1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "../include/proxmark3.h"
17 #include "../common/cmd.h"
18 #include "../common/iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
23 static uint32_t iso14a_timeout
;
24 uint8_t *trace
= (uint8_t *) BigBuf
+TRACE_OFFSET
;
29 // the block number for the ISO14443-4 PCB
30 static uint8_t iso14_pcb_blocknum
= 0;
35 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
36 #define REQUEST_GUARD_TIME (7000/16 + 1)
37 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
38 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
39 // bool LastCommandWasRequest = FALSE;
42 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
44 // When the PM acts as reader and is receiving tag data, it takes
45 // 3 ticks delay in the AD converter
46 // 16 ticks until the modulation detector completes and sets curbit
47 // 8 ticks until bit_to_arm is assigned from curbit
48 // 8*16 ticks for the transfer from FPGA to ARM
49 // 4*16 ticks until we measure the time
50 // - 8*16 ticks because we measure the time of the previous transfer
51 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
53 // When the PM acts as a reader and is sending, it takes
54 // 4*16 ticks until we can write data to the sending hold register
55 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
56 // 8 ticks until the first transfer starts
57 // 8 ticks later the FPGA samples the data
58 // 1 tick to assign mod_sig_coil
59 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
61 // When the PM acts as tag and is receiving it takes
62 // 2 ticks delay in the RF part (for the first falling edge),
63 // 3 ticks for the A/D conversion,
64 // 8 ticks on average until the start of the SSC transfer,
65 // 8 ticks until the SSC samples the first data
66 // 7*16 ticks to complete the transfer from FPGA to ARM
67 // 8 ticks until the next ssp_clk rising edge
68 // 4*16 ticks until we measure the time
69 // - 8*16 ticks because we measure the time of the previous transfer
70 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
72 // The FPGA will report its internal sending delay in
73 uint16_t FpgaSendQueueDelay
;
74 // the 5 first bits are the number of bits buffered in mod_sig_buf
75 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
76 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
78 // When the PM acts as tag and is sending, it takes
79 // 4*16 ticks until we can write data to the sending hold register
80 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
81 // 8 ticks until the first transfer starts
82 // 8 ticks later the FPGA samples the data
83 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
84 // + 1 tick to assign mod_sig_coil
85 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
87 // When the PM acts as sniffer and is receiving tag data, it takes
88 // 3 ticks A/D conversion
89 // 14 ticks to complete the modulation detection
90 // 8 ticks (on average) until the result is stored in to_arm
91 // + the delays in transferring data - which is the same for
92 // sniffing reader and tag data and therefore not relevant
93 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
95 // When the PM acts as sniffer and is receiving reader data, it takes
96 // 2 ticks delay in analogue RF receiver (for the falling edge of the
97 // start bit, which marks the start of the communication)
98 // 3 ticks A/D conversion
99 // 8 ticks on average until the data is stored in to_arm.
100 // + the delays in transferring data - which is the same for
101 // sniffing reader and tag data and therefore not relevant
102 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
104 //variables used for timing purposes:
105 //these are in ssp_clk cycles:
106 uint32_t NextTransferTime
;
107 uint32_t LastTimeProxToAirStart
;
108 uint32_t LastProxToAirDuration
;
112 // CARD TO READER - manchester
113 // Sequence D: 11110000 modulation with subcarrier during first half
114 // Sequence E: 00001111 modulation with subcarrier during second half
115 // Sequence F: 00000000 no modulation with subcarrier
116 // READER TO CARD - miller
117 // Sequence X: 00001100 drop after half a period
118 // Sequence Y: 00000000 no drop
119 // Sequence Z: 11000000 drop at start
127 const uint8_t OddByteParity
[256] = {
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
141 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
147 void iso14a_set_trigger(bool enable
) {
151 void iso14a_clear_trace() {
152 memset(trace
, 0x44, TRACE_SIZE
);
156 void iso14a_set_tracing(bool enable
) {
160 void iso14a_set_timeout(uint32_t timeout
) {
161 iso14a_timeout
= timeout
;
164 //-----------------------------------------------------------------------------
165 // Generate the parity value for a byte sequence
167 //-----------------------------------------------------------------------------
168 byte_t
oddparity (const byte_t bt
)
170 return OddByteParity
[bt
];
173 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
178 // Generate the parity bits
179 for (i
= 0; i
< iLen
; i
++) {
180 // and save them to a 32Bit word
181 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
186 void AppendCrc14443a(uint8_t* data
, int len
)
188 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
191 // The function LogTrace() is also used by the iClass implementation in iClass.c
192 bool RAMFUNC
LogTrace(const uint8_t * btBytes
, uint8_t iLen
, uint32_t timestamp
, uint32_t dwParity
, bool readerToTag
)
194 if (!tracing
) return FALSE
;
195 // Return when trace is full
196 if (traceLen
+ sizeof(timestamp
) + sizeof(dwParity
) + iLen
>= TRACE_SIZE
) {
197 tracing
= FALSE
; // don't trace any more
201 // Trace the random, i'm curious
202 trace
[traceLen
++] = ((timestamp
>> 0) & 0xff);
203 trace
[traceLen
++] = ((timestamp
>> 8) & 0xff);
204 trace
[traceLen
++] = ((timestamp
>> 16) & 0xff);
205 trace
[traceLen
++] = ((timestamp
>> 24) & 0xff);
208 trace
[traceLen
- 1] |= 0x80;
210 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
211 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
212 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
213 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
214 trace
[traceLen
++] = iLen
;
215 if (btBytes
!= NULL
&& iLen
!= 0) {
216 memcpy(trace
+ traceLen
, btBytes
, iLen
);
222 //=============================================================================
223 // ISO 14443 Type A - Miller decoder
224 //=============================================================================
226 // This decoder is used when the PM3 acts as a tag.
227 // The reader will generate "pauses" by temporarily switching of the field.
228 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
229 // The FPGA does a comparison with a threshold and would deliver e.g.:
230 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
231 // The Miller decoder needs to identify the following sequences:
232 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
233 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
234 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
235 // Note 1: the bitstream may start at any time. We therefore need to sync.
236 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
237 //-----------------------------------------------------------------------------
240 // Lookup-Table to decide if 4 raw bits are a modulation.
241 // We accept two or three consecutive "0" in any position with the rest "1"
242 const bool Mod_Miller_LUT
[] = {
243 TRUE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
,
244 TRUE
, TRUE
, FALSE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
246 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
247 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
251 Uart
.state
= STATE_UNSYNCD
;
253 Uart
.len
= 0; // number of decoded data bytes
254 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
255 Uart
.parityBits
= 0; //
256 Uart
.twoBits
= 0x0000; // buffer for 2 Bits
263 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
264 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
267 Uart
.twoBits
= (Uart
.twoBits
<< 8) | bit
;
269 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
270 if (Uart
.highCnt
< 7) { // wait for a stable unmodulated signal
271 if (Uart
.twoBits
== 0xffff) {
277 Uart
.syncBit
= 0xFFFF; // not set
278 // look for 00xx1111 (the start bit)
279 if ((Uart
.twoBits
& 0x6780) == 0x0780) Uart
.syncBit
= 7;
280 else if ((Uart
.twoBits
& 0x33C0) == 0x03C0) Uart
.syncBit
= 6;
281 else if ((Uart
.twoBits
& 0x19E0) == 0x01E0) Uart
.syncBit
= 5;
282 else if ((Uart
.twoBits
& 0x0CF0) == 0x00F0) Uart
.syncBit
= 4;
283 else if ((Uart
.twoBits
& 0x0678) == 0x0078) Uart
.syncBit
= 3;
284 else if ((Uart
.twoBits
& 0x033C) == 0x003C) Uart
.syncBit
= 2;
285 else if ((Uart
.twoBits
& 0x019E) == 0x001E) Uart
.syncBit
= 1;
286 else if ((Uart
.twoBits
& 0x00CF) == 0x000F) Uart
.syncBit
= 0;
287 if (Uart
.syncBit
!= 0xFFFF) {
288 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
289 Uart
.startTime
-= Uart
.syncBit
;
290 Uart
.endTime
= Uart
.startTime
;
291 Uart
.state
= STATE_START_OF_COMMUNICATION
;
297 if (IsMillerModulationNibble1(Uart
.twoBits
>> Uart
.syncBit
)) {
298 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
301 } else { // Modulation in first half = Sequence Z = logic "0"
302 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
307 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
308 Uart
.state
= STATE_MILLER_Z
;
309 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
310 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
311 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
312 Uart
.parityBits
<<= 1; // make room for the parity bit
313 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
320 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
322 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
323 Uart
.state
= STATE_MILLER_X
;
324 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
325 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
326 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
327 Uart
.parityBits
<<= 1; // make room for the new parity bit
328 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
332 } else { // no modulation in both halves - Sequence Y
333 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
334 Uart
.state
= STATE_UNSYNCD
;
335 if(Uart
.len
== 0 && Uart
.bitCount
> 0) { // if we decoded some bits
336 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // add them to the output
337 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
338 Uart
.parityBits
<<= 1; // no parity bit - add "0"
339 Uart
.bitCount
--; // last "0" was part of the EOC sequence
343 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
346 } else { // a logic "0"
348 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
349 Uart
.state
= STATE_MILLER_Y
;
350 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
351 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
352 Uart
.parityBits
<<= 1; // make room for the parity bit
353 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
363 return FALSE
; // not finished yet, need more data
368 //=============================================================================
369 // ISO 14443 Type A - Manchester decoder
370 //=============================================================================
372 // This decoder is used when the PM3 acts as a reader.
373 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
374 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
375 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
376 // The Manchester decoder needs to identify the following sequences:
377 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
378 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
379 // 8 ticks unmodulated: Sequence F = end of communication
380 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
381 // Note 1: the bitstream may start at any time. We therefore need to sync.
382 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
385 // Lookup-Table to decide if 4 raw bits are a modulation.
386 // We accept three or four "1" in any position
387 const bool Mod_Manchester_LUT
[] = {
388 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
389 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
392 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
393 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
398 Demod
.state
= DEMOD_UNSYNCD
;
399 Demod
.len
= 0; // number of decoded data bytes
400 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
401 Demod
.parityBits
= 0; //
402 Demod
.collisionPos
= 0; // Position of collision bit
403 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
409 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
410 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
413 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
415 if (Demod
.state
== DEMOD_UNSYNCD
) {
417 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
418 if (Demod
.twoBits
== 0x0000) {
424 Demod
.syncBit
= 0xFFFF; // not set
425 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
426 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
427 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
428 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
429 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
430 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
431 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
432 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
433 if (Demod
.syncBit
!= 0xFFFF) {
434 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
435 Demod
.startTime
-= Demod
.syncBit
;
436 Demod
.bitCount
= offset
; // number of decoded data bits
437 Demod
.state
= DEMOD_MANCHESTER_DATA
;
443 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
444 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
445 if (!Demod
.collisionPos
) {
446 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
448 } // modulation in first half only - Sequence D = 1
450 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
451 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
452 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
453 Demod
.parityBits
<<= 1; // make room for the parity bit
454 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
458 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
459 } else { // no modulation in first half
460 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
462 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
463 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
464 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
465 Demod
.parityBits
<<= 1; // make room for the new parity bit
466 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
470 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
471 } else { // no modulation in both halves - End of communication
472 if (Demod
.len
> 0 || Demod
.bitCount
> 0) { // received something
473 if(Demod
.bitCount
> 0) { // if we decoded bits
474 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // add the remaining decoded bits to the output
475 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff;
476 // No parity bit, so just shift a 0
477 Demod
.parityBits
<<= 1;
479 return TRUE
; // we are finished with decoding the raw data sequence
480 } else { // nothing received. Start over
488 return FALSE
; // not finished yet, need more data
491 //=============================================================================
492 // Finally, a `sniffer' for ISO 14443 Type A
493 // Both sides of communication!
494 //=============================================================================
496 //-----------------------------------------------------------------------------
497 // Record the sequence of commands sent by the reader to the tag, with
498 // triggering so that we start recording at the point that the tag is moved
500 //-----------------------------------------------------------------------------
501 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
503 // bit 0 - trigger from first card answer
504 // bit 1 - trigger from first reader 7-bit request
508 iso14a_clear_trace();
509 iso14a_set_tracing(TRUE
);
511 // We won't start recording the frames that we acquire until we trigger;
512 // a good trigger condition to get started is probably when we see a
513 // response from the tag.
514 // triggered == FALSE -- to wait first for card
515 bool triggered
= !(param
& 0x03);
517 // The command (reader -> tag) that we're receiving.
518 // The length of a received command will in most cases be no more than 18 bytes.
519 // So 32 should be enough!
520 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
521 // The response (tag -> reader) that we're receiving.
522 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
524 // As we receive stuff, we copy it from receivedCmd or receivedResponse
525 // into trace, along with its length and other annotations.
526 //uint8_t *trace = (uint8_t *)BigBuf;
528 // The DMA buffer, used to stream samples from the FPGA
529 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
530 uint8_t *data
= dmaBuf
;
531 uint8_t previous_data
= 0;
534 bool TagIsActive
= FALSE
;
535 bool ReaderIsActive
= FALSE
;
537 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
539 // Set up the demodulator for tag -> reader responses.
540 Demod
.output
= receivedResponse
;
542 // Set up the demodulator for the reader -> tag commands
543 Uart
.output
= receivedCmd
;
545 // Setup and start DMA.
546 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
548 // And now we loop, receiving samples.
549 for(uint32_t rsamples
= 0; TRUE
; ) {
552 DbpString("cancelled by button");
559 int register readBufDataP
= data
- dmaBuf
;
560 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
561 if (readBufDataP
<= dmaBufDataP
){
562 dataLen
= dmaBufDataP
- readBufDataP
;
564 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
566 // test for length of buffer
567 if(dataLen
> maxDataLen
) {
568 maxDataLen
= dataLen
;
570 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
574 if(dataLen
< 1) continue;
576 // primary buffer was stopped( <-- we lost data!
577 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
578 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
579 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
580 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
582 // secondary buffer sets as primary, secondary buffer was stopped
583 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
584 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
585 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
590 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
592 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
593 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
594 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
597 // check - if there is a short 7bit request from reader
598 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
601 if (!LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, Uart
.parityBits
, TRUE
)) break;
602 if (!LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, 0, TRUE
)) break;
604 /* And ready to receive another command. */
606 /* And also reset the demod code, which might have been */
607 /* false-triggered by the commands from the reader. */
611 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
614 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
615 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
616 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
619 if (!LogTrace(receivedResponse
, Demod
.len
, Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, Demod
.parityBits
, FALSE
)) break;
620 if (!LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, 0, FALSE
)) break;
622 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
624 // And ready to receive another response.
628 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
632 previous_data
= *data
;
635 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
640 DbpString("COMMAND FINISHED");
643 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
644 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen
, (uint32_t)Uart
.output
[0]);
648 //-----------------------------------------------------------------------------
649 // Prepare tag messages
650 //-----------------------------------------------------------------------------
651 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, int len
, uint32_t dwParity
)
657 // Correction bit, might be removed when not needed
662 ToSendStuffBit(1); // 1
668 ToSend
[++ToSendMax
] = SEC_D
;
669 LastProxToAirDuration
= 8 * ToSendMax
- 4;
671 for(i
= 0; i
< len
; i
++) {
676 for(j
= 0; j
< 8; j
++) {
678 ToSend
[++ToSendMax
] = SEC_D
;
680 ToSend
[++ToSendMax
] = SEC_E
;
685 // Get the parity bit
686 if ((dwParity
>> i
) & 0x01) {
687 ToSend
[++ToSendMax
] = SEC_D
;
688 LastProxToAirDuration
= 8 * ToSendMax
- 4;
690 ToSend
[++ToSendMax
] = SEC_E
;
691 LastProxToAirDuration
= 8 * ToSendMax
;
696 ToSend
[++ToSendMax
] = SEC_F
;
698 // Convert from last byte pos to length
702 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
){
703 CodeIso14443aAsTagPar(cmd
, len
, GetParity(cmd
, len
));
707 static void Code4bitAnswerAsTag(uint8_t cmd
)
713 // Correction bit, might be removed when not needed
718 ToSendStuffBit(1); // 1
724 ToSend
[++ToSendMax
] = SEC_D
;
727 for(i
= 0; i
< 4; i
++) {
729 ToSend
[++ToSendMax
] = SEC_D
;
730 LastProxToAirDuration
= 8 * ToSendMax
- 4;
732 ToSend
[++ToSendMax
] = SEC_E
;
733 LastProxToAirDuration
= 8 * ToSendMax
;
739 ToSend
[++ToSendMax
] = SEC_F
;
741 // Convert from last byte pos to length
745 //-----------------------------------------------------------------------------
746 // Wait for commands from reader
747 // Stop when button is pressed
748 // Or return TRUE when command is captured
749 //-----------------------------------------------------------------------------
750 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
752 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
753 // only, since we are receiving, not transmitting).
754 // Signal field is off with the appropriate LED
756 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
758 // Now run a `software UART' on the stream of incoming samples.
760 Uart
.output
= received
;
763 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
768 if(BUTTON_PRESS()) return FALSE
;
770 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
771 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
772 if(MillerDecoding(b
, 0)) {
780 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
);
781 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
782 int EmSend4bit(uint8_t resp
);
783 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
784 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
785 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
);
786 int EmSendCmd(uint8_t *resp
, int respLen
);
787 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
);
788 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
789 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
);
791 static uint8_t* free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
798 uint32_t ProxToAirDuration
;
799 } tag_response_info_t
;
801 void reset_free_buffer() {
802 free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
805 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
806 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
807 // This will need the following byte array for a modulation sequence
808 // 144 data bits (18 * 8)
811 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
812 // 1 just for the case
814 // 166 bytes, since every bit that needs to be send costs us a byte
817 // Prepare the tag modulation bits from the message
818 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
820 // Make sure we do not exceed the free buffer space
821 if (ToSendMax
> max_buffer_size
) {
822 Dbprintf("Out of memory, when modulating bits for tag answer:");
823 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
827 // Copy the byte array, used for this modulation to the buffer position
828 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
830 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
831 response_info
->modulation_n
= ToSendMax
;
832 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
837 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
838 // Retrieve and store the current buffer index
839 response_info
->modulation
= free_buffer_pointer
;
841 // Determine the maximum size we can use from our buffer
842 size_t max_buffer_size
= (((uint8_t *)BigBuf
)+FREE_BUFFER_OFFSET
+FREE_BUFFER_SIZE
)-free_buffer_pointer
;
844 // Forward the prepare tag modulation function to the inner function
845 if (prepare_tag_modulation(response_info
,max_buffer_size
)) {
846 // Update the free buffer offset
847 free_buffer_pointer
+= ToSendMax
;
854 //-----------------------------------------------------------------------------
855 // Main loop of simulated tag: receive commands from reader, decide what
856 // response to send, and send it.
857 //-----------------------------------------------------------------------------
858 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
860 // Enable and clear the trace
861 iso14a_clear_trace();
862 iso14a_set_tracing(TRUE
);
866 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
867 uint8_t response1
[2];
870 case 1: { // MIFARE Classic
871 // Says: I am Mifare 1k - original line
876 case 2: { // MIFARE Ultralight
877 // Says: I am a stupid memory tag, no crypto
882 case 3: { // MIFARE DESFire
883 // Says: I am a DESFire tag, ph33r me
888 case 4: { // ISO/IEC 14443-4
889 // Says: I am a javacard (JCOP)
895 Dbprintf("Error: unkown tagtype (%d)",tagType
);
900 // The second response contains the (mandatory) first 24 bits of the UID
901 uint8_t response2
[5];
903 // Check if the uid uses the (optional) part
904 uint8_t response2a
[5];
907 num_to_bytes(uid_1st
,3,response2
+1);
908 num_to_bytes(uid_2nd
,4,response2a
);
909 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
911 // Configure the ATQA and SAK accordingly
912 response1
[0] |= 0x40;
915 num_to_bytes(uid_1st
,4,response2
);
916 // Configure the ATQA and SAK accordingly
917 response1
[0] &= 0xBF;
921 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
922 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
924 // Prepare the mandatory SAK (for 4 and 7 byte UID)
925 uint8_t response3
[3];
927 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
929 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
930 uint8_t response3a
[3];
931 response3a
[0] = sak
& 0xFB;
932 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
934 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
935 uint8_t response6
[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
936 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
938 #define TAG_RESPONSE_COUNT 7
939 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
940 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
941 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
942 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
943 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
944 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
945 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
946 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
949 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
950 // Such a response is less time critical, so we can prepare them on the fly
951 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
952 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
953 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
954 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
955 tag_response_info_t dynamic_response_info
= {
956 .response
= dynamic_response_buffer
,
958 .modulation
= dynamic_modulation_buffer
,
962 // Reset the offset pointer of the free buffer
965 // Prepare the responses of the anticollision phase
966 // there will be not enough time to do this at the moment the reader sends it REQA
967 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
968 prepare_allocated_tag_modulation(&responses
[i
]);
971 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
974 // To control where we are in the protocol
978 // Just to allow some checks
983 // We need to listen to the high-frequency, peak-detected path.
984 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
987 tag_response_info_t
* p_response
;
991 // Clean receive command buffer
993 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, RECV_CMD_SIZE
)) {
994 DbpString("Button press");
1000 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1001 // Okay, look at the command now.
1003 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1004 p_response
= &responses
[0]; order
= 1;
1005 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1006 p_response
= &responses
[0]; order
= 6;
1007 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1008 p_response
= &responses
[1]; order
= 2;
1009 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1010 p_response
= &responses
[2]; order
= 20;
1011 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1012 p_response
= &responses
[3]; order
= 3;
1013 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1014 p_response
= &responses
[4]; order
= 30;
1015 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1016 EmSendCmdEx(data
+(4*receivedCmd
[0]),16,false);
1017 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1018 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1020 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1021 // DbpString("Reader requested we HALT!:");
1023 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1024 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1027 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1028 p_response
= &responses
[5]; order
= 7;
1029 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1030 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1031 EmSend4bit(CARD_NACK_NA
);
1034 p_response
= &responses
[6]; order
= 70;
1036 } else if (order
== 7 && len
== 8) { // Received authentication request
1038 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1039 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1041 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1042 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1043 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1045 // Check for ISO 14443A-4 compliant commands, look at left nibble
1046 switch (receivedCmd
[0]) {
1049 case 0x0A: { // IBlock (command)
1050 dynamic_response_info
.response
[0] = receivedCmd
[0];
1051 dynamic_response_info
.response
[1] = 0x00;
1052 dynamic_response_info
.response
[2] = 0x90;
1053 dynamic_response_info
.response
[3] = 0x00;
1054 dynamic_response_info
.response_n
= 4;
1058 case 0x1B: { // Chaining command
1059 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1060 dynamic_response_info
.response_n
= 2;
1065 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1066 dynamic_response_info
.response_n
= 2;
1070 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1071 dynamic_response_info
.response_n
= 2;
1075 case 0xC2: { // Readers sends deselect command
1076 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1077 dynamic_response_info
.response_n
= 2;
1081 // Never seen this command before
1083 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1084 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1086 Dbprintf("Received unknown command (len=%d):",len
);
1087 Dbhexdump(len
,receivedCmd
,false);
1089 dynamic_response_info
.response_n
= 0;
1093 if (dynamic_response_info
.response_n
> 0) {
1094 // Copy the CID from the reader query
1095 dynamic_response_info
.response
[1] = receivedCmd
[1];
1097 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1098 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1099 dynamic_response_info
.response_n
+= 2;
1101 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1102 Dbprintf("Error preparing tag response");
1104 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1105 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1109 p_response
= &dynamic_response_info
;
1113 // Count number of wakeups received after a halt
1114 if(order
== 6 && lastorder
== 5) { happened
++; }
1116 // Count number of other messages after a halt
1117 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1119 if(cmdsRecvd
> 999) {
1120 DbpString("1000 commands later...");
1125 if (p_response
!= NULL
) {
1126 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1127 // do the tracing for the previous reader request and this tag answer:
1128 EmLogTrace(Uart
.output
,
1130 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1131 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1133 p_response
->response
,
1134 p_response
->response_n
,
1135 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1136 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1137 SwapBits(GetParity(p_response
->response
, p_response
->response_n
), p_response
->response_n
));
1141 Dbprintf("Trace Full. Simulation stopped.");
1146 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1151 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1152 // of bits specified in the delay parameter.
1153 void PrepareDelayedTransfer(uint16_t delay
)
1155 uint8_t bitmask
= 0;
1156 uint8_t bits_to_shift
= 0;
1157 uint8_t bits_shifted
= 0;
1161 for (uint16_t i
= 0; i
< delay
; i
++) {
1162 bitmask
|= (0x01 << i
);
1164 ToSend
[ToSendMax
++] = 0x00;
1165 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1166 bits_to_shift
= ToSend
[i
] & bitmask
;
1167 ToSend
[i
] = ToSend
[i
] >> delay
;
1168 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1169 bits_shifted
= bits_to_shift
;
1175 //-------------------------------------------------------------------------------------
1176 // Transmit the command (to the tag) that was placed in ToSend[].
1177 // Parameter timing:
1178 // if NULL: transfer at next possible time, taking into account
1179 // request guard time and frame delay time
1180 // if == 0: transfer immediately and return time of transfer
1181 // if != 0: delay transfer until time specified
1182 //-------------------------------------------------------------------------------------
1183 static void TransmitFor14443a(const uint8_t *cmd
, int len
, uint32_t *timing
)
1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1188 uint32_t ThisTransferTime
= 0;
1191 if(*timing
== 0) { // Measure time
1192 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1194 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1196 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1197 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1198 LastTimeProxToAirStart
= *timing
;
1200 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1201 while(GetCountSspClk() < ThisTransferTime
);
1202 LastTimeProxToAirStart
= ThisTransferTime
;
1206 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1210 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1211 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1219 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1223 //-----------------------------------------------------------------------------
1224 // Prepare reader command (in bits, support short frames) to send to FPGA
1225 //-----------------------------------------------------------------------------
1226 void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd
, int bits
, uint32_t dwParity
)
1234 // Start of Communication (Seq. Z)
1235 ToSend
[++ToSendMax
] = SEC_Z
;
1236 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1239 size_t bytecount
= nbytes(bits
);
1240 // Generate send structure for the data bits
1241 for (i
= 0; i
< bytecount
; i
++) {
1242 // Get the current byte to send
1244 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1246 for (j
= 0; j
< bitsleft
; j
++) {
1249 ToSend
[++ToSendMax
] = SEC_X
;
1250 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1255 ToSend
[++ToSendMax
] = SEC_Z
;
1256 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1259 ToSend
[++ToSendMax
] = SEC_Y
;
1266 // Only transmit (last) parity bit if we transmitted a complete byte
1268 // Get the parity bit
1269 if ((dwParity
>> i
) & 0x01) {
1271 ToSend
[++ToSendMax
] = SEC_X
;
1272 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1277 ToSend
[++ToSendMax
] = SEC_Z
;
1278 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1281 ToSend
[++ToSendMax
] = SEC_Y
;
1288 // End of Communication: Logic 0 followed by Sequence Y
1291 ToSend
[++ToSendMax
] = SEC_Z
;
1292 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1295 ToSend
[++ToSendMax
] = SEC_Y
;
1298 ToSend
[++ToSendMax
] = SEC_Y
;
1300 // Convert to length of command:
1304 //-----------------------------------------------------------------------------
1305 // Prepare reader command to send to FPGA
1306 //-----------------------------------------------------------------------------
1307 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1309 CodeIso14443aBitsAsReaderPar(cmd
,len
*8,dwParity
);
1312 //-----------------------------------------------------------------------------
1313 // Wait for commands from reader
1314 // Stop when button is pressed (return 1) or field was gone (return 2)
1315 // Or return 0 when command is captured
1316 //-----------------------------------------------------------------------------
1317 static int EmGetCmd(uint8_t *received
, int *len
)
1321 uint32_t timer
= 0, vtime
= 0;
1325 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1326 // only, since we are receiving, not transmitting).
1327 // Signal field is off with the appropriate LED
1329 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1331 // Set ADC to read field strength
1332 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1333 AT91C_BASE_ADC
->ADC_MR
=
1334 ADC_MODE_PRESCALE(32) |
1335 ADC_MODE_STARTUP_TIME(16) |
1336 ADC_MODE_SAMPLE_HOLD_TIME(8);
1337 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1339 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1341 // Now run a 'software UART' on the stream of incoming samples.
1343 Uart
.output
= received
;
1346 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1351 if (BUTTON_PRESS()) return 1;
1353 // test if the field exists
1354 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1356 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1357 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1358 if (analogCnt
>= 32) {
1359 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1360 vtime
= GetTickCount();
1361 if (!timer
) timer
= vtime
;
1362 // 50ms no field --> card to idle state
1363 if (vtime
- timer
> 50) return 2;
1365 if (timer
) timer
= 0;
1371 // receive and test the miller decoding
1372 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1373 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1374 if(MillerDecoding(b
, 0)) {
1384 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
)
1388 uint32_t ThisTransferTime
;
1390 // Modulate Manchester
1391 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1393 // include correction bit if necessary
1394 if (Uart
.parityBits
& 0x01) {
1395 correctionNeeded
= TRUE
;
1397 if(correctionNeeded
) {
1398 // 1236, so correction bit needed
1404 // clear receiving shift register and holding register
1405 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1406 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1407 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1408 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1410 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1411 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1412 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1413 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1416 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1419 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1422 for(; i
<= respLen
; ) {
1423 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1424 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1425 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1428 if(BUTTON_PRESS()) {
1433 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1434 for (i
= 0; i
< 2 ; ) {
1435 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1436 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1437 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1442 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1447 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1448 Code4bitAnswerAsTag(resp
);
1449 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1450 // do the tracing for the previous reader request and this tag answer:
1451 EmLogTrace(Uart
.output
,
1453 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1454 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1458 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1459 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1460 SwapBits(GetParity(&resp
, 1), 1));
1464 int EmSend4bit(uint8_t resp
){
1465 return EmSend4bitEx(resp
, false);
1468 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
){
1469 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1470 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1471 // do the tracing for the previous reader request and this tag answer:
1472 EmLogTrace(Uart
.output
,
1474 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1475 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1479 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1480 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1481 SwapBits(GetParity(resp
, respLen
), respLen
));
1485 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
){
1486 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, GetParity(resp
, respLen
));
1489 int EmSendCmd(uint8_t *resp
, int respLen
){
1490 return EmSendCmdExPar(resp
, respLen
, false, GetParity(resp
, respLen
));
1493 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
){
1494 return EmSendCmdExPar(resp
, respLen
, false, par
);
1497 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
1498 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
)
1501 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1502 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1503 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1504 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1505 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1506 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1507 reader_EndTime
= tag_StartTime
- exact_fdt
;
1508 reader_StartTime
= reader_EndTime
- reader_modlen
;
1509 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_Parity
, TRUE
)) {
1511 } else if (!LogTrace(NULL
, 0, reader_EndTime
, 0, TRUE
)) {
1513 } else if (!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_Parity
, FALSE
)) {
1516 return (!LogTrace(NULL
, 0, tag_EndTime
, 0, FALSE
));
1523 //-----------------------------------------------------------------------------
1524 // Wait a certain time for tag response
1525 // If a response is captured return TRUE
1526 // If it takes too long return FALSE
1527 //-----------------------------------------------------------------------------
1528 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint16_t offset
, int maxLen
)
1532 // Set FPGA mode to "reader listen mode", no modulation (listen
1533 // only, since we are receiving, not transmitting).
1534 // Signal field is on with the appropriate LED
1536 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1538 // Now get the answer from the card
1540 Demod
.output
= receivedResponse
;
1543 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1549 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1550 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1551 if(ManchesterDecoding(b
, offset
, 0)) {
1552 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1554 } else if(c
++ > iso14a_timeout
) {
1561 void ReaderTransmitBitsPar(uint8_t* frame
, int bits
, uint32_t par
, uint32_t *timing
)
1564 CodeIso14443aBitsAsReaderPar(frame
,bits
,par
);
1566 // Send command to tag
1567 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1571 // Log reader command in trace buffer
1573 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1574 LogTrace(NULL
, 0, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, 0, TRUE
);
1578 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
, uint32_t *timing
)
1580 ReaderTransmitBitsPar(frame
,len
*8,par
, timing
);
1583 void ReaderTransmitBits(uint8_t* frame
, int len
, uint32_t *timing
)
1585 // Generate parity and redirect
1586 ReaderTransmitBitsPar(frame
,len
,GetParity(frame
,len
/8), timing
);
1589 void ReaderTransmit(uint8_t* frame
, int len
, uint32_t *timing
)
1591 // Generate parity and redirect
1592 ReaderTransmitBitsPar(frame
,len
*8,GetParity(frame
,len
), timing
);
1595 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
)
1597 if (!GetIso14443aAnswerFromTag(receivedAnswer
,offset
,160)) return FALSE
;
1599 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1600 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1605 int ReaderReceive(uint8_t* receivedAnswer
)
1607 return ReaderReceiveOffset(receivedAnswer
, 0);
1610 int ReaderReceivePar(uint8_t *receivedAnswer
, uint32_t *parptr
)
1612 if (!GetIso14443aAnswerFromTag(receivedAnswer
,0,160)) return FALSE
;
1614 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1615 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1617 *parptr
= Demod
.parityBits
;
1621 /* performs iso14443a anticollision procedure
1622 * fills the uid pointer unless NULL
1623 * fills resp_data unless NULL */
1624 int iso14443a_select_card(byte_t
* uid_ptr
, iso14a_card_select_t
* p_hi14a_card
, uint32_t* cuid_ptr
) {
1625 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1626 uint8_t sel_all
[] = { 0x93,0x20 };
1627 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1628 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1629 uint8_t* resp
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
); // was 3560 - tied to other size changes
1631 size_t uid_resp_len
;
1633 uint8_t sak
= 0x04; // cascade uid
1634 int cascade_level
= 0;
1637 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1638 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1641 if(!ReaderReceive(resp
)) return 0;
1642 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1645 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1646 p_hi14a_card
->uidlen
= 0;
1647 memset(p_hi14a_card
->uid
,0,10);
1652 memset(uid_ptr
,0,10);
1655 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1656 // which case we need to make a cascade 2 request and select - this is a long UID
1657 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1658 for(; sak
& 0x04; cascade_level
++) {
1659 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1660 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1663 ReaderTransmit(sel_all
,sizeof(sel_all
), NULL
);
1664 if (!ReaderReceive(resp
)) return 0;
1666 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1667 memset(uid_resp
, 0, 4);
1668 uint16_t uid_resp_bits
= 0;
1669 uint16_t collision_answer_offset
= 0;
1670 // anti-collision-loop:
1671 while (Demod
.collisionPos
) {
1672 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1673 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1674 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1675 uid_resp
[uid_resp_bits
& 0xf8] |= UIDbit
<< (uid_resp_bits
% 8);
1677 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1679 // construct anticollosion command:
1680 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1681 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1682 sel_uid
[2+i
] = uid_resp
[i
];
1684 collision_answer_offset
= uid_resp_bits
%8;
1685 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1686 if (!ReaderReceiveOffset(resp
, collision_answer_offset
)) return 0;
1688 // finally, add the last bits and BCC of the UID
1689 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1690 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1691 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1694 } else { // no collision, use the response to SELECT_ALL as current uid
1695 memcpy(uid_resp
,resp
,4);
1698 // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
1700 // calculate crypto UID. Always use last 4 Bytes.
1702 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1705 // Construct SELECT UID command
1706 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1707 memcpy(sel_uid
+2,uid_resp
,4); // the UID
1708 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1709 AppendCrc14443a(sel_uid
,7); // calculate and add CRC
1710 ReaderTransmit(sel_uid
,sizeof(sel_uid
), NULL
);
1713 if (!ReaderReceive(resp
)) return 0;
1716 // Test if more parts of the uid are comming
1717 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1718 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1719 // http://www.nxp.com/documents/application_note/AN10927.pdf
1720 memcpy(uid_resp
, uid_resp
+ 1, 3);
1725 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1729 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1730 p_hi14a_card
->uidlen
+= uid_resp_len
;
1735 p_hi14a_card
->sak
= sak
;
1736 p_hi14a_card
->ats_len
= 0;
1739 if( (sak
& 0x20) == 0) {
1740 return 2; // non iso14443a compliant tag
1743 // Request for answer to select
1744 AppendCrc14443a(rats
, 2);
1745 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1747 if (!(len
= ReaderReceive(resp
))) return 0;
1750 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1751 p_hi14a_card
->ats_len
= len
;
1754 // reset the PCB block number
1755 iso14_pcb_blocknum
= 0;
1759 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1760 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1761 // Set up the synchronous serial port
1763 // connect Demodulated Signal to ADC:
1764 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1766 // Signal field is on with the appropriate LED
1767 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1768 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1773 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1780 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1781 iso14a_set_timeout(1050); // 10ms default 10*105 =
1784 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1785 uint8_t real_cmd
[cmd_len
+4];
1786 real_cmd
[0] = 0x0a; //I-Block
1787 // put block number into the PCB
1788 real_cmd
[0] |= iso14_pcb_blocknum
;
1789 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1790 memcpy(real_cmd
+2, cmd
, cmd_len
);
1791 AppendCrc14443a(real_cmd
,cmd_len
+2);
1793 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1794 size_t len
= ReaderReceive(data
);
1795 uint8_t * data_bytes
= (uint8_t *) data
;
1797 return 0; //DATA LINK ERROR
1798 // if we received an I- or R(ACK)-Block with a block number equal to the
1799 // current block number, toggle the current block number
1800 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1801 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1802 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1803 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1805 iso14_pcb_blocknum
^= 1;
1811 //-----------------------------------------------------------------------------
1812 // Read an ISO 14443a tag. Send out commands and store answers.
1814 //-----------------------------------------------------------------------------
1815 void ReaderIso14443a(UsbCommand
*c
)
1817 iso14a_command_t param
= c
->arg
[0];
1818 uint8_t *cmd
= c
->d
.asBytes
;
1819 size_t len
= c
->arg
[1] & 0xFFFF;
1820 size_t lenbits
= c
->arg
[1] >> 16;
1822 byte_t buf
[USB_CMD_DATA_SIZE
];
1824 if(param
& ISO14A_CONNECT
) {
1825 iso14a_clear_trace();
1828 iso14a_set_tracing(TRUE
);
1830 if(param
& ISO14A_REQUEST_TRIGGER
) {
1831 iso14a_set_trigger(TRUE
);
1834 if(param
& ISO14A_CONNECT
) {
1835 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1836 if(!(param
& ISO14A_NO_SELECT
)) {
1837 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1838 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1839 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1843 if(param
& ISO14A_SET_TIMEOUT
) {
1844 iso14a_set_timeout(c
->arg
[2]);
1847 if(param
& ISO14A_APDU
) {
1848 arg0
= iso14_apdu(cmd
, len
, buf
);
1849 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1852 if(param
& ISO14A_RAW
) {
1853 if(param
& ISO14A_APPEND_CRC
) {
1854 AppendCrc14443a(cmd
,len
);
1860 ReaderTransmitBitsPar(cmd
,lenbits
,GetParity(cmd
,lenbits
/8), NULL
);
1862 ReaderTransmit(cmd
,len
, NULL
);
1864 arg0
= ReaderReceive(buf
);
1865 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1868 if(param
& ISO14A_REQUEST_TRIGGER
) {
1869 iso14a_set_trigger(FALSE
);
1872 if(param
& ISO14A_NO_DISCONNECT
) {
1876 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1881 // Determine the distance between two nonces.
1882 // Assume that the difference is small, but we don't know which is first.
1883 // Therefore try in alternating directions.
1884 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1887 uint32_t nttmp1
, nttmp2
;
1889 if (nt1
== nt2
) return 0;
1894 for (i
= 1; i
< 32768; i
++) {
1895 nttmp1
= prng_successor(nttmp1
, 1);
1896 if (nttmp1
== nt2
) return i
;
1897 nttmp2
= prng_successor(nttmp2
, 1);
1898 if (nttmp2
== nt1
) return -i
;
1901 return(-99999); // either nt1 or nt2 are invalid nonces
1905 //-----------------------------------------------------------------------------
1906 // Recover several bits of the cypher stream. This implements (first stages of)
1907 // the algorithm described in "The Dark Side of Security by Obscurity and
1908 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1909 // (article by Nicolas T. Courtois, 2009)
1910 //-----------------------------------------------------------------------------
1911 void ReaderMifare(bool first_try
)
1914 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1915 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1916 static uint8_t mf_nr_ar3
;
1918 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1920 iso14a_clear_trace();
1921 iso14a_set_tracing(TRUE
);
1925 //byte_t par_mask = 0xff;
1926 static byte_t par_low
= 0;
1931 uint32_t nt
, previous_nt
;
1932 static uint32_t nt_attacked
= 0;
1933 byte_t par_list
[8] = {0,0,0,0,0,0,0,0};
1934 byte_t ks_list
[8] = {0,0,0,0,0,0,0,0};
1936 static uint32_t sync_time
;
1937 static uint32_t sync_cycles
;
1938 int catch_up_cycles
= 0;
1939 int last_catch_up
= 0;
1940 uint16_t consecutive_resyncs
= 0;
1947 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
1948 sync_time
= GetCountSspClk() & 0xfffffff8;
1949 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1955 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1956 // nt_attacked = prng_successor(nt_attacked, 1);
1958 mf_nr_ar
[3] = mf_nr_ar3
;
1967 for(uint16_t i
= 0; TRUE
; i
++) {
1971 // Test if the action was cancelled
1972 if(BUTTON_PRESS()) {
1978 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1979 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
1983 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
1984 catch_up_cycles
= 0;
1986 // if we missed the sync time already, advance to the next nonce repeat
1987 while(GetCountSspClk() > sync_time
) {
1988 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
1991 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
1992 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
1994 // Receive the (4 Byte) "random" nonce
1995 if (!ReaderReceive(receivedAnswer
)) {
1996 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2001 nt
= bytes_to_num(receivedAnswer
, 4);
2003 // Transmit reader nonce with fake par
2004 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2006 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2007 int nt_distance
= dist_nt(previous_nt
, nt
);
2008 if (nt_distance
== 0) {
2012 if (nt_distance
== -99999) { // invalid nonce received, try again
2015 sync_cycles
= (sync_cycles
- nt_distance
);
2016 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2021 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2022 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2023 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2024 catch_up_cycles
= 0;
2027 if (catch_up_cycles
== last_catch_up
) {
2028 consecutive_resyncs
++;
2031 last_catch_up
= catch_up_cycles
;
2032 consecutive_resyncs
= 0;
2034 if (consecutive_resyncs
< 3) {
2035 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2038 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2039 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2044 consecutive_resyncs
= 0;
2046 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2047 if (ReaderReceive(receivedAnswer
))
2049 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2053 par_low
= par
& 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2057 if(led_on
) LED_B_ON(); else LED_B_OFF();
2059 par_list
[nt_diff
] = par
;
2060 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2062 // Test if the information is complete
2063 if (nt_diff
== 0x07) {
2068 nt_diff
= (nt_diff
+ 1) & 0x07;
2069 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2072 if (nt_diff
== 0 && first_try
)
2076 par
= (((par
>> 3) + 1) << 3) | par_low
;
2082 mf_nr_ar
[3] &= 0x1F;
2085 memcpy(buf
+ 0, uid
, 4);
2086 num_to_bytes(nt
, 4, buf
+ 4);
2087 memcpy(buf
+ 8, par_list
, 8);
2088 memcpy(buf
+ 16, ks_list
, 8);
2089 memcpy(buf
+ 24, mf_nr_ar
, 4);
2091 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2094 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2097 iso14a_set_tracing(FALSE
);
2101 *MIFARE 1K simulate.
2104 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2105 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2106 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2107 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2108 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2110 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2112 int cardSTATE
= MFEMUL_NOFIELD
;
2114 int vHf
= 0; // in mV
2116 uint32_t selTimer
= 0;
2117 uint32_t authTimer
= 0;
2120 uint8_t cardWRBL
= 0;
2121 uint8_t cardAUTHSC
= 0;
2122 uint8_t cardAUTHKEY
= 0xff; // no authentication
2123 uint32_t cardRr
= 0;
2125 //uint32_t rn_enc = 0;
2127 uint32_t cardINTREG
= 0;
2128 uint8_t cardINTBLOCK
= 0;
2129 struct Crypto1State mpcs
= {0, 0};
2130 struct Crypto1State
*pcs
;
2132 uint32_t numReads
= 0;//Counts numer of times reader read a block
2133 uint8_t* receivedCmd
= eml_get_bigbufptr_recbuf();
2134 uint8_t *response
= eml_get_bigbufptr_sendbuf();
2136 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2137 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2138 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2139 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2140 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2142 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2143 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2145 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2146 // This can be used in a reader-only attack.
2147 // (it can also be retrieved via 'hf 14a list', but hey...
2148 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2149 uint8_t ar_nr_collected
= 0;
2152 iso14a_clear_trace();
2153 iso14a_set_tracing(TRUE
);
2155 // Authenticate response - nonce
2156 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2158 //-- Determine the UID
2159 // Can be set from emulator memory, incoming data
2160 // and can be 7 or 4 bytes long
2161 if (flags
& FLAG_4B_UID_IN_DATA
)
2163 // 4B uid comes from data-portion of packet
2164 memcpy(rUIDBCC1
,datain
,4);
2165 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2167 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2168 // 7B uid comes from data-portion of packet
2169 memcpy(&rUIDBCC1
[1],datain
,3);
2170 memcpy(rUIDBCC2
, datain
+3, 4);
2173 // get UID from emul memory
2174 emlGetMemBt(receivedCmd
, 7, 1);
2175 _7BUID
= !(receivedCmd
[0] == 0x00);
2176 if (!_7BUID
) { // ---------- 4BUID
2177 emlGetMemBt(rUIDBCC1
, 0, 4);
2178 } else { // ---------- 7BUID
2179 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2180 emlGetMemBt(rUIDBCC2
, 3, 4);
2185 * Regardless of what method was used to set the UID, set fifth byte and modify
2186 * the ATQA for 4 or 7-byte UID
2188 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2192 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2195 // We need to listen to the high-frequency, peak-detected path.
2196 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2199 if (MF_DBGLEVEL
>= 1) {
2201 Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1
[0] , rUIDBCC1
[1] , rUIDBCC1
[2] , rUIDBCC1
[3]);
2203 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1
[0] , rUIDBCC1
[1] , rUIDBCC1
[2] , rUIDBCC1
[3],rUIDBCC2
[0],rUIDBCC2
[1] ,rUIDBCC2
[2] , rUIDBCC2
[3]);
2207 bool finished
= FALSE
;
2208 while (!BUTTON_PRESS() && !finished
) {
2211 // find reader field
2212 // Vref = 3300mV, and an 10:1 voltage divider on the input
2213 // can measure voltages up to 33000 mV
2214 if (cardSTATE
== MFEMUL_NOFIELD
) {
2215 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2216 if (vHf
> MF_MINFIELDV
) {
2217 cardSTATE_TO_IDLE();
2221 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2225 res
= EmGetCmd(receivedCmd
, &len
);
2226 if (res
== 2) { //Field is off!
2227 cardSTATE
= MFEMUL_NOFIELD
;
2230 } else if (res
== 1) {
2231 break; //return value 1 means button press
2234 // REQ or WUP request in ANY state and WUP in HALTED state
2235 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2236 selTimer
= GetTickCount();
2237 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2238 cardSTATE
= MFEMUL_SELECT1
;
2240 // init crypto block
2243 crypto1_destroy(pcs
);
2248 switch (cardSTATE
) {
2249 case MFEMUL_NOFIELD
:
2252 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2253 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2256 case MFEMUL_SELECT1
:{
2258 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2259 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2260 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2264 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2266 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2270 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2271 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2272 cuid
= bytes_to_num(rUIDBCC1
, 4);
2274 cardSTATE
= MFEMUL_WORK
;
2276 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2279 cardSTATE
= MFEMUL_SELECT2
;
2287 cardSTATE_TO_IDLE();
2288 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2289 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2292 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2293 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2296 if(ar_nr_collected
< 2){
2297 if(ar_nr_responses
[2] != ar
)
2298 {// Avoid duplicates... probably not necessary, ar should vary.
2299 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2300 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2301 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2302 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2308 crypto1_word(pcs
, ar
, 1);
2309 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2312 if (cardRr
!= prng_successor(nonce
, 64)){
2313 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr
, prng_successor(nonce
, 64));
2314 // Shouldn't we respond anything here?
2315 // Right now, we don't nack or anything, which causes the
2316 // reader to do a WUPA after a while. /Martin
2317 // -- which is the correct response. /piwi
2318 cardSTATE_TO_IDLE();
2319 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2320 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2324 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2326 num_to_bytes(ans
, 4, rAUTH_AT
);
2328 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2330 cardSTATE
= MFEMUL_WORK
;
2331 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2332 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2333 GetTickCount() - authTimer
);
2336 case MFEMUL_SELECT2
:{
2338 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2339 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2342 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2343 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2349 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2350 EmSendCmd(rSAK
, sizeof(rSAK
));
2351 cuid
= bytes_to_num(rUIDBCC2
, 4);
2352 cardSTATE
= MFEMUL_WORK
;
2354 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2358 // i guess there is a command). go into the work state.
2360 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2361 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2364 cardSTATE
= MFEMUL_WORK
;
2366 //intentional fall-through to the next case-stmt
2371 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2372 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2376 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2378 if(encrypted_data
) {
2380 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2383 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2384 authTimer
= GetTickCount();
2385 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2386 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2387 crypto1_destroy(pcs
);//Added by martin
2388 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2390 if (!encrypted_data
) { // first authentication
2391 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2393 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2394 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2395 } else { // nested authentication
2396 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2397 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2398 num_to_bytes(ans
, 4, rAUTH_AT
);
2400 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2401 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2402 cardSTATE
= MFEMUL_AUTH1
;
2406 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2407 // BUT... ACK --> NACK
2408 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2409 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2413 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2414 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2415 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2420 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2421 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2425 if(receivedCmd
[0] == 0x30 // read block
2426 || receivedCmd
[0] == 0xA0 // write block
2427 || receivedCmd
[0] == 0xC0 // inc
2428 || receivedCmd
[0] == 0xC1 // dec
2429 || receivedCmd
[0] == 0xC2 // restore
2430 || receivedCmd
[0] == 0xB0) { // transfer
2431 if (receivedCmd
[1] >= 16 * 4) {
2432 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2433 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2437 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2438 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2439 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2444 if (receivedCmd
[0] == 0x30) {
2445 if (MF_DBGLEVEL
>= 4) {
2446 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2448 emlGetMem(response
, receivedCmd
[1], 1);
2449 AppendCrc14443a(response
, 16);
2450 mf_crypto1_encrypt(pcs
, response
, 18, &par
);
2451 EmSendCmdPar(response
, 18, par
);
2453 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2454 Dbprintf("%d reads done, exiting", numReads
);
2460 if (receivedCmd
[0] == 0xA0) {
2461 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2462 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2463 cardSTATE
= MFEMUL_WRITEBL2
;
2464 cardWRBL
= receivedCmd
[1];
2467 // increment, decrement, restore
2468 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2469 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2470 if (emlCheckValBl(receivedCmd
[1])) {
2471 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2472 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2475 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2476 if (receivedCmd
[0] == 0xC1)
2477 cardSTATE
= MFEMUL_INTREG_INC
;
2478 if (receivedCmd
[0] == 0xC0)
2479 cardSTATE
= MFEMUL_INTREG_DEC
;
2480 if (receivedCmd
[0] == 0xC2)
2481 cardSTATE
= MFEMUL_INTREG_REST
;
2482 cardWRBL
= receivedCmd
[1];
2486 if (receivedCmd
[0] == 0xB0) {
2487 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2488 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2489 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2491 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2495 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2498 cardSTATE
= MFEMUL_HALTED
;
2499 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2500 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2501 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2505 if (receivedCmd
[0] == 0xe0) {//RATS
2506 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2509 // command not allowed
2510 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2511 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2514 case MFEMUL_WRITEBL2
:{
2516 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2517 emlSetMem(receivedCmd
, cardWRBL
, 1);
2518 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2519 cardSTATE
= MFEMUL_WORK
;
2521 cardSTATE_TO_IDLE();
2522 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2523 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2528 case MFEMUL_INTREG_INC
:{
2529 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2530 memcpy(&ans
, receivedCmd
, 4);
2531 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2532 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2533 cardSTATE_TO_IDLE();
2536 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2537 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2538 cardINTREG
= cardINTREG
+ ans
;
2539 cardSTATE
= MFEMUL_WORK
;
2542 case MFEMUL_INTREG_DEC
:{
2543 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2544 memcpy(&ans
, receivedCmd
, 4);
2545 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2546 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2547 cardSTATE_TO_IDLE();
2550 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2551 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2552 cardINTREG
= cardINTREG
- ans
;
2553 cardSTATE
= MFEMUL_WORK
;
2556 case MFEMUL_INTREG_REST
:{
2557 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2558 memcpy(&ans
, receivedCmd
, 4);
2559 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2560 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2561 cardSTATE_TO_IDLE();
2564 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2565 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2566 cardSTATE
= MFEMUL_WORK
;
2572 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2575 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2577 //May just aswell send the collected ar_nr in the response aswell
2578 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,0,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2581 if(flags
& FLAG_NR_AR_ATTACK
)
2583 if(ar_nr_collected
> 1) {
2584 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2585 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2586 ar_nr_responses
[0], // UID
2587 ar_nr_responses
[1], //NT
2588 ar_nr_responses
[2], //AR1
2589 ar_nr_responses
[3], //NR1
2590 ar_nr_responses
[6], //AR2
2591 ar_nr_responses
[7] //NR2
2594 Dbprintf("Failed to obtain two AR/NR pairs!");
2595 if(ar_nr_collected
>0) {
2596 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2597 ar_nr_responses
[0], // UID
2598 ar_nr_responses
[1], //NT
2599 ar_nr_responses
[2], //AR1
2600 ar_nr_responses
[3] //NR1
2605 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2610 //-----------------------------------------------------------------------------
2613 //-----------------------------------------------------------------------------
2614 void RAMFUNC
SniffMifare(uint8_t param
) {
2616 // bit 0 - trigger from first card answer
2617 // bit 1 - trigger from first reader 7-bit request
2619 // C(red) A(yellow) B(green)
2621 // init trace buffer
2622 iso14a_clear_trace();
2623 iso14a_set_tracing(TRUE
);
2625 // The command (reader -> tag) that we're receiving.
2626 // The length of a received command will in most cases be no more than 18 bytes.
2627 // So 32 should be enough!
2628 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
2629 // The response (tag -> reader) that we're receiving.
2630 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
2632 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2633 // into trace, along with its length and other annotations.
2634 //uint8_t *trace = (uint8_t *)BigBuf;
2636 // The DMA buffer, used to stream samples from the FPGA
2637 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
2638 uint8_t *data
= dmaBuf
;
2639 uint8_t previous_data
= 0;
2642 bool ReaderIsActive
= FALSE
;
2643 bool TagIsActive
= FALSE
;
2645 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2647 // Set up the demodulator for tag -> reader responses.
2648 Demod
.output
= receivedResponse
;
2650 // Set up the demodulator for the reader -> tag commands
2651 Uart
.output
= receivedCmd
;
2653 // Setup for the DMA.
2654 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2661 // And now we loop, receiving samples.
2662 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2664 if(BUTTON_PRESS()) {
2665 DbpString("cancelled by button");
2672 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2673 // check if a transaction is completed (timeout after 2000ms).
2674 // if yes, stop the DMA transfer and send what we have so far to the client
2675 if (MfSniffSend(2000)) {
2676 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2680 ReaderIsActive
= FALSE
;
2681 TagIsActive
= FALSE
;
2682 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2686 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2687 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2688 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2689 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2691 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2693 // test for length of buffer
2694 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2695 maxDataLen
= dataLen
;
2697 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2701 if(dataLen
< 1) continue;
2703 // primary buffer was stopped ( <-- we lost data!
2704 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2705 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2706 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2707 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2709 // secondary buffer sets as primary, secondary buffer was stopped
2710 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2711 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2712 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2717 if (sniffCounter
& 0x01) {
2719 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2720 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2721 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2723 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parityBits
, Uart
.bitCount
, TRUE
)) break;
2725 /* And ready to receive another command. */
2728 /* And also reset the demod code */
2731 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2734 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2735 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2736 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2739 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parityBits
, Demod
.bitCount
, FALSE
)) break;
2741 // And ready to receive another response.
2744 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2748 previous_data
= *data
;
2751 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2757 DbpString("COMMAND FINISHED");
2759 FpgaDisableSscDma();
2762 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);