' detected
1365 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
1367 // start of SOF sequence
1370 // maximum length of TR1 = 200 1/fs
1371 if(Demod
.posCount
> 25*2) Demod
.state
= DEMOD_UNSYNCD
;
1376 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
1379 MAKE_SOFT_DECISION()
1382 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1383 if(Demod
.posCount
< 10*2) {
1384 Demod
.state
= DEMOD_UNSYNCD
;
1386 LED_C_ON(); // Got SOF
1387 Demod
.state
= DEMOD_AWAITING_START_BIT
;
1392 // low phase of SOF too long (> 12 etu)
1393 if(Demod
.posCount
> 13*2) {
1394 Demod
.state
= DEMOD_UNSYNCD
;
1400 case DEMOD_AWAITING_START_BIT
:
1403 MAKE_SOFT_DECISION()
1406 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1407 if(Demod
.posCount
> 3*2) {
1408 Demod
.state
= DEMOD_UNSYNCD
;
1412 // start bit detected
1414 Demod
.posCount
= 1; // this was the first half
1417 Demod
.state
= DEMOD_RECEIVING_DATA
;
1421 case DEMOD_RECEIVING_DATA
:
1423 MAKE_SOFT_DECISION()
1425 if(Demod
.posCount
== 0) {
1426 // first half of bit
1430 // second half of bit
1432 Demod
.shiftReg
>>= 1;
1434 if(Demod
.thisBit
> 0)
1435 Demod
.shiftReg
|= 0x200;
1439 if(Demod
.bitCount
== 10) {
1441 uint16_t s
= Demod
.shiftReg
;
1443 if((s
& 0x200) && !(s
& 0x001)) {
1444 // stop bit == '1', start bit == '0'
1445 uint8_t b
= (s
>> 1);
1446 Demod
.output
[Demod
.len
] = b
;
1448 Demod
.state
= DEMOD_AWAITING_START_BIT
;
1450 Demod
.state
= DEMOD_UNSYNCD
;
1454 // This is EOF (start, stop and all data bits == '0'
1464 Demod
.state
= DEMOD_UNSYNCD
;
1471 // Clear out the state of the "UART" that receives from the tag.
1472 static void DemodReset() {
1474 Demod
.state
= DEMOD_UNSYNCD
;
1481 memset(Demod
.output
, 0x00, 3);
1484 static void DemodInit(uint8_t *data
) {
1485 Demod
.output
= data
;
1490 * Demodulate the samples we received from the tag, also log to tracebuffer
1491 * quiet: set to 'TRUE' to disable debug output
1493 #define LEGIC_DMA_BUFFER_SIZE 256
1494 static void GetSamplesForLegicDemod(int n
, bool quiet
)
1497 bool gotFrame
= FALSE
;
1498 int lastRxCounter
= LEGIC_DMA_BUFFER_SIZE
;
1499 int ci
, cq
, samples
= 0;
1503 // And put the FPGA in the appropriate mode
1504 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_QUARTER_FREQ
);
1506 // The response (tag -> reader) that we're receiving.
1507 // Set up the demodulator for tag -> reader responses.
1508 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1510 // The DMA buffer, used to stream samples from the FPGA
1511 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE
);
1512 int8_t *upTo
= dmaBuf
;
1514 // Setup and start DMA.
1515 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, LEGIC_DMA_BUFFER_SIZE
) ){
1516 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1520 // Signal field is ON with the appropriate LED:
1523 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
1524 if(behindBy
> max
) max
= behindBy
;
1526 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (LEGIC_DMA_BUFFER_SIZE
-1)) > 2) {
1530 if(upTo
>= dmaBuf
+ LEGIC_DMA_BUFFER_SIZE
) {
1532 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
1533 AT91C_BASE_PDC_SSC
->PDC_RNCR
= LEGIC_DMA_BUFFER_SIZE
;
1536 if(lastRxCounter
<= 0)
1537 lastRxCounter
= LEGIC_DMA_BUFFER_SIZE
;
1541 gotFrame
= HandleLegicSamplesDemod(ci
, cq
);
1546 if(samples
> n
|| gotFrame
)
1550 FpgaDisableSscDma();
1552 if (!quiet
&& Demod
.len
== 0) {
1553 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1564 if (Demod
.len
> 0) {
1565 uint8_t parity
[MAX_PARITY_SIZE
] = {0x00};
1566 LogTrace(Demod
.output
, Demod
.len
, 0, 0, parity
, FALSE
);
1569 //-----------------------------------------------------------------------------
1570 // Transmit the command (to the tag) that was placed in ToSend[].
1571 //-----------------------------------------------------------------------------
1572 static void TransmitForLegic(void)
1578 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))
1579 AT91C_BASE_SSC
->SSC_THR
= 0xff;
1581 // Signal field is ON with the appropriate Red LED
1584 // Signal we are transmitting with the Green LED
1586 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1588 for(c
= 0; c
< 10;) {
1589 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1590 AT91C_BASE_SSC
->SSC_THR
= 0xff;
1593 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1594 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1602 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1603 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
1604 legic_prng_forward(1); // forward the lfsr
1606 if(c
>= ToSendMax
) {
1610 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1611 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1620 //-----------------------------------------------------------------------------
1621 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
1622 // so that it is ready to transmit to the tag using TransmitForLegic().
1623 //-----------------------------------------------------------------------------
1624 static void CodeLegicBitsAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
)
1632 for(i
= 0; i
< 7; i
++)
1636 for(i
= 0; i
< cmdlen
; i
++) {
1642 for(j
= 0; j
< bits
; j
++) {
1652 // Convert from last character reference to length
1657 Convenience function to encode, transmit and trace Legic comms
1659 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
)
1661 CodeLegicBitsAsReader(cmd
, cmdlen
, bits
);
1664 uint8_t parity
[1] = {0x00};
1665 LogTrace(cmd
, cmdlen
, 0, 0, parity
, TRUE
);
1669 int ice_legic_select_card()
1671 //int cmd_size=0, card_size=0;
1672 uint8_t wakeup
[] = { 0x7F };
1673 uint8_t getid
[] = {0x19};
1675 //legic_prng_init(SESSION_IV);
1677 // first, wake up the tag, 7bits
1678 CodeAndTransmitLegicAsReader(wakeup
, sizeof(wakeup
), 7);
1680 GetSamplesForLegicDemod(1000, TRUE
);
1682 //frame_receiveAsReader(¤t_frame, 6, 1);
1684 legic_prng_forward(1); /* we wait anyways */
1686 //while(timer->TC_CV < 387) ; /* ~ 258us */
1687 //frame_sendAsReader(0x19, 6);
1688 CodeAndTransmitLegicAsReader(getid
, sizeof(getid
), 8);
1689 GetSamplesForLegicDemod(1000, TRUE
);
1691 //if (Demod.len < 14) return 2;
1692 Dbprintf("CARD TYPE: %02x LEN: %d", Demod
.output
[0], Demod
.len
);
1694 switch(Demod
.output
[0]) {
1696 DbpString("MIM 256 card found");
1701 DbpString("MIM 1024 card found");
1703 // card_size = 1024;
1710 // bytes = card_size;
1712 // if(bytes + offset >= card_size)
1713 // bytes = card_size - offset;
1715 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1720 // Set up LEGIC communication
1721 void ice_legic_setup() {
1724 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1725 BigBuf_free(); BigBuf_Clear_ext(false);
1731 // Set up the synchronous serial port
1734 // connect Demodulated Signal to ADC:
1735 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1737 // Signal field is on with the appropriate LED
1739 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1742 //StartCountSspClk();
1745 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);