1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
39 #include "proxmark3.h"
45 #include "iso14443a.h"
46 // Needed for CRC in emulation mode;
47 // same construction as in ISO 14443;
48 // different initial value (CRC_ICLASS)
49 #include "iso14443crc.h"
50 #include "iso15693tools.h"
51 #include "protocols.h"
52 #include "optimized_cipher.h"
53 #include "usb_cdc.h" // for usb_poll_validate_length
55 static int timeout
= 4096;
58 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
);
60 //-----------------------------------------------------------------------------
61 // The software UART that receives commands from the reader, and its state
63 //-----------------------------------------------------------------------------
67 STATE_START_OF_COMMUNICATION
,
87 static RAMFUNC
int OutOfNDecoding(int bit
)
93 Uart
.bitBuffer
= bit
^ 0xFF0;
98 Uart
.bitBuffer
^= bit
;
102 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
105 if(Uart.byteCnt > 15) { return true; }
111 if(Uart
.state
!= STATE_UNSYNCD
) {
114 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
120 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
126 if(bit
!= bitright
) { bit
= bitright
; }
129 // So, now we only have to deal with *bit*, lets see...
130 if(Uart
.posCnt
== 1) {
131 // measurement first half bitperiod
133 // Drop in first half means that we are either seeing
136 if(Uart
.nOutOfCnt
== 1) {
137 // End of Communication
138 Uart
.state
= STATE_UNSYNCD
;
140 if(Uart
.byteCnt
== 0) {
141 // Its not straightforward to show single EOFs
142 // So just leave it and do not return true
143 Uart
.output
[0] = 0xf0;
150 else if(Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
151 // When not part of SOF or EOF, it is an error
152 Uart
.state
= STATE_UNSYNCD
;
159 // measurement second half bitperiod
160 // Count the bitslot we are in... (ISO 15693)
164 if(Uart
.dropPosition
) {
165 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
171 // It is an error if we already have seen a drop in current frame
172 Uart
.state
= STATE_UNSYNCD
;
176 Uart
.dropPosition
= Uart
.nOutOfCnt
;
183 if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
186 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
187 if(Uart
.dropPosition
== 4) {
188 Uart
.state
= STATE_RECEIVING
;
191 else if(Uart
.dropPosition
== 3) {
192 Uart
.state
= STATE_RECEIVING
;
194 //Uart.output[Uart.byteCnt] = 0xdd;
198 Uart
.state
= STATE_UNSYNCD
;
201 Uart
.dropPosition
= 0;
206 if(!Uart
.dropPosition
) {
207 Uart
.state
= STATE_UNSYNCD
;
216 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
217 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
219 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
221 Uart
.dropPosition
= 0;
223 if(Uart
.bitCnt
== 8) {
224 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
232 else if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
235 if(!Uart
.dropPosition
) {
236 Uart
.state
= STATE_UNSYNCD
;
242 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
247 Uart
.dropPosition
= 0;
252 Uart.output[Uart.byteCnt] = 0xAA;
254 Uart.output[Uart.byteCnt] = error & 0xFF;
256 Uart.output[Uart.byteCnt] = 0xAA;
258 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
260 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
262 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
264 Uart.output[Uart.byteCnt] = 0xAA;
272 bit
= Uart
.bitBuffer
& 0xf0;
274 bit
^= 0x0F; // drops become 1s ;-)
276 // should have been high or at least (4 * 128) / fc
277 // according to ISO this should be at least (9 * 128 + 20) / fc
278 if(Uart
.highCnt
== 8) {
279 // we went low, so this could be start of communication
280 // it turns out to be safer to choose a less significant
281 // syncbit... so we check whether the neighbour also represents the drop
282 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
283 Uart
.syncBit
= bit
& 8;
285 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
286 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
287 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
288 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
289 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
290 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
293 // the first half bit period is expected in next sample
298 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
301 Uart
.state
= STATE_START_OF_COMMUNICATION
;
305 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
306 Uart
.dropPosition
= 0;
315 if(Uart
.highCnt
< 8) {
324 //=============================================================================
326 //=============================================================================
331 DEMOD_START_OF_COMMUNICATION
,
332 DEMOD_START_OF_COMMUNICATION2
,
333 DEMOD_START_OF_COMMUNICATION3
,
337 DEMOD_END_OF_COMMUNICATION
,
338 DEMOD_END_OF_COMMUNICATION2
,
361 static RAMFUNC
int ManchesterDecoding(int v
)
368 Demod
.buffer
= Demod
.buffer2
;
369 Demod
.buffer2
= Demod
.buffer3
;
377 if(Demod
.state
==DEMOD_UNSYNCD
) {
378 Demod
.output
[Demod
.len
] = 0xfa;
381 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
384 Demod
.syncBit
= 0x08;
391 Demod
.syncBit
= 0x04;
398 Demod
.syncBit
= 0x02;
401 if(bit
& 0x01 && Demod
.syncBit
) {
402 Demod
.syncBit
= 0x01;
407 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
408 Demod
.sub
= SUB_FIRST_HALF
;
413 //if(trigger) LED_A_OFF(); // Not useful in this case...
414 switch(Demod
.syncBit
) {
415 case 0x08: Demod
.samples
= 3; break;
416 case 0x04: Demod
.samples
= 2; break;
417 case 0x02: Demod
.samples
= 1; break;
418 case 0x01: Demod
.samples
= 0; break;
420 // SOF must be long burst... otherwise stay unsynced!!!
421 if(!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
422 Demod
.state
= DEMOD_UNSYNCD
;
426 // SOF must be long burst... otherwise stay unsynced!!!
427 if(!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
428 Demod
.state
= DEMOD_UNSYNCD
;
438 modulation
= bit
& Demod
.syncBit
;
439 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
443 if(Demod
.posCount
==0) {
446 Demod
.sub
= SUB_FIRST_HALF
;
449 Demod
.sub
= SUB_NONE
;
454 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
455 if(Demod.state!=DEMOD_ERROR_WAIT) {
456 Demod.state = DEMOD_ERROR_WAIT;
457 Demod.output[Demod.len] = 0xaa;
461 //else if(modulation) {
463 if(Demod
.sub
== SUB_FIRST_HALF
) {
464 Demod
.sub
= SUB_BOTH
;
467 Demod
.sub
= SUB_SECOND_HALF
;
470 else if(Demod
.sub
== SUB_NONE
) {
471 if(Demod
.state
== DEMOD_SOF_COMPLETE
) {
472 Demod
.output
[Demod
.len
] = 0x0f;
474 Demod
.state
= DEMOD_UNSYNCD
;
479 Demod
.state
= DEMOD_ERROR_WAIT
;
482 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
483 Demod.state = DEMOD_ERROR_WAIT;
484 Demod.output[Demod.len] = 0xaa;
489 switch(Demod
.state
) {
490 case DEMOD_START_OF_COMMUNICATION
:
491 if(Demod
.sub
== SUB_BOTH
) {
492 //Demod.state = DEMOD_MANCHESTER_D;
493 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
495 Demod
.sub
= SUB_NONE
;
498 Demod
.output
[Demod
.len
] = 0xab;
499 Demod
.state
= DEMOD_ERROR_WAIT
;
503 case DEMOD_START_OF_COMMUNICATION2
:
504 if(Demod
.sub
== SUB_SECOND_HALF
) {
505 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
508 Demod
.output
[Demod
.len
] = 0xab;
509 Demod
.state
= DEMOD_ERROR_WAIT
;
513 case DEMOD_START_OF_COMMUNICATION3
:
514 if(Demod
.sub
== SUB_SECOND_HALF
) {
515 // Demod.state = DEMOD_MANCHESTER_D;
516 Demod
.state
= DEMOD_SOF_COMPLETE
;
517 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
521 Demod
.output
[Demod
.len
] = 0xab;
522 Demod
.state
= DEMOD_ERROR_WAIT
;
526 case DEMOD_SOF_COMPLETE
:
527 case DEMOD_MANCHESTER_D
:
528 case DEMOD_MANCHESTER_E
:
529 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
530 // 00001111 = 1 (0 in 14443)
531 if(Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
533 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
534 Demod
.state
= DEMOD_MANCHESTER_D
;
536 else if(Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
538 Demod
.shiftReg
>>= 1;
539 Demod
.state
= DEMOD_MANCHESTER_E
;
541 else if(Demod
.sub
== SUB_BOTH
) {
542 Demod
.state
= DEMOD_MANCHESTER_F
;
545 Demod
.state
= DEMOD_ERROR_WAIT
;
550 case DEMOD_MANCHESTER_F
:
551 // Tag response does not need to be a complete byte!
552 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
553 if(Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
554 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
555 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
559 Demod
.state
= DEMOD_UNSYNCD
;
563 Demod
.output
[Demod
.len
] = 0xad;
564 Demod
.state
= DEMOD_ERROR_WAIT
;
569 case DEMOD_ERROR_WAIT
:
570 Demod
.state
= DEMOD_UNSYNCD
;
574 Demod
.output
[Demod
.len
] = 0xdd;
575 Demod
.state
= DEMOD_UNSYNCD
;
579 /*if(Demod.bitCount>=9) {
580 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
583 Demod.parityBits <<= 1;
584 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
589 if(Demod
.bitCount
>=8) {
590 Demod
.shiftReg
>>= 1;
591 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
598 Demod
.output
[Demod
.len
] = 0xBB;
600 Demod
.output
[Demod
.len
] = error
& 0xFF;
602 Demod
.output
[Demod
.len
] = 0xBB;
604 Demod
.output
[Demod
.len
] = bit
& 0xFF;
606 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
609 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
611 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
613 Demod
.output
[Demod
.len
] = 0xBB;
620 } // end (state != UNSYNCED)
625 //=============================================================================
626 // Finally, a `sniffer' for iClass communication
627 // Both sides of communication!
628 //=============================================================================
630 //-----------------------------------------------------------------------------
631 // Record the sequence of commands sent by the reader to the tag, with
632 // triggering so that we start recording at the point that the tag is moved
634 //-----------------------------------------------------------------------------
635 void RAMFUNC
SnoopIClass(void)
639 // We won't start recording the frames that we acquire until we trigger;
640 // a good trigger condition to get started is probably when we see a
641 // response from the tag.
642 //int triggered = false; // false to wait first for card
644 // The command (reader -> tag) that we're receiving.
645 // The length of a received command will in most cases be no more than 18 bytes.
646 // So 32 should be enough!
647 #define ICLASS_BUFFER_SIZE 32
648 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
649 // The response (tag -> reader) that we're receiving.
650 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
652 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
654 // free all BigBuf memory
656 // The DMA buffer, used to stream samples from the FPGA
657 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
661 iso14a_set_trigger(false);
668 // Count of samples received so far, so that we can include timing
669 // information in the trace buffer.
673 // Set up the demodulator for tag -> reader responses.
674 Demod
.output
= tagToReaderResponse
;
676 Demod
.state
= DEMOD_UNSYNCD
;
678 // Setup for the DMA.
679 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
681 lastRxCounter
= DMA_BUFFER_SIZE
;
682 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
684 // And the reader -> tag commands
685 memset(&Uart
, 0, sizeof(Uart
));
686 Uart
.output
= readerToTagCmd
;
687 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
688 Uart
.state
= STATE_UNSYNCD
;
690 // And put the FPGA in the appropriate mode
691 // Signal field is off with the appropriate LED
693 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
694 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
696 uint32_t time_0
= GetCountSspClk();
697 uint32_t time_start
= 0;
698 uint32_t time_stop
= 0;
705 // And now we loop, receiving samples.
709 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
711 if(behindBy
> maxBehindBy
) {
712 maxBehindBy
= behindBy
;
713 if(behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
714 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
718 if(behindBy
< 1) continue;
724 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
725 upTo
-= DMA_BUFFER_SIZE
;
726 lastRxCounter
+= DMA_BUFFER_SIZE
;
727 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
728 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
735 decbyte
^= (1 << (3 - div
));
738 // FOR READER SIDE COMMUMICATION...
741 decbyter
^= (smpl
& 0x30);
745 if((div
+ 1) % 2 == 0) {
747 if(OutOfNDecoding((smpl
& 0xF0) >> 4)) {
748 rsamples
= samples
- Uart
.samples
;
749 time_stop
= (GetCountSspClk()-time_0
) << 4;
752 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
753 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
755 uint8_t parity
[MAX_PARITY_SIZE
];
756 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
757 LogTrace(Uart
.output
,Uart
.byteCnt
, time_start
, time_stop
, parity
, true);
761 /* And ready to receive another command. */
762 Uart
.state
= STATE_UNSYNCD
;
763 /* And also reset the demod code, which might have been */
764 /* false-triggered by the commands from the reader. */
765 Demod
.state
= DEMOD_UNSYNCD
;
769 time_start
= (GetCountSspClk()-time_0
) << 4;
776 if(ManchesterDecoding(smpl
& 0x0F)) {
777 time_stop
= (GetCountSspClk()-time_0
) << 4;
779 rsamples
= samples
- Demod
.samples
;
783 uint8_t parity
[MAX_PARITY_SIZE
];
784 GetParity(Demod
.output
, Demod
.len
, parity
);
785 LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, parity
, false);
788 // And ready to receive another response.
789 memset(&Demod
, 0, sizeof(Demod
));
790 Demod
.output
= tagToReaderResponse
;
791 Demod
.state
= DEMOD_UNSYNCD
;
794 time_start
= (GetCountSspClk()-time_0
) << 4;
803 DbpString("cancelled_a");
808 DbpString("COMMAND FINISHED");
810 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
811 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
814 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
815 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
816 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
823 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
825 for(i
= 0; i
< 8; i
++) {
826 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
830 //-----------------------------------------------------------------------------
831 // Wait for commands from reader
832 // Stop when button is pressed
833 // Or return true when command is captured
834 //-----------------------------------------------------------------------------
835 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
837 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
838 // only, since we are receiving, not transmitting).
839 // Signal field is off with the appropriate LED
841 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
843 // Now run a `software UART' on the stream of incoming samples.
844 Uart
.output
= received
;
845 Uart
.byteCntMax
= maxLen
;
846 Uart
.state
= STATE_UNSYNCD
;
851 if(BUTTON_PRESS()) return false;
853 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
854 AT91C_BASE_SSC
->SSC_THR
= 0x00;
856 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
857 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
859 if(OutOfNDecoding(b
& 0x0f)) {
867 static uint8_t encode4Bits(const uint8_t b
)
870 // OTA, the least significant bits first
872 // 1 - Bit value to send
873 // 2 - Reversed (big-endian)
879 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
880 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
881 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
882 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
883 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
884 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
885 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
886 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
887 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
888 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
889 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
890 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
891 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
892 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
893 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
894 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
899 //-----------------------------------------------------------------------------
900 // Prepare tag messages
901 //-----------------------------------------------------------------------------
902 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
)
906 * SOF comprises 3 parts;
907 * * An unmodulated time of 56.64 us
908 * * 24 pulses of 423.75 KHz (fc/32)
909 * * A logic 1, which starts with an unmodulated time of 18.88us
910 * followed by 8 pulses of 423.75kHz (fc/32)
913 * EOF comprises 3 parts:
914 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
916 * - 24 pulses of fc/32
917 * - An unmodulated time of 56.64 us
920 * A logic 0 starts with 8 pulses of fc/32
921 * followed by an unmodulated time of 256/fc (~18,88us).
923 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
924 * 8 pulses of fc/32 (also 18.88us)
926 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
928 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
929 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
931 * In this mode the SOF can be written as 00011101 = 0x1D
932 * The EOF can be written as 10111000 = 0xb8
943 ToSend
[++ToSendMax
] = 0x1D;
945 for(i
= 0; i
< len
; i
++) {
947 ToSend
[++ToSendMax
] = encode4Bits(b
& 0xF); //Least significant half
948 ToSend
[++ToSendMax
] = encode4Bits((b
>>4) & 0xF);//Most significant half
952 ToSend
[++ToSendMax
] = 0xB8;
953 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
954 // Convert from last byte pos to length
959 static void CodeIClassTagSOF()
961 //So far a dummy implementation, not used
962 //int lastProxToAirDuration =0;
966 ToSend
[++ToSendMax
] = 0x1D;
967 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
969 // Convert from last byte pos to length
972 #define MODE_SIM_CSN 0
973 #define MODE_EXIT_AFTER_MAC 1
974 #define MODE_FULLSIM 2
976 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
);
978 * @brief SimulateIClass simulates an iClass card.
979 * @param arg0 type of simulation
980 * - 0 uses the first 8 bytes in usb data as CSN
981 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
982 * in the usb data. This mode collects MAC from the reader, in order to do an offline
983 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
984 * - Other : Uses the default CSN (031fec8af7ff12e0)
985 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
989 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
)
991 uint32_t simType
= arg0
;
992 uint32_t numberOfCSNS
= arg1
;
993 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
995 // Enable and clear the trace
998 //Use the emulator memory for SIM
999 uint8_t *emulator
= BigBuf_get_EM_addr();
1002 // Use the CSN from commandline
1003 memcpy(emulator
, datain
, 8);
1004 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1005 }else if(simType
== 1)
1008 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1009 // Use the CSN from commandline
1010 memcpy(emulator
, csn_crc
, 8);
1011 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1013 else if(simType
== 2)
1016 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1017 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1018 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1019 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1020 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1022 for( ; i
< numberOfCSNS
&& i
*8+8 < USB_CMD_DATA_SIZE
; i
++)
1024 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1026 memcpy(emulator
, datain
+(i
*8), 8);
1027 if(doIClassSimulation(MODE_EXIT_AFTER_MAC
,mac_responses
+i
*8))
1029 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1030 return; // Button pressed
1033 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1035 }else if(simType
== 3){
1036 //This is 'full sim' mode, where we use the emulator storage for data.
1037 doIClassSimulation(MODE_FULLSIM
, NULL
);
1040 // We may want a mode here where we hardcode the csns to use (from proxclone).
1041 // That will speed things up a little, but not required just yet.
1042 Dbprintf("The mode is not implemented, reserved for future use");
1044 Dbprintf("Done...");
1047 void AppendCrc(uint8_t* data
, int len
)
1049 ComputeCrc14443(CRC_ICLASS
,data
,len
,data
+len
,data
+len
+1);
1053 * @brief Does the actual simulation
1054 * @param csn - csn to use
1055 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1057 int doIClassSimulation( int simulationMode
, uint8_t *reader_mac_buf
)
1059 // free eventually allocated BigBuf memory
1060 BigBuf_free_keep_EM();
1063 // State cipher_state_reserve;
1064 uint8_t *csn
= BigBuf_get_EM_addr();
1065 uint8_t *emulator
= csn
;
1066 uint8_t sof_data
[] = { 0x0F} ;
1067 // CSN followed by two CRC bytes
1068 uint8_t anticoll_data
[10] = { 0 };
1069 uint8_t csn_data
[10] = { 0 };
1070 memcpy(csn_data
,csn
,sizeof(csn_data
));
1071 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1073 // Construct anticollision-CSN
1074 rotateCSN(csn_data
,anticoll_data
);
1076 // Compute CRC on both CSNs
1077 ComputeCrc14443(CRC_ICLASS
, anticoll_data
, 8, &anticoll_data
[8], &anticoll_data
[9]);
1078 ComputeCrc14443(CRC_ICLASS
, csn_data
, 8, &csn_data
[8], &csn_data
[9]);
1080 uint8_t diversified_key
[8] = { 0 };
1082 uint8_t card_challenge_data
[8] = { 0x00 };
1083 if(simulationMode
== MODE_FULLSIM
)
1085 //The diversified key should be stored on block 3
1086 //Get the diversified key from emulator memory
1087 memcpy(diversified_key
, emulator
+(8*3),8);
1089 //Card challenge, a.k.a e-purse is on block 2
1090 memcpy(card_challenge_data
,emulator
+ (8 * 2) , 8);
1091 //Precalculate the cipher state, feeding it the CC
1092 cipher_state
= opt_doTagMAC_1(card_challenge_data
,diversified_key
);
1100 // Tag anticoll. CSN
1101 // Reader 81 anticoll. CSN
1104 uint8_t *modulated_response
;
1105 int modulated_response_size
= 0;
1106 uint8_t* trace_data
= NULL
;
1107 int trace_data_size
= 0;
1110 // Respond SOF -- takes 1 bytes
1111 uint8_t *resp_sof
= BigBuf_malloc(2);
1114 // Anticollision CSN (rotated CSN)
1115 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1116 uint8_t *resp_anticoll
= BigBuf_malloc(28);
1117 int resp_anticoll_len
;
1120 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1121 uint8_t *resp_csn
= BigBuf_malloc(30);
1125 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1126 uint8_t *resp_cc
= BigBuf_malloc(20);
1129 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1132 // Prepare card messages
1135 // First card answer: SOF
1137 memcpy(resp_sof
, ToSend
, ToSendMax
); resp_sof_Len
= ToSendMax
;
1139 // Anticollision CSN
1140 CodeIClassTagAnswer(anticoll_data
, sizeof(anticoll_data
));
1141 memcpy(resp_anticoll
, ToSend
, ToSendMax
); resp_anticoll_len
= ToSendMax
;
1144 CodeIClassTagAnswer(csn_data
, sizeof(csn_data
));
1145 memcpy(resp_csn
, ToSend
, ToSendMax
); resp_csn_len
= ToSendMax
;
1148 CodeIClassTagAnswer(card_challenge_data
, sizeof(card_challenge_data
));
1149 memcpy(resp_cc
, ToSend
, ToSendMax
); resp_cc_len
= ToSendMax
;
1151 //This is used for responding to READ-block commands or other data which is dynamically generated
1152 //First the 'trace'-data, not encoded for FPGA
1153 uint8_t *data_generic_trace
= BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
1154 //Then storage for the modulated data
1155 //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
1156 uint8_t *data_response
= BigBuf_malloc( (8+2) * 2 + 2);
1158 // Start from off (no field generated)
1159 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1161 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1164 // We need to listen to the high-frequency, peak-detected path.
1165 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1166 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1168 // To control where we are in the protocol
1170 uint32_t time_0
= GetCountSspClk();
1171 uint32_t t2r_time
=0;
1172 uint32_t r2t_time
=0;
1175 bool buttonPressed
= false;
1176 uint8_t response_delay
= 1;
1181 // Can be used to get a trigger for an oscilloscope..
1184 if(!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) {
1185 buttonPressed
= true;
1188 r2t_time
= GetCountSspClk();
1192 // Okay, look at the command now.
1193 if(receivedCmd
[0] == ICLASS_CMD_ACTALL
) {
1194 // Reader in anticollission phase
1195 modulated_response
= resp_sof
; modulated_response_size
= resp_sof_Len
; //order = 1;
1196 trace_data
= sof_data
;
1197 trace_data_size
= sizeof(sof_data
);
1198 } else if(receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 1) {
1199 // Reader asks for anticollission CSN
1200 modulated_response
= resp_anticoll
; modulated_response_size
= resp_anticoll_len
; //order = 2;
1201 trace_data
= anticoll_data
;
1202 trace_data_size
= sizeof(anticoll_data
);
1203 //DbpString("Reader requests anticollission CSN:");
1204 } else if(receivedCmd
[0] == ICLASS_CMD_SELECT
) {
1205 // Reader selects anticollission CSN.
1206 // Tag sends the corresponding real CSN
1207 modulated_response
= resp_csn
; modulated_response_size
= resp_csn_len
; //order = 3;
1208 trace_data
= csn_data
;
1209 trace_data_size
= sizeof(csn_data
);
1210 //DbpString("Reader selects anticollission CSN:");
1211 } else if(receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
) {
1212 // Read e-purse (88 02)
1213 modulated_response
= resp_cc
; modulated_response_size
= resp_cc_len
; //order = 4;
1214 trace_data
= card_challenge_data
;
1215 trace_data_size
= sizeof(card_challenge_data
);
1217 } else if(receivedCmd
[0] == ICLASS_CMD_CHECK
) {
1218 // Reader random and reader MAC!!!
1219 if(simulationMode
== MODE_FULLSIM
)
1221 //NR, from reader, is in receivedCmd +1
1222 opt_doTagMAC_2(cipher_state
,receivedCmd
+1,data_generic_trace
,diversified_key
);
1224 trace_data
= data_generic_trace
;
1225 trace_data_size
= 4;
1226 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1227 memcpy(data_response
, ToSend
, ToSendMax
);
1228 modulated_response
= data_response
;
1229 modulated_response_size
= ToSendMax
;
1230 response_delay
= 0;//We need to hurry here...
1233 { //Not fullsim, we don't respond
1234 // We do not know what to answer, so lets keep quiet
1235 modulated_response
= resp_sof
; modulated_response_size
= 0;
1237 trace_data_size
= 0;
1238 if (simulationMode
== MODE_EXIT_AFTER_MAC
){
1240 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1241 ,csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1242 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len
,
1243 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1244 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1245 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1246 if (reader_mac_buf
!= NULL
)
1248 memcpy(reader_mac_buf
,receivedCmd
+1,8);
1254 } else if(receivedCmd
[0] == ICLASS_CMD_HALT
&& len
== 1) {
1255 // Reader ends the session
1256 modulated_response
= resp_sof
; modulated_response_size
= 0; //order = 0;
1258 trace_data_size
= 0;
1259 } else if(simulationMode
== MODE_FULLSIM
&& receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 4){
1261 uint16_t blk
= receivedCmd
[1];
1263 memcpy(data_generic_trace
, emulator
+(blk
<< 3),8);
1265 AppendCrc(data_generic_trace
, 8);
1266 trace_data
= data_generic_trace
;
1267 trace_data_size
= 10;
1268 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1269 memcpy(data_response
, ToSend
, ToSendMax
);
1270 modulated_response
= data_response
;
1271 modulated_response_size
= ToSendMax
;
1272 }else if(receivedCmd
[0] == ICLASS_CMD_UPDATE
&& simulationMode
== MODE_FULLSIM
)
1273 {//Probably the reader wants to update the nonce. Let's just ignore that for now.
1274 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1275 //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
1276 //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
1279 memcpy(data_generic_trace
, receivedCmd
+2,8);
1281 AppendCrc(data_generic_trace
, 8);
1282 trace_data
= data_generic_trace
;
1283 trace_data_size
= 10;
1284 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1285 memcpy(data_response
, ToSend
, ToSendMax
);
1286 modulated_response
= data_response
;
1287 modulated_response_size
= ToSendMax
;
1289 else if(receivedCmd
[0] == ICLASS_CMD_PAGESEL
)
1291 //Pagesel enables to select a page in the selected chip memory and return its configuration block
1292 //Chips with a single page will not answer to this command
1293 // It appears we're fine ignoring this.
1294 //Otherwise, we should answer 8bytes (block) + 2bytes CRC
1297 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1298 // Never seen this command before
1299 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1301 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1302 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1303 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1305 modulated_response
= resp_sof
; modulated_response_size
= 0; //order = 0;
1307 trace_data_size
= 0;
1310 if(cmdsRecvd
> 100) {
1311 //DbpString("100 commands later...");
1318 A legit tag has about 380us delay between reader EOT and tag SOF.
1320 if(modulated_response_size
> 0) {
1321 SendIClassAnswer(modulated_response
, modulated_response_size
, response_delay
);
1322 t2r_time
= GetCountSspClk();
1326 uint8_t parity
[MAX_PARITY_SIZE
];
1327 GetParity(receivedCmd
, len
, parity
);
1328 LogTrace(receivedCmd
,len
, (r2t_time
-time_0
)<< 4, (r2t_time
-time_0
) << 4, parity
, true);
1330 if (trace_data
!= NULL
) {
1331 GetParity(trace_data
, trace_data_size
, parity
);
1332 LogTrace(trace_data
, trace_data_size
, (t2r_time
-time_0
) << 4, (t2r_time
-time_0
) << 4, parity
, false);
1335 DbpString("Trace full");
1342 //Dbprintf("%x", cmdsRecvd);
1349 DbpString("Button pressed");
1351 return buttonPressed
;
1354 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
)
1356 int i
= 0, d
=0;//, u = 0, d = 0;
1359 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1360 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT
);
1362 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1363 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1364 while(!BUTTON_PRESS()) {
1365 if((AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)){
1366 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1368 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)){
1381 AT91C_BASE_SSC
->SSC_THR
= b
;
1384 // if (i > respLen +4) break;
1385 if (i
> respLen
+1) break;
1393 //-----------------------------------------------------------------------------
1394 // Transmit the command (to the tag) that was placed in ToSend[].
1395 //-----------------------------------------------------------------------------
1396 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1399 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1400 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1401 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1405 if(*wait
< 10) *wait
= 10;
1407 for(c
= 0; c
< *wait
;) {
1408 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1409 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1412 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1413 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1423 bool firstpart
= true;
1426 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1428 // DOUBLE THE SAMPLES!
1430 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1433 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1436 if(sendbyte
== 0xff) {
1439 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1440 firstpart
= !firstpart
;
1446 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1447 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1452 if (samples
&& wait
) *samples
= (c
+ *wait
) << 3;
1456 //-----------------------------------------------------------------------------
1457 // Prepare iClass reader command to send to FPGA
1458 //-----------------------------------------------------------------------------
1459 void CodeIClassCommand(const uint8_t * cmd
, int len
)
1466 // Start of Communication: 1 out of 4
1467 ToSend
[++ToSendMax
] = 0xf0;
1468 ToSend
[++ToSendMax
] = 0x00;
1469 ToSend
[++ToSendMax
] = 0x0f;
1470 ToSend
[++ToSendMax
] = 0x00;
1472 // Modulate the bytes
1473 for (i
= 0; i
< len
; i
++) {
1475 for(j
= 0; j
< 4; j
++) {
1476 for(k
= 0; k
< 4; k
++) {
1478 ToSend
[++ToSendMax
] = 0xf0;
1481 ToSend
[++ToSendMax
] = 0x00;
1488 // End of Communication
1489 ToSend
[++ToSendMax
] = 0x00;
1490 ToSend
[++ToSendMax
] = 0x00;
1491 ToSend
[++ToSendMax
] = 0xf0;
1492 ToSend
[++ToSendMax
] = 0x00;
1494 // Convert from last character reference to length
1498 void ReaderTransmitIClass(uint8_t* frame
, int len
)
1503 // This is tied to other size changes
1504 CodeIClassCommand(frame
,len
);
1507 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1511 // Store reader command in buffer
1513 uint8_t par
[MAX_PARITY_SIZE
];
1514 GetParity(frame
, len
, par
);
1515 LogTrace(frame
, len
, rsamples
, rsamples
, par
, true);
1519 //-----------------------------------------------------------------------------
1520 // Wait a certain time for tag response
1521 // If a response is captured return true
1522 // If it takes too long return false
1523 //-----------------------------------------------------------------------------
1524 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1526 // buffer needs to be 512 bytes
1529 // Set FPGA mode to "reader listen mode", no modulation (listen
1530 // only, since we are receiving, not transmitting).
1531 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1533 // Now get the answer from the card
1534 Demod
.output
= receivedResponse
;
1536 Demod
.state
= DEMOD_UNSYNCD
;
1539 if (elapsed
) *elapsed
= 0;
1547 if(BUTTON_PRESS()) return false;
1549 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1550 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1551 if (elapsed
) (*elapsed
)++;
1553 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1554 if(c
< timeout
) { c
++; } else { return false; }
1555 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1559 if(ManchesterDecoding(b
& 0x0f)) {
1567 int ReaderReceiveIClass(uint8_t* receivedAnswer
)
1570 if (!GetIClassAnswer(receivedAnswer
,160,&samples
,0)) return false;
1571 rsamples
+= samples
;
1573 uint8_t parity
[MAX_PARITY_SIZE
];
1574 GetParity(receivedAnswer
, Demod
.len
, parity
);
1575 LogTrace(receivedAnswer
,Demod
.len
,rsamples
,rsamples
,parity
,false);
1577 if(samples
== 0) return false;
1581 void setupIclassReader()
1583 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1584 // Reset trace buffer
1589 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1590 // Start from off (no field generated)
1591 // Signal field is off with the appropriate LED
1593 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1596 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1598 // Now give it time to spin up.
1599 // Signal field is on with the appropriate LED
1600 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1606 bool sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, uint8_t expected_size
, uint8_t retries
)
1608 while(retries
-- > 0)
1610 ReaderTransmitIClass(command
, cmdsize
);
1611 if(expected_size
== ReaderReceiveIClass(resp
)){
1615 return false;//Error
1619 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1620 * @param card_data where the CSN and CC are stored for return
1623 * 2 = Got CSN and CC
1625 uint8_t handshakeIclassTag_ext(uint8_t *card_data
, bool use_credit_key
)
1627 static uint8_t act_all
[] = { 0x0a };
1628 //static uint8_t identify[] = { 0x0c };
1629 static uint8_t identify
[] = { 0x0c, 0x00, 0x73, 0x33 };
1630 static uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1631 static uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1633 readcheck_cc
[0] = 0x18;
1635 readcheck_cc
[0] = 0x88;
1637 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1639 uint8_t read_status
= 0;
1642 ReaderTransmitIClass(act_all
, 1);
1644 if(!ReaderReceiveIClass(resp
)) return read_status
;//Fail
1646 ReaderTransmitIClass(identify
, 1);
1647 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1648 uint8_t len
= ReaderReceiveIClass(resp
);
1649 if(len
!= 10) return read_status
;//Fail
1651 //Copy the Anti-collision CSN to our select-packet
1652 memcpy(&select
[1],resp
,8);
1654 ReaderTransmitIClass(select
, sizeof(select
));
1655 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1656 len
= ReaderReceiveIClass(resp
);
1657 if(len
!= 10) return read_status
;//Fail
1659 //Success - level 1, we got CSN
1660 //Save CSN in response data
1661 memcpy(card_data
,resp
,8);
1663 //Flag that we got to at least stage 1, read CSN
1666 // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
1667 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1668 if(ReaderReceiveIClass(resp
) == 8) {
1669 //Save CC (e-purse) in response data
1670 memcpy(card_data
+8,resp
,8);
1676 uint8_t handshakeIclassTag(uint8_t *card_data
) {
1677 return handshakeIclassTag_ext(card_data
, false);
1681 // Reader iClass Anticollission
1682 void ReaderIClass(uint8_t arg0
) {
1684 uint8_t card_data
[6 * 8]={0};
1685 memset(card_data
, 0xFF, sizeof(card_data
));
1686 uint8_t last_csn
[8]={0,0,0,0,0,0,0,0};
1687 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1688 memset(resp
, 0xFF, sizeof(resp
));
1689 //Read conf block CRC(0x01) => 0xfa 0x22
1690 uint8_t readConf
[] = { ICLASS_CMD_READ_OR_IDENTIFY
,0x01, 0xfa, 0x22};
1691 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
1692 uint8_t readAA
[] = { ICLASS_CMD_READ_OR_IDENTIFY
,0x05, 0xde, 0x64};
1695 uint8_t result_status
= 0;
1696 // flag to read until one tag is found successfully
1697 bool abort_after_read
= arg0
& FLAG_ICLASS_READER_ONLY_ONCE
;
1698 // flag to only try 5 times to find one tag then return
1699 bool try_once
= arg0
& FLAG_ICLASS_READER_ONE_TRY
;
1700 // if neither abort_after_read nor try_once then continue reading until button pressed.
1702 bool use_credit_key
= arg0
& FLAG_ICLASS_READER_CEDITKEY
;
1703 // test flags for what blocks to be sure to read
1704 uint8_t flagReadConfig
= arg0
& FLAG_ICLASS_READER_CONF
;
1705 uint8_t flagReadCC
= arg0
& FLAG_ICLASS_READER_CC
;
1706 uint8_t flagReadAA
= arg0
& FLAG_ICLASS_READER_AA
;
1709 setupIclassReader();
1712 bool userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1713 while(!userCancelled
)
1715 // if only looking for one card try 2 times if we missed it the first time
1716 if (try_once
&& tryCnt
> 2) break;
1719 DbpString("Trace full");
1724 read_status
= handshakeIclassTag_ext(card_data
, use_credit_key
);
1726 if(read_status
== 0) continue;
1727 if(read_status
== 1) result_status
= FLAG_ICLASS_READER_CSN
;
1728 if(read_status
== 2) result_status
= FLAG_ICLASS_READER_CSN
|FLAG_ICLASS_READER_CC
;
1730 // handshakeIclass returns CSN|CC, but the actual block
1731 // layout is CSN|CONFIG|CC, so here we reorder the data,
1732 // moving CC forward 8 bytes
1733 memcpy(card_data
+16,card_data
+8, 8);
1734 //Read block 1, config
1735 if(flagReadConfig
) {
1736 if(sendCmdGetResponseWithRetries(readConf
, sizeof(readConf
), resp
, 10, 10))
1738 result_status
|= FLAG_ICLASS_READER_CONF
;
1739 memcpy(card_data
+8, resp
, 8);
1741 Dbprintf("Failed to dump config block");
1747 if(sendCmdGetResponseWithRetries(readAA
, sizeof(readAA
), resp
, 10, 10))
1749 result_status
|= FLAG_ICLASS_READER_AA
;
1750 memcpy(card_data
+(8*5), resp
, 8);
1752 //Dbprintf("Failed to dump AA block");
1757 // 1 : Configuration
1759 // (3,4 write-only, kc and kd)
1760 // 5 Application issuer area
1762 //Then we can 'ship' back the 8 * 6 bytes of data,
1763 // with 0xFF:s in block 3 and 4.
1766 //Send back to client, but don't bother if we already sent this -
1767 // only useful if looping in arm (not try_once && not abort_after_read)
1768 if(memcmp(last_csn
, card_data
, 8) != 0)
1770 // If caller requires that we get Conf, CC, AA, continue until we got it
1771 if( (result_status
^ FLAG_ICLASS_READER_CSN
^ flagReadConfig
^ flagReadCC
^ flagReadAA
) == 0) {
1772 cmd_send(CMD_ACK
,result_status
,0,0,card_data
,sizeof(card_data
));
1773 if(abort_after_read
) {
1778 //Save that we already sent this....
1779 memcpy(last_csn
, card_data
, 8);
1784 userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1786 if (userCancelled
) {
1787 cmd_send(CMD_ACK
,0xFF,0,0,card_data
, 0);
1789 cmd_send(CMD_ACK
,0,0,0,card_data
, 0);
1794 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1796 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1797 uint16_t block_crc_LUT
[255] = {0};
1799 {//Generate a lookup table for block crc
1800 for(int block
= 0; block
< 255; block
++){
1802 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1805 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1807 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1808 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1814 static struct memory_t
{
1822 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1824 setupIclassReader();
1827 while(!BUTTON_PRESS()) {
1832 DbpString("Trace full");
1836 uint8_t read_status
= handshakeIclassTag(card_data
);
1837 if(read_status
< 2) continue;
1839 //for now replay captured auth (as cc not updated)
1840 memcpy(check
+5,MAC
,4);
1842 if(!sendCmdGetResponseWithRetries(check
, sizeof(check
),resp
, 4, 5))
1844 Dbprintf("Error: Authentication Fail!");
1848 //first get configuration block (block 1)
1849 crc
= block_crc_LUT
[1];
1852 read
[3] = crc
& 0xff;
1854 if(!sendCmdGetResponseWithRetries(read
, sizeof(read
),resp
, 10, 10))
1856 Dbprintf("Dump config (block 1) failed");
1861 memory
.k16
= (mem
& 0x80);
1862 memory
.book
= (mem
& 0x20);
1863 memory
.k2
= (mem
& 0x8);
1864 memory
.lockauth
= (mem
& 0x2);
1865 memory
.keyaccess
= (mem
& 0x1);
1867 cardsize
= memory
.k16
? 255 : 32;
1869 //Set card_data to all zeroes, we'll fill it with data
1870 memset(card_data
,0x0,USB_CMD_DATA_SIZE
);
1871 uint8_t failedRead
=0;
1872 uint32_t stored_data_length
=0;
1873 //then loop around remaining blocks
1874 for(int block
=0; block
< cardsize
; block
++){
1877 crc
= block_crc_LUT
[block
];
1879 read
[3] = crc
& 0xff;
1881 if(sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, 10, 10))
1883 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1884 block
, resp
[0], resp
[1], resp
[2],
1885 resp
[3], resp
[4], resp
[5],
1888 //Fill up the buffer
1889 memcpy(card_data
+stored_data_length
,resp
,8);
1890 stored_data_length
+= 8;
1891 if(stored_data_length
+8 > USB_CMD_DATA_SIZE
)
1892 {//Time to send this off and start afresh
1894 stored_data_length
,//data length
1895 failedRead
,//Failed blocks?
1897 card_data
, stored_data_length
);
1899 stored_data_length
= 0;
1905 stored_data_length
+=8;//Otherwise, data becomes misaligned
1906 Dbprintf("Failed to dump block %d", block
);
1910 //Send off any remaining data
1911 if(stored_data_length
> 0)
1914 stored_data_length
,//data length
1915 failedRead
,//Failed blocks?
1917 card_data
, stored_data_length
);
1919 //If we got here, let's break
1922 //Signal end of transmission
1932 void iClass_ReadCheck(uint8_t blockNo
, uint8_t keyType
) {
1933 uint8_t readcheck
[] = { keyType
, blockNo
};
1934 uint8_t resp
[] = {0,0,0,0,0,0,0,0};
1936 isOK
= sendCmdGetResponseWithRetries(readcheck
, sizeof(readcheck
), resp
, sizeof(resp
), 6);
1937 cmd_send(CMD_ACK
,isOK
,0,0,0,0);
1940 void iClass_Authentication(uint8_t *MAC
) {
1941 uint8_t check
[] = { ICLASS_CMD_CHECK
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1942 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1943 memcpy(check
+5,MAC
,4);
1945 isOK
= sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 6);
1946 cmd_send(CMD_ACK
,isOK
,0,0,0,0);
1948 bool iClass_ReadBlock(uint8_t blockNo
, uint8_t *readdata
) {
1949 uint8_t readcmd
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, blockNo
, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1951 uint16_t rdCrc
= iclass_crc16(&bl
, 1);
1952 readcmd
[2] = rdCrc
>> 8;
1953 readcmd
[3] = rdCrc
& 0xff;
1954 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
1957 //readcmd[1] = blockNo;
1958 isOK
= sendCmdGetResponseWithRetries(readcmd
, sizeof(readcmd
), resp
, 10, 10);
1959 memcpy(readdata
, resp
, sizeof(resp
));
1964 void iClass_ReadBlk(uint8_t blockno
) {
1965 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1967 isOK
= iClass_ReadBlock(blockno
, readblockdata
);
1968 cmd_send(CMD_ACK
, isOK
, 0, 0, readblockdata
, 8);
1971 void iClass_Dump(uint8_t blockno
, uint8_t numblks
) {
1972 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1977 uint8_t *dataout
= BigBuf_malloc(255*8);
1978 if (dataout
== NULL
){
1979 Dbprintf("out of memory");
1983 memset(dataout
,0xFF,255*8);
1985 for (;blkCnt
< numblks
; blkCnt
++) {
1986 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1987 if (!isOK
|| (readblockdata
[0] == 0xBB || readblockdata
[7] == 0xBB || readblockdata
[2] == 0xBB)) { //try again
1988 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1990 Dbprintf("Block %02X failed to read", blkCnt
+blockno
);
1994 memcpy(dataout
+(blkCnt
*8),readblockdata
,8);
1996 //return pointer to dump memory in arg3
1997 cmd_send(CMD_ACK
,isOK
,blkCnt
,BigBuf_max_traceLen(),0,0);
1998 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2003 bool iClass_WriteBlock_ext(uint8_t blockNo
, uint8_t *data
) {
2004 uint8_t write
[] = { ICLASS_CMD_UPDATE
, blockNo
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
2005 //uint8_t readblockdata[10];
2006 //write[1] = blockNo;
2007 memcpy(write
+2, data
, 12); // data + mac
2008 char *wrCmd
= (char *)(write
+1);
2009 uint16_t wrCrc
= iclass_crc16(wrCmd
, 13);
2010 write
[14] = wrCrc
>> 8;
2011 write
[15] = wrCrc
& 0xff;
2012 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
2015 isOK
= sendCmdGetResponseWithRetries(write
,sizeof(write
),resp
,sizeof(resp
),10);
2016 if (isOK
) { //if reader responded correctly
2017 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
2018 if (memcmp(write
+2,resp
,8)) { //if response is not equal to write values
2019 if (blockNo
!= 3 && blockNo
!= 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
2021 isOK
= sendCmdGetResponseWithRetries(write
,sizeof(write
),resp
,sizeof(resp
),10);
2029 void iClass_WriteBlock(uint8_t blockNo
, uint8_t *data
) {
2030 bool isOK
= iClass_WriteBlock_ext(blockNo
, data
);
2032 Dbprintf("Write block [%02x] successful",blockNo
);
2034 Dbprintf("Write block [%02x] failed",blockNo
);
2036 cmd_send(CMD_ACK
,isOK
,0,0,0,0);
2039 void iClass_Clone(uint8_t startblock
, uint8_t endblock
, uint8_t *data
) {
2042 int total_block
= (endblock
- startblock
) + 1;
2043 for (i
= 0; i
< total_block
;i
++){
2045 if (iClass_WriteBlock_ext(i
+startblock
, data
+(i
*12))){
2046 Dbprintf("Write block [%02x] successful",i
+ startblock
);
2049 if (iClass_WriteBlock_ext(i
+startblock
, data
+(i
*12))){
2050 Dbprintf("Write block [%02x] successful",i
+ startblock
);
2053 Dbprintf("Write block [%02x] failed",i
+ startblock
);
2057 if (written
== total_block
)
2058 Dbprintf("Clone complete");
2060 Dbprintf("Clone incomplete");
2062 cmd_send(CMD_ACK
,1,0,0,0,0);
2063 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);