1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
24 #include "legicrfsim.h"
27 #include "lfsampling.h"
29 #include "mifareutil.h"
39 // Craig Young - 14a stand-alone code
41 #include "iso14443a.h"
44 //=============================================================================
45 // A buffer where we can queue things up to be sent through the FPGA, for
46 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
47 // is the order in which they go out on the wire.
48 //=============================================================================
50 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
51 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
54 struct common_area common_area
__attribute__((section(".commonarea")));
56 void ToSendReset(void)
62 void ToSendStuffBit(int b
)
66 ToSend
[ToSendMax
] = 0;
71 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
76 if(ToSendMax
>= sizeof(ToSend
)) {
78 DbpString("ToSendStuffBit overflowed!");
82 //=============================================================================
83 // Debug print functions, to go out over USB, to the usual PC-side client.
84 //=============================================================================
86 void DbpString(char *str
)
88 byte_t len
= strlen(str
);
89 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
93 void DbpIntegers(int x1
, int x2
, int x3
)
95 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
99 void Dbprintf(const char *fmt
, ...) {
100 // should probably limit size here; oh well, let's just use a big buffer
101 char output_string
[128];
105 kvsprintf(fmt
, output_string
, 10, ap
);
108 DbpString(output_string
);
111 // prints HEX & ASCII
112 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
125 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
128 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
130 Dbprintf("%*D",l
,d
," ");
138 //-----------------------------------------------------------------------------
139 // Read an ADC channel and block till it completes, then return the result
140 // in ADC units (0 to 1023). Also a routine to average 32 samples and
142 //-----------------------------------------------------------------------------
143 static int ReadAdc(int ch
)
145 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
146 // AMPL_HI is are high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
147 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
150 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
152 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
154 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
155 AT91C_BASE_ADC
->ADC_MR
=
156 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
157 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
158 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
160 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
161 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
163 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
165 return AT91C_BASE_ADC
->ADC_CDR
[ch
];
168 int AvgAdc(int ch
) // was static - merlok
173 for(i
= 0; i
< 32; i
++) {
177 return (a
+ 15) >> 5;
180 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
182 int i
, adcval
= 0, peak
= 0;
185 * Sweeps the useful LF range of the proxmark from
186 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
187 * read the voltage in the antenna, the result left
188 * in the buffer is a graph which should clearly show
189 * the resonating frequency of your LF antenna
190 * ( hopefully around 95 if it is tuned to 125kHz!)
193 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
194 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
197 for (i
=255; i
>=19; i
--) {
199 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
201 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
202 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
203 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
205 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
206 if(LF_Results
[i
] > peak
) {
208 peak
= LF_Results
[i
];
214 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
219 void MeasureAntennaTuningHfOnly(int *vHf
)
221 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
226 *vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
232 void MeasureAntennaTuning(int mode
)
234 uint8_t LF_Results
[256] = {0};
235 int peakv
= 0, peakf
= 0;
236 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
240 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
241 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
242 MeasureAntennaTuningHfOnly(&vHf
);
243 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
245 if (mode
& FLAG_TUNE_LF
) {
246 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
248 if (mode
& FLAG_TUNE_HF
) {
249 MeasureAntennaTuningHfOnly(&vHf
);
253 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void MeasureAntennaTuningHf(void)
261 int vHf
= 0; // in mV
263 DbpString("Measuring HF antenna, press button to exit");
265 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
266 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
267 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
271 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
273 Dbprintf("%d mV",vHf
);
274 if (BUTTON_PRESS()) break;
276 DbpString("cancelled");
278 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
283 void ReadMem(int addr
)
285 const uint8_t *data
= ((uint8_t *)addr
);
287 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
288 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
291 /* osimage version information is linked in */
292 extern struct version_information version_information
;
293 /* bootrom version information is pointed to from _bootphase1_version_pointer */
294 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
296 void SendVersion(void)
298 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
299 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
301 /* Try to find the bootrom version information. Expect to find a pointer at
302 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
303 * pointer, then use it.
305 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
306 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
307 strcat(VersionString
, "bootrom version information appears invalid\n");
309 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
310 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
313 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
314 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
316 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
317 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
318 if (i
< fpga_bitstream_num
- 1) {
319 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
323 // Send Chip ID and used flash memory
324 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
325 uint32_t compressed_data_section_size
= common_area
.arg1
;
326 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
329 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
330 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
331 void printUSBSpeed(void)
333 Dbprintf("USB Speed:");
334 Dbprintf(" Sending USB packets to client...");
336 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
337 uint8_t *test_data
= BigBuf_get_addr();
340 uint32_t start_time
= end_time
= GetTickCount();
341 uint32_t bytes_transferred
= 0;
344 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
345 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
346 end_time
= GetTickCount();
347 bytes_transferred
+= USB_CMD_DATA_SIZE
;
351 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
352 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
353 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
354 1000 * bytes_transferred
/ (end_time
- start_time
));
359 * Prints runtime information about the PM3.
361 void SendStatus(void)
363 BigBuf_print_status();
365 #ifdef WITH_SMARTCARD
368 printConfig(); //LF Sampling config
371 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
372 Dbprintf(" ToSendMax..........%d", ToSendMax
);
373 Dbprintf(" ToSendBit..........%d", ToSendBit
);
375 cmd_send(CMD_ACK
,1,0,0,0,0);
378 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
382 void StandAloneMode()
384 DbpString("Stand-alone mode! No PC necessary.");
385 // Oooh pretty -- notify user we're in elite samy mode now
387 LED(LED_ORANGE
, 200);
389 LED(LED_ORANGE
, 200);
391 LED(LED_ORANGE
, 200);
393 LED(LED_ORANGE
, 200);
402 #ifdef WITH_ISO14443a_StandAlone
403 void StandAloneMode14a()
406 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
409 bool playing
= false, GotoRecord
= false, GotoClone
= false;
410 bool cardRead
[OPTS
] = {false};
411 uint8_t readUID
[10] = {0};
412 uint32_t uid_1st
[OPTS
]={0};
413 uint32_t uid_2nd
[OPTS
]={0};
414 uint32_t uid_tmp1
= 0;
415 uint32_t uid_tmp2
= 0;
416 iso14a_card_select_t hi14a_card
[OPTS
];
418 LED(selected
+ 1, 0);
426 if (GotoRecord
|| !cardRead
[selected
])
430 LED(selected
+ 1, 0);
434 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
435 /* need this delay to prevent catching some weird data */
437 /* Code for reading from 14a tag */
438 uint8_t uid
[10] ={0};
440 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
445 if (BUTTON_PRESS()) {
446 if (cardRead
[selected
]) {
447 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
450 else if (cardRead
[(selected
+1)%OPTS
]) {
451 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
452 selected
= (selected
+1)%OPTS
;
456 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
460 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
464 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
465 memcpy(readUID
,uid
,10*sizeof(uint8_t));
466 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
467 // Set UID byte order
468 for (int i
=0; i
<4; i
++)
470 dst
= (uint8_t *)&uid_tmp2
;
471 for (int i
=0; i
<4; i
++)
473 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
474 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
478 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
479 uid_1st
[selected
] = (uid_tmp1
)>>8;
480 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
483 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
484 uid_1st
[selected
] = uid_tmp1
;
485 uid_2nd
[selected
] = uid_tmp2
;
491 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
492 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
495 LED(LED_ORANGE
, 200);
497 LED(LED_ORANGE
, 200);
500 LED(selected
+ 1, 0);
502 // Next state is replay:
505 cardRead
[selected
] = true;
507 /* MF Classic UID clone */
512 LED(selected
+ 1, 0);
513 LED(LED_ORANGE
, 250);
517 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
519 // wait for button to be released
520 while(BUTTON_PRESS())
522 // Delay cloning until card is in place
525 Dbprintf("Starting clone. [Bank: %u]", selected
);
526 // need this delay to prevent catching some weird data
528 // Begin clone function here:
529 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
530 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
531 memcpy(c.d.asBytes, data, 16);
534 Block read is similar:
535 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
536 We need to imitate that call with blockNo 0 to set a uid.
538 The get and set commands are handled in this file:
539 // Work with "magic Chinese" card
540 case CMD_MIFARE_CSETBLOCK:
541 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
543 case CMD_MIFARE_CGETBLOCK:
544 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
547 mfCSetUID provides example logic for UID set workflow:
548 -Read block0 from card in field with MifareCGetBlock()
549 -Configure new values without replacing reserved bytes
550 memcpy(block0, uid, 4); // Copy UID bytes from byte array
552 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
553 Bytes 5-7 are reserved SAK and ATQA for mifare classic
554 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
556 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
557 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
558 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
559 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
560 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
564 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
565 memcpy(newBlock0
,oldBlock0
,16);
566 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
568 newBlock0
[0] = uid_1st
[selected
]>>24;
569 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
570 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
571 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
572 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
573 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
574 MifareCSetBlock(0, 0xFF,0, newBlock0
);
575 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
576 if (memcmp(testBlock0
,newBlock0
,16)==0)
578 DbpString("Cloned successfull!");
579 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
582 selected
= (selected
+1) % OPTS
;
585 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
590 LED(selected
+ 1, 0);
593 // Change where to record (or begin playing)
594 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
597 LED(selected
+ 1, 0);
599 // Begin transmitting
601 DbpString("Playing");
604 int button_action
= BUTTON_HELD(1000);
605 if (button_action
== 0) { // No button action, proceed with sim
606 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
607 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
608 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
609 DbpString("Mifare Classic");
610 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
612 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
613 DbpString("Mifare Ultralight");
614 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
616 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
617 DbpString("Mifare DESFire");
618 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
621 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
622 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
625 else if (button_action
== BUTTON_SINGLE_CLICK
) {
626 selected
= (selected
+ 1) % OPTS
;
627 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
631 else if (button_action
== BUTTON_HOLD
) {
632 Dbprintf("Playtime over. Begin cloning...");
639 /* We pressed a button so ignore it here with a delay */
642 LED(selected
+ 1, 0);
646 #elif WITH_LF_StandAlone
647 // samy's sniff and repeat routine
651 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
653 int tops
[OPTS
], high
[OPTS
], low
[OPTS
];
658 // Turn on selected LED
659 LED(selected
+ 1, 0);
666 // Was our button held down or pressed?
667 int button_pressed
= BUTTON_HELD(1000);
670 // Button was held for a second, begin recording
671 if (button_pressed
> 0 && cardRead
== 0)
674 LED(selected
+ 1, 0);
678 DbpString("Starting recording");
680 // wait for button to be released
681 while(BUTTON_PRESS())
684 /* need this delay to prevent catching some weird data */
687 CmdHIDdemodFSK(1, &tops
[selected
], &high
[selected
], &low
[selected
], 0);
688 if (tops
[selected
] > 0)
689 Dbprintf("Recorded %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
691 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
694 LED(selected
+ 1, 0);
695 // Finished recording
697 // If we were previously playing, set playing off
698 // so next button push begins playing what we recorded
705 else if (button_pressed
> 0 && cardRead
== 1)
708 LED(selected
+ 1, 0);
712 if (tops
[selected
] > 0)
713 Dbprintf("Cloning %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
715 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
717 // wait for button to be released
718 while(BUTTON_PRESS())
721 /* need this delay to prevent catching some weird data */
724 CopyHIDtoT55x7(tops
[selected
] & 0x000FFFFF, high
[selected
], low
[selected
], (tops
[selected
] != 0 && ((high
[selected
]& 0xFFFFFFC0) != 0)));
725 if (tops
[selected
] > 0)
726 Dbprintf("Cloned %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
728 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
731 LED(selected
+ 1, 0);
732 // Finished recording
734 // If we were previously playing, set playing off
735 // so next button push begins playing what we recorded
742 // Change where to record (or begin playing)
743 else if (button_pressed
)
745 // Next option if we were previously playing
747 selected
= (selected
+ 1) % OPTS
;
751 LED(selected
+ 1, 0);
753 // Begin transmitting
757 DbpString("Playing");
758 // wait for button to be released
759 while(BUTTON_PRESS())
761 if (tops
[selected
] > 0)
762 Dbprintf("%x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
764 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
766 CmdHIDsimTAG(tops
[selected
], high
[selected
], low
[selected
], 0);
767 DbpString("Done playing");
768 if (BUTTON_HELD(1000) > 0)
770 DbpString("Exiting");
775 /* We pressed a button so ignore it here with a delay */
778 // when done, we're done playing, move to next option
779 selected
= (selected
+ 1) % OPTS
;
782 LED(selected
+ 1, 0);
785 while(BUTTON_PRESS())
794 Listen and detect an external reader. Determine the best location
798 Inside the ListenReaderField() function, there is two mode.
799 By default, when you call the function, you will enter mode 1.
800 If you press the PM3 button one time, you will enter mode 2.
801 If you press the PM3 button a second time, you will exit the function.
803 DESCRIPTION OF MODE 1:
804 This mode just listens for an external reader field and lights up green
805 for HF and/or red for LF. This is the original mode of the detectreader
808 DESCRIPTION OF MODE 2:
809 This mode will visually represent, using the LEDs, the actual strength of the
810 current compared to the maximum current detected. Basically, once you know
811 what kind of external reader is present, it will help you spot the best location to place
812 your antenna. You will probably not get some good results if there is a LF and a HF reader
813 at the same place! :-)
817 static const char LIGHT_SCHEME
[] = {
818 0x0, /* ---- | No field detected */
819 0x1, /* X--- | 14% of maximum current detected */
820 0x2, /* -X-- | 29% of maximum current detected */
821 0x4, /* --X- | 43% of maximum current detected */
822 0x8, /* ---X | 57% of maximum current detected */
823 0xC, /* --XX | 71% of maximum current detected */
824 0xE, /* -XXX | 86% of maximum current detected */
825 0xF, /* XXXX | 100% of maximum current detected */
827 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
829 void ListenReaderField(int limit
)
831 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
832 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
833 int mode
=1, display_val
, display_max
, i
;
837 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
840 // switch off FPGA - we don't want to measure our own signal
841 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
842 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
846 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
848 if(limit
!= HF_ONLY
) {
849 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
853 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
855 if (limit
!= LF_ONLY
) {
856 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
861 if (BUTTON_PRESS()) {
866 DbpString("Signal Strength Mode");
870 DbpString("Stopped");
878 if (limit
!= HF_ONLY
) {
880 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
886 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
887 // see if there's a significant change
888 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
889 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
896 if (limit
!= LF_ONLY
) {
898 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
904 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
905 // see if there's a significant change
906 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
907 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
915 if (limit
== LF_ONLY
) {
917 display_max
= lf_max
;
918 } else if (limit
== HF_ONLY
) {
920 display_max
= hf_max
;
921 } else { /* Pick one at random */
922 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
924 display_max
= hf_max
;
927 display_max
= lf_max
;
930 for (i
=0; i
<LIGHT_LEN
; i
++) {
931 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
932 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
933 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
934 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
935 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
943 void UsbPacketReceived(uint8_t *packet
, int len
)
945 UsbCommand
*c
= (UsbCommand
*)packet
;
947 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
951 case CMD_SET_LF_SAMPLING_CONFIG
:
952 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
954 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
955 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
957 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
958 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
960 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
961 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
963 case CMD_HID_DEMOD_FSK
:
964 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 0, 1);
966 case CMD_HID_SIM_TAG
:
967 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], 1);
969 case CMD_FSK_SIM_TAG
:
970 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
972 case CMD_ASK_SIM_TAG
:
973 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
975 case CMD_PSK_SIM_TAG
:
976 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
978 case CMD_HID_CLONE_TAG
:
979 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
981 case CMD_IO_DEMOD_FSK
:
982 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
984 case CMD_IO_CLONE_TAG
:
985 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
987 case CMD_EM410X_DEMOD
:
988 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
990 case CMD_EM410X_WRITE_TAG
:
991 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
993 case CMD_READ_TI_TYPE
:
996 case CMD_WRITE_TI_TYPE
:
997 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
999 case CMD_SIMULATE_TAG_125K
:
1001 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
1004 case CMD_LF_SIMULATE_BIDIR
:
1005 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
1007 case CMD_INDALA_CLONE_TAG
:
1008 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
1010 case CMD_INDALA_CLONE_TAG_L
:
1011 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
1013 case CMD_T55XX_READ_BLOCK
:
1014 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1016 case CMD_T55XX_WRITE_BLOCK
:
1017 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1019 case CMD_T55XX_WAKEUP
:
1020 T55xxWakeUp(c
->arg
[0]);
1022 case CMD_T55XX_RESET_READ
:
1025 case CMD_PCF7931_READ
:
1028 case CMD_PCF7931_WRITE
:
1029 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1031 case CMD_EM4X_READ_WORD
:
1032 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1034 case CMD_EM4X_WRITE_WORD
:
1035 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1037 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1038 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1040 case CMD_VIKING_CLONE_TAG
:
1041 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1049 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1050 SnoopHitag(c
->arg
[0]);
1052 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1053 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1055 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1056 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1058 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1059 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1061 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1062 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1064 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1065 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1067 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1068 if ((hitag_function
)c
->arg
[0] < 10) {
1069 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1071 else if ((hitag_function
)c
->arg
[0] >= 10) {
1072 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1077 #ifdef WITH_ISO15693
1078 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1079 AcquireRawAdcSamplesIso15693();
1081 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1082 RecordRawAdcSamplesIso15693();
1085 case CMD_ISO_15693_COMMAND
:
1086 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1089 case CMD_ISO_15693_FIND_AFI
:
1090 BruteforceIso15693Afi(c
->arg
[0]);
1093 case CMD_ISO_15693_DEBUG
:
1094 SetDebugIso15693(c
->arg
[0]);
1097 case CMD_READER_ISO_15693
:
1098 ReaderIso15693(c
->arg
[0]);
1100 case CMD_SIMTAG_ISO_15693
:
1101 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1106 case CMD_SIMULATE_TAG_LEGIC_RF
:
1107 LegicRfSimulate(c
->arg
[0]);
1110 case CMD_WRITER_LEGIC_RF
:
1111 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1114 case CMD_READER_LEGIC_RF
:
1115 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1119 #ifdef WITH_ISO14443b
1120 case CMD_READ_SRI512_TAG
:
1121 ReadSTMemoryIso14443b(0x0F);
1123 case CMD_READ_SRIX4K_TAG
:
1124 ReadSTMemoryIso14443b(0x7F);
1126 case CMD_SNOOP_ISO_14443B
:
1129 case CMD_SIMULATE_TAG_ISO_14443B
:
1130 SimulateIso14443bTag();
1132 case CMD_ISO_14443B_COMMAND
:
1133 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1137 #ifdef WITH_ISO14443a
1138 case CMD_SNOOP_ISO_14443a
:
1139 SnoopIso14443a(c
->arg
[0]);
1141 case CMD_READER_ISO_14443a
:
1144 case CMD_SIMULATE_TAG_ISO_14443a
:
1145 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1148 case CMD_EPA_PACE_COLLECT_NONCE
:
1149 EPA_PACE_Collect_Nonce(c
);
1151 case CMD_EPA_PACE_REPLAY
:
1155 case CMD_READER_MIFARE
:
1156 ReaderMifare(c
->arg
[0]);
1158 case CMD_MIFARE_READBL
:
1159 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1161 case CMD_MIFAREU_READBL
:
1162 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1164 case CMD_MIFAREUC_AUTH
:
1165 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1167 case CMD_MIFAREU_READCARD
:
1168 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1170 case CMD_MIFAREUC_SETPWD
:
1171 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1173 case CMD_MIFARE_READSC
:
1174 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1176 case CMD_MIFARE_WRITEBL
:
1177 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1179 //case CMD_MIFAREU_WRITEBL_COMPAT:
1180 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1182 case CMD_MIFAREU_WRITEBL
:
1183 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1185 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1186 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1188 case CMD_MIFARE_NESTED
:
1189 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1191 case CMD_MIFARE_CHKKEYS
:
1192 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1194 case CMD_SIMULATE_MIFARE_CARD
:
1195 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1199 case CMD_MIFARE_SET_DBGMODE
:
1200 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1202 case CMD_MIFARE_EML_MEMCLR
:
1203 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1205 case CMD_MIFARE_EML_MEMSET
:
1206 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1208 case CMD_MIFARE_EML_MEMGET
:
1209 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1211 case CMD_MIFARE_EML_CARDLOAD
:
1212 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1215 // Work with "magic Chinese" card
1216 case CMD_MIFARE_CWIPE
:
1217 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1219 case CMD_MIFARE_CSETBLOCK
:
1220 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1222 case CMD_MIFARE_CGETBLOCK
:
1223 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1225 case CMD_MIFARE_CIDENT
:
1230 case CMD_MIFARE_SNIFFER
:
1231 SniffMifare(c
->arg
[0]);
1237 // Makes use of ISO14443a FPGA Firmware
1238 case CMD_SNOOP_ICLASS
:
1241 case CMD_SIMULATE_TAG_ICLASS
:
1242 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1244 case CMD_READER_ICLASS
:
1245 ReaderIClass(c
->arg
[0]);
1247 case CMD_READER_ICLASS_REPLAY
:
1248 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1250 case CMD_ICLASS_EML_MEMSET
:
1251 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1253 case CMD_ICLASS_WRITEBLOCK
:
1254 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1256 case CMD_ICLASS_READCHECK
: // auth step 1
1257 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1259 case CMD_ICLASS_READBLOCK
:
1260 iClass_ReadBlk(c
->arg
[0]);
1262 case CMD_ICLASS_AUTHENTICATION
: //check
1263 iClass_Authentication(c
->d
.asBytes
);
1265 case CMD_ICLASS_DUMP
:
1266 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1268 case CMD_ICLASS_CLONE
:
1269 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1273 case CMD_HF_SNIFFER
:
1274 HfSnoop(c
->arg
[0], c
->arg
[1]);
1277 #ifdef WITH_SMARTCARD
1278 case CMD_SMART_ATR
: {
1282 case CMD_SMART_SETCLOCK
:{
1283 SmartCardSetClock(c
->arg
[0]);
1286 case CMD_SMART_RAW
: {
1287 SmartCardRaw(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1290 case CMD_SMART_UPLOAD
: {
1291 // upload file from client
1292 uint8_t *mem
= BigBuf_get_addr();
1293 memcpy( mem
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1294 cmd_send(CMD_ACK
,1,0,0,0,0);
1297 case CMD_SMART_UPGRADE
: {
1298 SmartCardUpgrade(c
->arg
[0]);
1303 case CMD_BUFF_CLEAR
:
1307 case CMD_MEASURE_ANTENNA_TUNING
:
1308 MeasureAntennaTuning(c
->arg
[0]);
1311 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1312 MeasureAntennaTuningHf();
1315 case CMD_LISTEN_READER_FIELD
:
1316 ListenReaderField(c
->arg
[0]);
1319 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1320 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1322 LED_D_OFF(); // LED D indicates field ON or OFF
1325 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1328 uint8_t *BigBuf
= BigBuf_get_addr();
1329 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1330 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1331 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1333 // Trigger a finish downloading signal with an ACK frame
1334 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1338 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1339 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1340 // to be able to use this one for uploading data to device
1341 // arg1 = 0 upload for LF usage
1342 // 1 upload for HF usage
1344 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1346 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1348 uint8_t *b
= BigBuf_get_addr();
1349 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1350 cmd_send(CMD_ACK
,0,0,0,0,0);
1357 case CMD_SET_LF_DIVISOR
:
1358 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1359 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1362 case CMD_SET_ADC_MUX
:
1364 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1365 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1366 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1367 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1378 cmd_send(CMD_ACK
,0,0,0,0,0);
1388 case CMD_SETUP_WRITE
:
1389 case CMD_FINISH_WRITE
:
1390 case CMD_HARDWARE_RESET
:
1394 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1396 // We're going to reset, and the bootrom will take control.
1400 case CMD_START_FLASH
:
1401 if(common_area
.flags
.bootrom_present
) {
1402 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1405 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1409 case CMD_DEVICE_INFO
: {
1410 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1411 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1412 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1416 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1421 void __attribute__((noreturn
)) AppMain(void)
1425 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1426 /* Initialize common area */
1427 memset(&common_area
, 0, sizeof(common_area
));
1428 common_area
.magic
= COMMON_AREA_MAGIC
;
1429 common_area
.version
= 1;
1431 common_area
.flags
.osimage_present
= 1;
1441 // The FPGA gets its clock from us from PCK0 output, so set that up.
1442 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1443 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1444 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1445 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1446 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1447 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1448 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1451 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1453 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1455 // Load the FPGA image, which we have stored in our flash.
1456 // (the HF version by default)
1457 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1465 byte_t rx
[sizeof(UsbCommand
)];
1470 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1472 UsbPacketReceived(rx
,rx_len
);
1477 #ifdef WITH_LF_StandAlone
1478 #ifndef WITH_ISO14443a_StandAlone
1479 if (BUTTON_HELD(1000) > 0)
1483 #ifdef WITH_ISO14443a
1484 #ifdef WITH_ISO14443a_StandAlone
1485 if (BUTTON_HELD(1000) > 0)
1486 StandAloneMode14a();