1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "../include/proxmark3.h"
14 #include "../common/crc16.h"
15 #include "../common/lfdemod.h"
18 #include "mifareutil.h"
19 #include "../include/hitag2.h"
21 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
22 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
23 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
24 // T0 = TIMER_CLOCK1 / 125000 = 192
27 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
28 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
30 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
32 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
33 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
34 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
35 else if (divisor
== 0)
36 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
38 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
40 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
42 // Connect the A/D to the peak-detected low-frequency path.
43 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
45 // Give it a bit of time for the resonant antenna to settle.
48 // Now set up the SSC to get the ADC samples that are now streaming at us.
52 void AcquireRawAdcSamples125k(int divisor
)
54 LFSetupFPGAForADC(divisor
, true);
58 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
60 LFSetupFPGAForADC(divisor
, false);
61 DoAcquisition125k_threshold(trigger_threshold
);
64 // split into two routines so we can avoid timing issues after sending commands //
65 void DoAcquisition125k_internal(int trigger_threshold
, bool silent
)
67 uint8_t *dest
= (uint8_t *)BigBuf
;
69 memset(dest
, 0x00, BIGBUF_SIZE
);
72 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
73 AT91C_BASE_SSC
->SSC_THR
= 0x43;
76 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
77 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
79 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
82 trigger_threshold
= -1;
83 if (++i
>= BIGBUF_SIZE
) break;
87 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
88 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
91 void DoAcquisition125k_threshold(int trigger_threshold
) {
92 DoAcquisition125k_internal(trigger_threshold
, true);
94 void DoAcquisition125k() {
95 DoAcquisition125k_internal(-1, true);
98 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
100 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
102 /* Make sure the tag is reset */
103 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
106 int divisor
= 95; // 125 KHz
107 // see if 'h' was specified
108 if (command
[strlen((char *) command
) - 1] == 'h')
109 divisor
= 88; // 134.8 KHz
111 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
112 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
113 // Give it a bit of time for the resonant antenna to settle.
116 // Now set up the SSC to get the ADC samples that are now streaming at us.
119 // now modulate the reader field
120 while(*command
!= '\0' && *command
!= ' ') {
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
123 SpinDelayUs(delay_off
);
124 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
128 if(*(command
++) == '0')
129 SpinDelayUs(period_0
);
131 SpinDelayUs(period_1
);
133 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
135 SpinDelayUs(delay_off
);
136 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
137 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
140 DoAcquisition125k(-1);
143 /* blank r/w tag data stream
144 ...0000000000000000 01111111
145 1010101010101010101010101010101010101010101010101010101010101010
148 101010101010101[0]000...
150 [5555fe852c5555555555555555fe0000]
154 // some hardcoded initial params
155 // when we read a TI tag we sample the zerocross line at 2Mhz
156 // TI tags modulate a 1 as 16 cycles of 123.2Khz
157 // TI tags modulate a 0 as 16 cycles of 134.2Khz
158 #define FSAMPLE 2000000
159 #define FREQLO 123200
160 #define FREQHI 134200
162 signed char *dest
= (signed char *)BigBuf
;
163 int n
= sizeof(BigBuf
);
165 // 128 bit shift register [shift3:shift2:shift1:shift0]
166 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
168 int i
, cycles
=0, samples
=0;
169 // how many sample points fit in 16 cycles of each frequency
170 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
171 // when to tell if we're close enough to one freq or another
172 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
174 // TI tags charge at 134.2Khz
175 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
176 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
178 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
179 // connects to SSP_DIN and the SSP_DOUT logic level controls
180 // whether we're modulating the antenna (high)
181 // or listening to the antenna (low)
182 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
184 // get TI tag data into the buffer
187 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
189 for (i
=0; i
<n
-1; i
++) {
190 // count cycles by looking for lo to hi zero crossings
191 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
193 // after 16 cycles, measure the frequency
196 samples
=i
-samples
; // number of samples in these 16 cycles
198 // TI bits are coming to us lsb first so shift them
199 // right through our 128 bit right shift register
200 shift0
= (shift0
>>1) | (shift1
<< 31);
201 shift1
= (shift1
>>1) | (shift2
<< 31);
202 shift2
= (shift2
>>1) | (shift3
<< 31);
205 // check if the cycles fall close to the number
206 // expected for either the low or high frequency
207 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
208 // low frequency represents a 1
210 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
211 // high frequency represents a 0
213 // probably detected a gay waveform or noise
214 // use this as gaydar or discard shift register and start again
215 shift3
= shift2
= shift1
= shift0
= 0;
219 // for each bit we receive, test if we've detected a valid tag
221 // if we see 17 zeroes followed by 6 ones, we might have a tag
222 // remember the bits are backwards
223 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
224 // if start and end bytes match, we have a tag so break out of the loop
225 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
226 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
234 // if flag is set we have a tag
236 DbpString("Info: No valid tag detected.");
238 // put 64 bit data into shift1 and shift0
239 shift0
= (shift0
>>24) | (shift1
<< 8);
240 shift1
= (shift1
>>24) | (shift2
<< 8);
242 // align 16 bit crc into lower half of shift2
243 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
245 // if r/w tag, check ident match
246 if ( shift3
&(1<<15) ) {
247 DbpString("Info: TI tag is rewriteable");
248 // only 15 bits compare, last bit of ident is not valid
249 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
250 DbpString("Error: Ident mismatch!");
252 DbpString("Info: TI tag ident is valid");
255 DbpString("Info: TI tag is readonly");
258 // WARNING the order of the bytes in which we calc crc below needs checking
259 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
260 // bytes in reverse or something
264 crc
= update_crc16(crc
, (shift0
)&0xff);
265 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
266 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
267 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
268 crc
= update_crc16(crc
, (shift1
)&0xff);
269 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
270 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
271 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
273 Dbprintf("Info: Tag data: %x%08x, crc=%x",
274 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
275 if (crc
!= (shift2
&0xffff)) {
276 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
278 DbpString("Info: CRC is good");
283 void WriteTIbyte(uint8_t b
)
287 // modulate 8 bits out to the antenna
291 // stop modulating antenna
298 // stop modulating antenna
308 void AcquireTiType(void)
311 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
312 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
313 #define TIBUFLEN 1250
316 memset(BigBuf
,0,sizeof(BigBuf
));
318 // Set up the synchronous serial port
319 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
320 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
322 // steal this pin from the SSP and use it to control the modulation
323 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
324 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
326 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
327 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
329 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
330 // 48/2 = 24 MHz clock must be divided by 12
331 AT91C_BASE_SSC
->SSC_CMR
= 12;
333 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
334 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
335 AT91C_BASE_SSC
->SSC_TCMR
= 0;
336 AT91C_BASE_SSC
->SSC_TFMR
= 0;
343 // Charge TI tag for 50ms.
346 // stop modulating antenna and listen
353 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
354 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
355 i
++; if(i
>= TIBUFLEN
) break;
360 // return stolen pin to SSP
361 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
362 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
364 char *dest
= (char *)BigBuf
;
367 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
368 for (j
=0; j
<32; j
++) {
369 if(BigBuf
[i
] & (1 << j
)) {
378 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
379 // if crc provided, it will be written with the data verbatim (even if bogus)
380 // if not provided a valid crc will be computed from the data and written.
381 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
383 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
385 crc
= update_crc16(crc
, (idlo
)&0xff);
386 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
387 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
388 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
389 crc
= update_crc16(crc
, (idhi
)&0xff);
390 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
391 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
392 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
394 Dbprintf("Writing to tag: %x%08x, crc=%x",
395 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
397 // TI tags charge at 134.2Khz
398 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
399 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
400 // connects to SSP_DIN and the SSP_DOUT logic level controls
401 // whether we're modulating the antenna (high)
402 // or listening to the antenna (low)
403 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
406 // steal this pin from the SSP and use it to control the modulation
407 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
408 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
410 // writing algorithm:
411 // a high bit consists of a field off for 1ms and field on for 1ms
412 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
413 // initiate a charge time of 50ms (field on) then immediately start writing bits
414 // start by writing 0xBB (keyword) and 0xEB (password)
415 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
416 // finally end with 0x0300 (write frame)
417 // all data is sent lsb firts
418 // finish with 15ms programming time
422 SpinDelay(50); // charge time
424 WriteTIbyte(0xbb); // keyword
425 WriteTIbyte(0xeb); // password
426 WriteTIbyte( (idlo
)&0xff );
427 WriteTIbyte( (idlo
>>8 )&0xff );
428 WriteTIbyte( (idlo
>>16)&0xff );
429 WriteTIbyte( (idlo
>>24)&0xff );
430 WriteTIbyte( (idhi
)&0xff );
431 WriteTIbyte( (idhi
>>8 )&0xff );
432 WriteTIbyte( (idhi
>>16)&0xff );
433 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
434 WriteTIbyte( (crc
)&0xff ); // crc lo
435 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
436 WriteTIbyte(0x00); // write frame lo
437 WriteTIbyte(0x03); // write frame hi
439 SpinDelay(50); // programming time
443 // get TI tag data into the buffer
446 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
447 DbpString("Now use tiread to check");
452 // PIO_CODR = Clear Output Data Register
453 // PIO_SODR = Set Output Data Register
454 //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x)
455 //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x)
456 void SimulateTagLowFrequency( uint16_t period
, uint32_t gap
, uint8_t ledcontrol
)
464 uint8_t *buf
= (uint8_t *)BigBuf
;
466 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
467 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
| FPGA_LF_EDGE_DETECT_READER_FIELD
);
468 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
469 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
472 // Configure output pin that is connected to the FPGA (for modulating)
473 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
474 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
478 // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
479 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC0
);
481 // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
482 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC1
);
483 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_SSC_FRAME
;
485 // Disable timer during configuration
486 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
488 // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
489 // external trigger rising edge, load RA on rising edge of TIOA.
490 AT91C_BASE_TC1
->TC_CMR
= AT91C_TC_CLKS_TIMER_DIV1_CLOCK
| AT91C_TC_ETRGEDG_RISING
| AT91C_TC_ABETRG
| AT91C_TC_LDRA_RISING
;
492 // Enable and reset counter
493 //AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
494 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
496 while(!BUTTON_PRESS()) {
499 // Receive frame, watch for at most T0*EOF periods
500 while (AT91C_BASE_TC1
->TC_CV
< T0
* 55) {
502 // Check if rising edge in modulation is detected
503 if(AT91C_BASE_TC1
->TC_SR
& AT91C_TC_LDRAS
) {
504 // Retrieve the new timing values
505 //int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow;
506 //Dbprintf("Timing value - %d %d", ra, overflow);
509 // Reset timer every frame, we have to capture the last edge for timing
510 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
518 // Disable timer 1 with external trigger to avoid triggers during our own modulation
519 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
521 // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit,
522 // not that since the clock counts since the rising edge, but T_Wait1 is
523 // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low)
524 // periods. The gap time T_Low varies (4..10). All timer values are in
526 while(AT91C_BASE_TC0
->TC_CV
< T0
* 16 );
528 // datat kommer in som 1 bit för varje position i arrayn
529 for(i
= 0; i
< period
; ++i
) {
531 // Reset clock for the next bit
532 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_SWTRG
;
539 while(AT91C_BASE_TC0
->TC_CV
< T0
* 1 );
544 // Enable and reset external trigger in timer for capturing future frames
545 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
551 // Save the timer overflow, will be 0 when frame was received
552 //overflow += (AT91C_BASE_TC1->TC_CV/T0);
554 // Reset the timer to restart while-loop that receives frames
555 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
;
560 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
561 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_CLKDIS
;
562 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
564 DbpString("Sim Stopped");
568 void SimulateTagLowFrequencyA(int len
, int gap
)
570 uint8_t *buf
= (uint8_t *)BigBuf
;
572 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
573 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
574 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
| FPGA_LF_EDGE_DETECT_TOGGLE_MODE
); // new izsh toggle mode!
576 // Connect the A/D to the peak-detected low-frequency path.
577 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
579 // Now set up the SSC to get the ADC samples that are now streaming at us.
583 AT91C_BASE_SSC
->SSC_THR
= 0x00;
586 while(!BUTTON_PRESS()) {
588 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
591 AT91C_BASE_SSC
->SSC_THR
= 0x43;
593 AT91C_BASE_SSC
->SSC_THR
= 0x00;
602 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
603 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
608 DbpString("lf simulate stopped");
609 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
612 #define DEBUG_FRAME_CONTENTS 1
613 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
617 // compose fc/8 fc/10 waveform
618 static void fc(int c
, uint16_t *n
) {
619 uint8_t *dest
= (uint8_t *)BigBuf
;
622 // for when we want an fc8 pattern every 4 logical bits
633 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
635 for (idx
=0; idx
<6; idx
++) {
647 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
649 for (idx
= 0; idx
< 5; idx
++) {
664 // prepare a waveform pattern in the buffer based on the ID given then
665 // simulate a HID tag until the button is pressed
666 void CmdHIDsimTAG(int hi
, int lo
, uint8_t ledcontrol
)
668 uint16_t n
= 0, i
= 0;
670 HID tag bitstream format
671 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
672 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
673 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
674 A fc8 is inserted before every 4 bits
675 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
676 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
680 DbpString("Tags can only have 44 bits.");
684 // special start of frame marker containing invalid bit sequences
685 fc(8, &n
); fc(8, &n
); // invalid
686 fc(8, &n
); fc(10, &n
); // logical 0
687 fc(10, &n
); fc(10, &n
); // invalid
688 fc(8, &n
); fc(10, &n
); // logical 0
691 // manchester encode bits 43 to 32
692 for (i
= 11; i
>= 0; i
--) {
693 if ((i
% 4) == 3) fc(0, &n
);
695 fc(10, &n
); fc(8, &n
); // low-high transition
697 fc(8, &n
); fc(10, &n
); // high-low transition
702 // manchester encode bits 31 to 0
703 for (i
= 31; i
>= 0; i
--) {
704 if ((i
% 4 ) == 3) fc(0, &n
);
705 if ((lo
>> i
) & 1) {
706 fc(10, &n
); fc(8, &n
); // low-high transition
708 fc(8, &n
); fc(10, &n
); // high-low transition
715 SimulateTagLowFrequency(n
, 0, ledcontrol
);
721 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
722 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
724 uint8_t *dest
= (uint8_t *)BigBuf
;
725 uint32_t hi2
= 0, hi
= 0, lo
= 0;
727 // Configure to go in 125Khz listen mode
728 LFSetupFPGAForADC(0, true);
730 while(!BUTTON_PRESS()) {
733 if (ledcontrol
) LED_A_ON();
735 DoAcquisition125k_internal(-1,true);
738 int bitLen
= HIDdemodFSK(dest
,BIGBUF_SIZE
,&hi2
,&hi
,&lo
);
742 if (bitLen
> 0 && lo
> 0){
744 // final loop, go over previously decoded manchester data and decode into usable tag ID
745 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
748 //extra large HID tags
749 Dbprintf("TAG ID: %x%08x%08x (%d)",
753 (unsigned int) (lo
>> 1) & 0xFFFF);
756 //standard HID tags <38 bits
759 uint32_t cardnum
= 0;
761 if ((( hi
>> 5 ) & 1) ==1){//if bit 38 is set then < 37 bit format is used
763 lo2
= (((hi
& 31) << 12) | (lo
>> 20)); //get bits 21-37 to check for format len bit
765 while(lo2
> 1){ //find last bit set to 1 (format len bit)
773 cardnum
= (lo
>> 1) & 0xFFFF;
774 fc
= (lo
>> 17) & 0xFF;
777 cardnum
= (lo
>> 1) & 0x7FFFF;
778 fc
= ((hi
& 0xF) << 12)|( lo
>> 20);
781 cardnum
= (lo
>> 1) & 0xFFFF;
782 fc
= ((hi
& 1) << 15) | (lo
>> 17);
785 cardnum
= (lo
>> 1 ) & 0xFFFFF;
786 fc
= ((hi
& 1) << 11 ) | ( lo
>> 21);
789 else { //if bit 38 is not set then 37 bit format is used
794 cardnum
= ( lo
>> 1) & 0x7FFFF;
795 fc
= ((hi
& 0xF) << 12 ) |(lo
>> 20);
798 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
801 (unsigned int) (lo
>> 1) & 0xFFFF,
802 (unsigned int) bitlen
,
804 (unsigned int) cardnum
);
807 if (ledcontrol
) LED_A_OFF();
815 DbpString("Stopped");
816 if (ledcontrol
) LED_A_OFF();
819 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
821 uint8_t *dest
= (uint8_t *)BigBuf
;
823 int clk
= 0, invert
= 0, errCnt
= 0;
826 // Configure to go in 125Khz listen mode
827 LFSetupFPGAForADC(0, true);
829 while(!BUTTON_PRESS()) {
832 if (ledcontrol
) LED_A_ON();
834 DoAcquisition125k_internal(-1,true);
837 bitLen
= BIGBUF_SIZE
;
838 errCnt
= askmandemod(dest
,&bitLen
,&clk
,&invert
);
839 if ( errCnt
< 0 ) continue;
843 lo
= Em410xDecode(dest
,bitLen
);
845 if ( lo
<= 0) continue;
847 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
848 (uint32_t)(lo
>> 32),
850 (uint32_t)(lo
& 0xFFFF),
851 (uint32_t)((lo
>> 16LL) & 0xFF),
852 (uint32_t)(lo
& 0xFFFFFF)
856 if (ledcontrol
) LED_A_OFF();
861 lo
= clk
= invert
= errCnt
= 0;
863 DbpString("Stopped");
864 if (ledcontrol
) LED_A_OFF();
867 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
869 uint8_t *dest
= (uint8_t *)BigBuf
;
871 uint32_t code
= 0, code2
= 0;
873 uint8_t facilitycode
= 0;
876 LFSetupFPGAForADC(0, true);
878 while(!BUTTON_PRESS()) {
881 if (ledcontrol
) LED_A_ON();
883 DoAcquisition125k_internal(-1, true);
885 idx
= IOdemodFSK(dest
, BIGBUF_SIZE
);
893 //0 10 20 30 40 50 60
895 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
896 //-----------------------------------------------------------------------------
897 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
899 //XSF(version)facility:codeone+codetwo
902 if(findone
){ //only print binary if we are doing one
903 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
904 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
905 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
906 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
907 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
908 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
909 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
912 code
= bytebits_to_byte(dest
+idx
,32);
913 code2
= bytebits_to_byte(dest
+idx
+32,32);
914 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
915 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
916 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
918 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)", version
, facilitycode
, number
, code
, code2
);
920 if (ledcontrol
) LED_A_OFF();
924 version
= facilitycode
= 0;
929 DbpString("Stopped");
930 if (ledcontrol
) LED_A_OFF();
933 /*------------------------------
934 * T5555/T5557/T5567 routines
935 *------------------------------
938 /* T55x7 configuration register definitions */
939 #define T55x7_POR_DELAY 0x00000001
940 #define T55x7_ST_TERMINATOR 0x00000008
941 #define T55x7_PWD 0x00000010
942 #define T55x7_MAXBLOCK_SHIFT 5
943 #define T55x7_AOR 0x00000200
944 #define T55x7_PSKCF_RF_2 0
945 #define T55x7_PSKCF_RF_4 0x00000400
946 #define T55x7_PSKCF_RF_8 0x00000800
947 #define T55x7_MODULATION_DIRECT 0
948 #define T55x7_MODULATION_PSK1 0x00001000
949 #define T55x7_MODULATION_PSK2 0x00002000
950 #define T55x7_MODULATION_PSK3 0x00003000
951 #define T55x7_MODULATION_FSK1 0x00004000
952 #define T55x7_MODULATION_FSK2 0x00005000
953 #define T55x7_MODULATION_FSK1a 0x00006000
954 #define T55x7_MODULATION_FSK2a 0x00007000
955 #define T55x7_MODULATION_MANCHESTER 0x00008000
956 #define T55x7_MODULATION_BIPHASE 0x00010000
957 #define T55x7_BITRATE_RF_8 0
958 #define T55x7_BITRATE_RF_16 0x00040000
959 #define T55x7_BITRATE_RF_32 0x00080000
960 #define T55x7_BITRATE_RF_40 0x000C0000
961 #define T55x7_BITRATE_RF_50 0x00100000
962 #define T55x7_BITRATE_RF_64 0x00140000
963 #define T55x7_BITRATE_RF_100 0x00180000
964 #define T55x7_BITRATE_RF_128 0x001C0000
966 /* T5555 (Q5) configuration register definitions */
967 #define T5555_ST_TERMINATOR 0x00000001
968 #define T5555_MAXBLOCK_SHIFT 0x00000001
969 #define T5555_MODULATION_MANCHESTER 0
970 #define T5555_MODULATION_PSK1 0x00000010
971 #define T5555_MODULATION_PSK2 0x00000020
972 #define T5555_MODULATION_PSK3 0x00000030
973 #define T5555_MODULATION_FSK1 0x00000040
974 #define T5555_MODULATION_FSK2 0x00000050
975 #define T5555_MODULATION_BIPHASE 0x00000060
976 #define T5555_MODULATION_DIRECT 0x00000070
977 #define T5555_INVERT_OUTPUT 0x00000080
978 #define T5555_PSK_RF_2 0
979 #define T5555_PSK_RF_4 0x00000100
980 #define T5555_PSK_RF_8 0x00000200
981 #define T5555_USE_PWD 0x00000400
982 #define T5555_USE_AOR 0x00000800
983 #define T5555_BITRATE_SHIFT 12
984 #define T5555_FAST_WRITE 0x00004000
985 #define T5555_PAGE_SELECT 0x00008000
988 * Relevant times in microsecond
989 * To compensate antenna falling times shorten the write times
990 * and enlarge the gap ones.
992 #define START_GAP 30*8 // 10 - 50fc 250
993 #define WRITE_GAP 20*8 // 8 - 30fc
994 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
995 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
997 // VALUES TAKEN FROM EM4x function: SendForward
998 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
999 // WRITE_GAP = 128; (16*8)
1000 // WRITE_1 = 256 32*8; (32*8)
1002 // These timings work for 4469/4269/4305 (with the 55*8 above)
1003 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1005 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1007 // Write one bit to card
1008 void T55xxWriteBit(int bit
)
1010 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1011 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1012 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1014 SpinDelayUs(WRITE_0
);
1016 SpinDelayUs(WRITE_1
);
1017 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1018 SpinDelayUs(WRITE_GAP
);
1021 // Write one card block in page 0, no lock
1022 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1026 // Set up FPGA, 125kHz
1027 // Wait for config.. (192+8190xPOW)x8 == 67ms
1028 LFSetupFPGAForADC(0, true);
1030 // Now start writting
1031 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1032 SpinDelayUs(START_GAP
);
1036 T55xxWriteBit(0); //Page 0
1039 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1040 T55xxWriteBit(Pwd
& i
);
1046 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1047 T55xxWriteBit(Data
& i
);
1050 for (i
= 0x04; i
!= 0; i
>>= 1)
1051 T55xxWriteBit(Block
& i
);
1053 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1054 // so wait a little more)
1055 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1056 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1058 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1061 // Read one card block in page 0
1062 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1064 uint8_t *dest
= get_bigbufptr_recvrespbuf();
1065 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
1068 // Clear destination buffer before sending the command 0x80 = average.
1069 memset(dest
, 0x80, bufferlength
);
1071 // Set up FPGA, 125kHz
1072 // Wait for config.. (192+8190xPOW)x8 == 67ms
1073 LFSetupFPGAForADC(0, true);
1075 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1076 SpinDelayUs(START_GAP
);
1080 T55xxWriteBit(0); //Page 0
1083 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1084 T55xxWriteBit(Pwd
& i
);
1089 for (i
= 0x04; i
!= 0; i
>>= 1)
1090 T55xxWriteBit(Block
& i
);
1092 // Turn field on to read the response
1095 // Now do the acquisition
1098 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1099 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1100 //AT91C_BASE_SSC->SSC_THR = 0xff;
1103 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1104 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1107 if (i
>= bufferlength
) break;
1111 cmd_send(CMD_ACK
,0,0,0,0,0);
1112 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1116 // Read card traceability data (page 1)
1117 void T55xxReadTrace(void){
1118 uint8_t *dest
= get_bigbufptr_recvrespbuf();
1119 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
1122 // Clear destination buffer before sending the command 0x80 = average
1123 memset(dest
, 0x80, bufferlength
);
1125 LFSetupFPGAForADC(0, true);
1127 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1128 SpinDelayUs(START_GAP
);
1132 T55xxWriteBit(1); //Page 1
1134 // Turn field on to read the response
1137 // Now do the acquisition
1139 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1140 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1143 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1144 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1148 if (i
>= bufferlength
) break;
1152 cmd_send(CMD_ACK
,0,0,0,0,0);
1153 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1157 void TurnReadLFOn(){
1158 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1159 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1160 // Give it a bit of time for the resonant antenna to settle.
1165 /*-------------- Cloning routines -----------*/
1166 // Copy HID id to card and setup block 0 config
1167 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1169 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1173 // Ensure no more than 84 bits supplied
1175 DbpString("Tags can only have 84 bits.");
1178 // Build the 6 data blocks for supplied 84bit ID
1180 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1181 for (int i
=0;i
<4;i
++) {
1182 if (hi2
& (1<<(19-i
)))
1183 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1185 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1189 for (int i
=0;i
<16;i
++) {
1190 if (hi2
& (1<<(15-i
)))
1191 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1193 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1197 for (int i
=0;i
<16;i
++) {
1198 if (hi
& (1<<(31-i
)))
1199 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1201 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1205 for (int i
=0;i
<16;i
++) {
1206 if (hi
& (1<<(15-i
)))
1207 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1209 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1213 for (int i
=0;i
<16;i
++) {
1214 if (lo
& (1<<(31-i
)))
1215 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1217 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1221 for (int i
=0;i
<16;i
++) {
1222 if (lo
& (1<<(15-i
)))
1223 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1225 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1229 // Ensure no more than 44 bits supplied
1231 DbpString("Tags can only have 44 bits.");
1235 // Build the 3 data blocks for supplied 44bit ID
1238 data1
= 0x1D000000; // load preamble
1240 for (int i
=0;i
<12;i
++) {
1241 if (hi
& (1<<(11-i
)))
1242 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1244 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1248 for (int i
=0;i
<16;i
++) {
1249 if (lo
& (1<<(31-i
)))
1250 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1252 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1256 for (int i
=0;i
<16;i
++) {
1257 if (lo
& (1<<(15-i
)))
1258 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1260 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1265 // Program the data blocks for supplied ID
1266 // and the block 0 for HID format
1267 T55xxWriteBlock(data1
,1,0,0);
1268 T55xxWriteBlock(data2
,2,0,0);
1269 T55xxWriteBlock(data3
,3,0,0);
1271 if (longFMT
) { // if long format there are 6 blocks
1272 T55xxWriteBlock(data4
,4,0,0);
1273 T55xxWriteBlock(data5
,5,0,0);
1274 T55xxWriteBlock(data6
,6,0,0);
1277 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1278 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1279 T55x7_MODULATION_FSK2a
|
1280 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1288 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1290 int data1
=0, data2
=0; //up to six blocks for long format
1292 data1
= hi
; // load preamble
1296 // Program the data blocks for supplied ID
1297 // and the block 0 for HID format
1298 T55xxWriteBlock(data1
,1,0,0);
1299 T55xxWriteBlock(data2
,2,0,0);
1302 T55xxWriteBlock(0x00147040,0,0,0);
1308 // Define 9bit header for EM410x tags
1309 #define EM410X_HEADER 0x1FF
1310 #define EM410X_ID_LENGTH 40
1312 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1315 uint64_t id
= EM410X_HEADER
;
1316 uint64_t rev_id
= 0; // reversed ID
1317 int c_parity
[4]; // column parity
1318 int r_parity
= 0; // row parity
1321 // Reverse ID bits given as parameter (for simpler operations)
1322 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1324 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1327 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1332 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1333 id_bit
= rev_id
& 1;
1336 // Don't write row parity bit at start of parsing
1338 id
= (id
<< 1) | r_parity
;
1339 // Start counting parity for new row
1346 // First elements in column?
1348 // Fill out first elements
1349 c_parity
[i
] = id_bit
;
1351 // Count column parity
1352 c_parity
[i
% 4] ^= id_bit
;
1355 id
= (id
<< 1) | id_bit
;
1359 // Insert parity bit of last row
1360 id
= (id
<< 1) | r_parity
;
1362 // Fill out column parity at the end of tag
1363 for (i
= 0; i
< 4; ++i
)
1364 id
= (id
<< 1) | c_parity
[i
];
1369 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1373 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1374 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1376 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1378 // Clock rate is stored in bits 8-15 of the card value
1379 clock
= (card
& 0xFF00) >> 8;
1380 Dbprintf("Clock rate: %d", clock
);
1384 clock
= T55x7_BITRATE_RF_32
;
1387 clock
= T55x7_BITRATE_RF_16
;
1390 // A value of 0 is assumed to be 64 for backwards-compatibility
1393 clock
= T55x7_BITRATE_RF_64
;
1396 Dbprintf("Invalid clock rate: %d", clock
);
1400 // Writing configuration for T55x7 tag
1401 T55xxWriteBlock(clock
|
1402 T55x7_MODULATION_MANCHESTER
|
1403 2 << T55x7_MAXBLOCK_SHIFT
,
1407 // Writing configuration for T5555(Q5) tag
1408 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1409 T5555_MODULATION_MANCHESTER
|
1410 2 << T5555_MAXBLOCK_SHIFT
,
1414 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1415 (uint32_t)(id
>> 32), (uint32_t)id
);
1418 // Clone Indala 64-bit tag by UID to T55x7
1419 void CopyIndala64toT55x7(int hi
, int lo
)
1421 //Program the 2 data blocks for supplied 64bit UID
1422 // and the block 0 for Indala64 format
1423 T55xxWriteBlock(hi
,1,0,0);
1424 T55xxWriteBlock(lo
,2,0,0);
1425 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1426 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1427 T55x7_MODULATION_PSK1
|
1428 2 << T55x7_MAXBLOCK_SHIFT
,
1430 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1431 // T5567WriteBlock(0x603E1042,0);
1436 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1438 //Program the 7 data blocks for supplied 224bit UID
1439 // and the block 0 for Indala224 format
1440 T55xxWriteBlock(uid1
,1,0,0);
1441 T55xxWriteBlock(uid2
,2,0,0);
1442 T55xxWriteBlock(uid3
,3,0,0);
1443 T55xxWriteBlock(uid4
,4,0,0);
1444 T55xxWriteBlock(uid5
,5,0,0);
1445 T55xxWriteBlock(uid6
,6,0,0);
1446 T55xxWriteBlock(uid7
,7,0,0);
1447 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1448 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1449 T55x7_MODULATION_PSK1
|
1450 7 << T55x7_MAXBLOCK_SHIFT
,
1452 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1453 // T5567WriteBlock(0x603E10E2,0);
1459 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1460 #define max(x,y) ( x<y ? y:x)
1462 int DemodPCF7931(uint8_t **outBlocks
) {
1463 uint8_t BitStream
[256];
1464 uint8_t Blocks
[8][16];
1465 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1466 int GraphTraceLen
= sizeof(BigBuf
);
1467 int i
, j
, lastval
, bitidx
, half_switch
;
1469 int tolerance
= clock
/ 8;
1470 int pmc
, block_done
;
1471 int lc
, warnings
= 0;
1473 int lmin
=128, lmax
=128;
1476 AcquireRawAdcSamples125k(0);
1483 /* Find first local max/min */
1484 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1485 while(i
< GraphTraceLen
) {
1486 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1493 while(i
< GraphTraceLen
) {
1494 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1506 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1508 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1513 // Switch depending on lc length:
1514 // Tolerance is 1/8 of clock rate (arbitrary)
1515 if (abs(lc
-clock
/4) < tolerance
) {
1517 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1519 i
+= (128+127+16+32+33+16)-1;
1527 } else if (abs(lc
-clock
/2) < tolerance
) {
1529 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1531 i
+= (128+127+16+32+33)-1;
1536 else if(half_switch
== 1) {
1537 BitStream
[bitidx
++] = 0;
1542 } else if (abs(lc
-clock
) < tolerance
) {
1544 BitStream
[bitidx
++] = 1;
1550 Dbprintf("Error: too many detection errors, aborting.");
1555 if(block_done
== 1) {
1557 for(j
=0; j
<16; j
++) {
1558 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1559 64*BitStream
[j
*8+6]+
1560 32*BitStream
[j
*8+5]+
1561 16*BitStream
[j
*8+4]+
1573 if(i
< GraphTraceLen
)
1575 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1582 if(num_blocks
== 4) break;
1584 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1588 int IsBlock0PCF7931(uint8_t *Block
) {
1589 // Assume RFU means 0 :)
1590 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1592 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1597 int IsBlock1PCF7931(uint8_t *Block
) {
1598 // Assume RFU means 0 :)
1599 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1600 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1607 void ReadPCF7931() {
1608 uint8_t Blocks
[8][17];
1609 uint8_t tmpBlocks
[4][16];
1610 int i
, j
, ind
, ind2
, n
;
1617 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1620 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1621 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1624 if(error
==10 && num_blocks
== 0) {
1625 Dbprintf("Error, no tag or bad tag");
1628 else if (tries
==20 || error
==10) {
1629 Dbprintf("Error reading the tag");
1630 Dbprintf("Here is the partial content");
1635 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1636 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1637 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1639 for(i
=0; i
<n
; i
++) {
1640 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1642 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1646 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1647 Blocks
[0][ALLOC
] = 1;
1648 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1649 Blocks
[1][ALLOC
] = 1;
1650 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1652 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1654 // Handle following blocks
1655 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1658 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1659 Blocks
[ind2
][ALLOC
] = 1;
1667 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1668 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1669 for(j
=0; j
<max_blocks
; j
++) {
1670 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1671 // Found an identical block
1672 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1675 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1676 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1677 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1678 Blocks
[ind2
][ALLOC
] = 1;
1680 if(num_blocks
== max_blocks
) goto end
;
1683 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1684 if(ind2
> max_blocks
)
1686 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1687 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1688 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1689 Blocks
[ind2
][ALLOC
] = 1;
1691 if(num_blocks
== max_blocks
) goto end
;
1700 if (BUTTON_PRESS()) return;
1701 } while (num_blocks
!= max_blocks
);
1703 Dbprintf("-----------------------------------------");
1704 Dbprintf("Memory content:");
1705 Dbprintf("-----------------------------------------");
1706 for(i
=0; i
<max_blocks
; i
++) {
1707 if(Blocks
[i
][ALLOC
]==1)
1708 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1709 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1710 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1712 Dbprintf("<missing block %d>", i
);
1714 Dbprintf("-----------------------------------------");
1720 //-----------------------------------
1721 // EM4469 / EM4305 routines
1722 //-----------------------------------
1723 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1724 #define FWD_CMD_WRITE 0xA
1725 #define FWD_CMD_READ 0x9
1726 #define FWD_CMD_DISABLE 0x5
1729 uint8_t forwardLink_data
[64]; //array of forwarded bits
1730 uint8_t * forward_ptr
; //ptr for forward message preparation
1731 uint8_t fwd_bit_sz
; //forwardlink bit counter
1732 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1734 //====================================================================
1735 // prepares command bits
1737 //====================================================================
1738 //--------------------------------------------------------------------
1739 uint8_t Prepare_Cmd( uint8_t cmd
) {
1740 //--------------------------------------------------------------------
1742 *forward_ptr
++ = 0; //start bit
1743 *forward_ptr
++ = 0; //second pause for 4050 code
1745 *forward_ptr
++ = cmd
;
1747 *forward_ptr
++ = cmd
;
1749 *forward_ptr
++ = cmd
;
1751 *forward_ptr
++ = cmd
;
1753 return 6; //return number of emited bits
1756 //====================================================================
1757 // prepares address bits
1759 //====================================================================
1761 //--------------------------------------------------------------------
1762 uint8_t Prepare_Addr( uint8_t addr
) {
1763 //--------------------------------------------------------------------
1765 register uint8_t line_parity
;
1770 *forward_ptr
++ = addr
;
1771 line_parity
^= addr
;
1775 *forward_ptr
++ = (line_parity
& 1);
1777 return 7; //return number of emited bits
1780 //====================================================================
1781 // prepares data bits intreleaved with parity bits
1783 //====================================================================
1785 //--------------------------------------------------------------------
1786 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1787 //--------------------------------------------------------------------
1789 register uint8_t line_parity
;
1790 register uint8_t column_parity
;
1791 register uint8_t i
, j
;
1792 register uint16_t data
;
1797 for(i
=0; i
<4; i
++) {
1799 for(j
=0; j
<8; j
++) {
1800 line_parity
^= data
;
1801 column_parity
^= (data
& 1) << j
;
1802 *forward_ptr
++ = data
;
1805 *forward_ptr
++ = line_parity
;
1810 for(j
=0; j
<8; j
++) {
1811 *forward_ptr
++ = column_parity
;
1812 column_parity
>>= 1;
1816 return 45; //return number of emited bits
1819 //====================================================================
1820 // Forward Link send function
1821 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1822 // fwd_bit_count set with number of bits to be sent
1823 //====================================================================
1824 void SendForward(uint8_t fwd_bit_count
) {
1826 fwd_write_ptr
= forwardLink_data
;
1827 fwd_bit_sz
= fwd_bit_count
;
1832 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1833 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1834 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1836 // Give it a bit of time for the resonant antenna to settle.
1837 // And for the tag to fully power up
1840 // force 1st mod pulse (start gap must be longer for 4305)
1841 fwd_bit_sz
--; //prepare next bit modulation
1843 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1844 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1845 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1846 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1847 SpinDelayUs(16*8); //16 cycles on (8us each)
1849 // now start writting
1850 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1851 if(((*fwd_write_ptr
++) & 1) == 1)
1852 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1854 //These timings work for 4469/4269/4305 (with the 55*8 above)
1855 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1856 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1857 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1858 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1859 SpinDelayUs(9*8); //16 cycles on (8us each)
1865 void EM4xLogin(uint32_t Password
) {
1867 uint8_t fwd_bit_count
;
1869 forward_ptr
= forwardLink_data
;
1870 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1871 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1873 SendForward(fwd_bit_count
);
1875 //Wait for command to complete
1880 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1882 uint8_t *dest
= (uint8_t *)BigBuf
;
1883 uint16_t bufferlength
= 12000;
1886 // Clear destination buffer before sending the command 0x80 = average.
1887 memset(dest
, 0x80, bufferlength
);
1889 uint8_t fwd_bit_count
;
1891 //If password mode do login
1892 if (PwdMode
== 1) EM4xLogin(Pwd
);
1894 forward_ptr
= forwardLink_data
;
1895 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1896 fwd_bit_count
+= Prepare_Addr( Address
);
1898 // Connect the A/D to the peak-detected low-frequency path.
1899 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1900 // Now set up the SSC to get the ADC samples that are now streaming at us.
1903 SendForward(fwd_bit_count
);
1905 // // Turn field on to read the response
1908 // Now do the acquisition
1911 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1912 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1914 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1915 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1917 if (i
>= bufferlength
) break;
1921 cmd_send(CMD_ACK
,0,0,0,0,0);
1922 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1926 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1928 uint8_t fwd_bit_count
;
1930 //If password mode do login
1931 if (PwdMode
== 1) EM4xLogin(Pwd
);
1933 forward_ptr
= forwardLink_data
;
1934 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1935 fwd_bit_count
+= Prepare_Addr( Address
);
1936 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1938 SendForward(fwd_bit_count
);
1940 //Wait for write to complete
1942 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off