1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
23 static uint32_t iso14a_timeout
;
26 // the block number for the ISO14443-4 PCB
27 static uint8_t iso14_pcb_blocknum
= 0;
32 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
33 #define REQUEST_GUARD_TIME (7000/16 + 1)
34 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
35 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
36 // bool LastCommandWasRequest = FALSE;
39 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
41 // When the PM acts as reader and is receiving tag data, it takes
42 // 3 ticks delay in the AD converter
43 // 16 ticks until the modulation detector completes and sets curbit
44 // 8 ticks until bit_to_arm is assigned from curbit
45 // 8*16 ticks for the transfer from FPGA to ARM
46 // 4*16 ticks until we measure the time
47 // - 8*16 ticks because we measure the time of the previous transfer
48 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
50 // When the PM acts as a reader and is sending, it takes
51 // 4*16 ticks until we can write data to the sending hold register
52 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
53 // 8 ticks until the first transfer starts
54 // 8 ticks later the FPGA samples the data
55 // 1 tick to assign mod_sig_coil
56 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
58 // When the PM acts as tag and is receiving it takes
59 // 2 ticks delay in the RF part (for the first falling edge),
60 // 3 ticks for the A/D conversion,
61 // 8 ticks on average until the start of the SSC transfer,
62 // 8 ticks until the SSC samples the first data
63 // 7*16 ticks to complete the transfer from FPGA to ARM
64 // 8 ticks until the next ssp_clk rising edge
65 // 4*16 ticks until we measure the time
66 // - 8*16 ticks because we measure the time of the previous transfer
67 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
69 // The FPGA will report its internal sending delay in
70 uint16_t FpgaSendQueueDelay
;
71 // the 5 first bits are the number of bits buffered in mod_sig_buf
72 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
75 // When the PM acts as tag and is sending, it takes
76 // 4*16 ticks until we can write data to the sending hold register
77 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
78 // 8 ticks until the first transfer starts
79 // 8 ticks later the FPGA samples the data
80 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
81 // + 1 tick to assign mod_sig_coil
82 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
84 // When the PM acts as sniffer and is receiving tag data, it takes
85 // 3 ticks A/D conversion
86 // 14 ticks to complete the modulation detection
87 // 8 ticks (on average) until the result is stored in to_arm
88 // + the delays in transferring data - which is the same for
89 // sniffing reader and tag data and therefore not relevant
90 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
92 // When the PM acts as sniffer and is receiving reader data, it takes
93 // 2 ticks delay in analogue RF receiver (for the falling edge of the
94 // start bit, which marks the start of the communication)
95 // 3 ticks A/D conversion
96 // 8 ticks on average until the data is stored in to_arm.
97 // + the delays in transferring data - which is the same for
98 // sniffing reader and tag data and therefore not relevant
99 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
101 //variables used for timing purposes:
102 //these are in ssp_clk cycles:
103 static uint32_t NextTransferTime
;
104 static uint32_t LastTimeProxToAirStart
;
105 static uint32_t LastProxToAirDuration
;
109 // CARD TO READER - manchester
110 // Sequence D: 11110000 modulation with subcarrier during first half
111 // Sequence E: 00001111 modulation with subcarrier during second half
112 // Sequence F: 00000000 no modulation with subcarrier
113 // READER TO CARD - miller
114 // Sequence X: 00001100 drop after half a period
115 // Sequence Y: 00000000 no drop
116 // Sequence Z: 11000000 drop at start
124 const uint8_t OddByteParity
[256] = {
125 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
126 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
144 void iso14a_set_trigger(bool enable
) {
149 void iso14a_set_timeout(uint32_t timeout
) {
150 iso14a_timeout
= timeout
;
151 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
155 void iso14a_set_ATS_timeout(uint8_t *ats
) {
161 if (ats
[0] > 1) { // there is a format byte T0
162 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
163 if ((ats
[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
168 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
169 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
171 iso14a_set_timeout(fwt
/(8*16));
177 //-----------------------------------------------------------------------------
178 // Generate the parity value for a byte sequence
180 //-----------------------------------------------------------------------------
181 byte_t
oddparity (const byte_t bt
)
183 return OddByteParity
[bt
];
186 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
188 uint16_t paritybit_cnt
= 0;
189 uint16_t paritybyte_cnt
= 0;
190 uint8_t parityBits
= 0;
192 for (uint16_t i
= 0; i
< iLen
; i
++) {
193 // Generate the parity bits
194 parityBits
|= ((OddByteParity
[pbtCmd
[i
]]) << (7-paritybit_cnt
));
195 if (paritybit_cnt
== 7) {
196 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
197 parityBits
= 0; // and advance to next Parity Byte
205 // save remaining parity bits
206 par
[paritybyte_cnt
] = parityBits
;
210 void AppendCrc14443a(uint8_t* data
, int len
)
212 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
215 void AppendCrc14443b(uint8_t* data
, int len
)
217 ComputeCrc14443(CRC_14443_B
,data
,len
,data
+len
,data
+len
+1);
221 //=============================================================================
222 // ISO 14443 Type A - Miller decoder
223 //=============================================================================
225 // This decoder is used when the PM3 acts as a tag.
226 // The reader will generate "pauses" by temporarily switching of the field.
227 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
228 // The FPGA does a comparison with a threshold and would deliver e.g.:
229 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230 // The Miller decoder needs to identify the following sequences:
231 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234 // Note 1: the bitstream may start at any time. We therefore need to sync.
235 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
236 //-----------------------------------------------------------------------------
239 // Lookup-Table to decide if 4 raw bits are a modulation.
240 // We accept the following:
241 // 0001 - a 3 tick wide pause
242 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
243 // 0111 - a 2 tick wide pause shifted left
244 // 1001 - a 2 tick wide pause shifted right
245 const bool Mod_Miller_LUT
[] = {
246 FALSE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, TRUE
,
247 FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
249 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
250 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
254 Uart
.state
= STATE_UNSYNCD
;
256 Uart
.len
= 0; // number of decoded data bytes
257 Uart
.parityLen
= 0; // number of decoded parity bytes
258 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
259 Uart
.parityBits
= 0; // holds 8 parity bits
268 void UartInit(uint8_t *data
, uint8_t *parity
)
271 Uart
.parity
= parity
;
272 Uart
.fourBits
= 0x00000000; // clear the buffer for 4 Bits
276 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
277 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
280 Uart
.fourBits
= (Uart
.fourBits
<< 8) | bit
;
282 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
284 Uart
.syncBit
= 9999; // not set
286 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
287 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
288 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
290 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
291 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
292 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
293 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
295 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
296 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
298 if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 0)) == ISO14443A_STARTBIT_PATTERN
>> 0) Uart
.syncBit
= 7;
299 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 1)) == ISO14443A_STARTBIT_PATTERN
>> 1) Uart
.syncBit
= 6;
300 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 2)) == ISO14443A_STARTBIT_PATTERN
>> 2) Uart
.syncBit
= 5;
301 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 3)) == ISO14443A_STARTBIT_PATTERN
>> 3) Uart
.syncBit
= 4;
302 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 4)) == ISO14443A_STARTBIT_PATTERN
>> 4) Uart
.syncBit
= 3;
303 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 5)) == ISO14443A_STARTBIT_PATTERN
>> 5) Uart
.syncBit
= 2;
304 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 6)) == ISO14443A_STARTBIT_PATTERN
>> 6) Uart
.syncBit
= 1;
305 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 7)) == ISO14443A_STARTBIT_PATTERN
>> 7) Uart
.syncBit
= 0;
307 if (Uart
.syncBit
!= 9999) { // found a sync bit
308 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
309 Uart
.startTime
-= Uart
.syncBit
;
310 Uart
.endTime
= Uart
.startTime
;
311 Uart
.state
= STATE_START_OF_COMMUNICATION
;
316 if (IsMillerModulationNibble1(Uart
.fourBits
>> Uart
.syncBit
)) {
317 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
319 } else { // Modulation in first half = Sequence Z = logic "0"
320 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
324 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
325 Uart
.state
= STATE_MILLER_Z
;
326 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
327 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
328 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
329 Uart
.parityBits
<<= 1; // make room for the parity bit
330 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
333 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
334 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
341 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
343 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
344 Uart
.state
= STATE_MILLER_X
;
345 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
346 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
347 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
348 Uart
.parityBits
<<= 1; // make room for the new parity bit
349 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
352 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
353 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
357 } else { // no modulation in both halves - Sequence Y
358 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
359 Uart
.state
= STATE_UNSYNCD
;
360 Uart
.bitCount
--; // last "0" was part of EOC sequence
361 Uart
.shiftReg
<<= 1; // drop it
362 if(Uart
.bitCount
> 0) { // if we decoded some bits
363 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
364 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
365 Uart
.parityBits
<<= 1; // add a (void) parity bit
366 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
367 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
369 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
370 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
371 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
374 return TRUE
; // we are finished with decoding the raw data sequence
376 UartReset(); // Nothing received - start over
379 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
381 } else { // a logic "0"
383 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
384 Uart
.state
= STATE_MILLER_Y
;
385 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
386 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
387 Uart
.parityBits
<<= 1; // make room for the parity bit
388 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
391 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
392 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
402 return FALSE
; // not finished yet, need more data
407 //=============================================================================
408 // ISO 14443 Type A - Manchester decoder
409 //=============================================================================
411 // This decoder is used when the PM3 acts as a reader.
412 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
413 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
414 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
415 // The Manchester decoder needs to identify the following sequences:
416 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
417 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
418 // 8 ticks unmodulated: Sequence F = end of communication
419 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
420 // Note 1: the bitstream may start at any time. We therefore need to sync.
421 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
424 // Lookup-Table to decide if 4 raw bits are a modulation.
425 // We accept three or four "1" in any position
426 const bool Mod_Manchester_LUT
[] = {
427 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
428 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
431 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
432 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
437 Demod
.state
= DEMOD_UNSYNCD
;
438 Demod
.len
= 0; // number of decoded data bytes
440 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
441 Demod
.parityBits
= 0; //
442 Demod
.collisionPos
= 0; // Position of collision bit
443 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
450 Demod
.syncBit
= 0xFFFF;
454 void DemodInit(uint8_t *data
, uint8_t *parity
)
457 Demod
.parity
= parity
;
461 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
462 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
465 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
467 if (Demod
.state
== DEMOD_UNSYNCD
) {
469 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
470 if (Demod
.twoBits
== 0x0000) {
476 Demod
.syncBit
= 0xFFFF; // not set
477 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
478 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
479 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
480 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
481 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
482 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
483 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
484 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
485 if (Demod
.syncBit
!= 0xFFFF) {
486 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
487 Demod
.startTime
-= Demod
.syncBit
;
488 Demod
.bitCount
= offset
; // number of decoded data bits
489 Demod
.state
= DEMOD_MANCHESTER_DATA
;
495 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
496 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
497 if (!Demod
.collisionPos
) {
498 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
500 } // modulation in first half only - Sequence D = 1
502 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
503 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
504 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
505 Demod
.parityBits
<<= 1; // make room for the parity bit
506 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
509 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
510 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
511 Demod
.parityBits
= 0;
514 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
515 } else { // no modulation in first half
516 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
518 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
519 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
520 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
521 Demod
.parityBits
<<= 1; // make room for the new parity bit
522 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
525 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
526 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
527 Demod
.parityBits
= 0;
530 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
531 } else { // no modulation in both halves - End of communication
532 if(Demod
.bitCount
> 0) { // there are some remaining data bits
533 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
534 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
535 Demod
.parityBits
<<= 1; // add a (void) parity bit
536 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
537 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
539 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
540 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
541 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
544 return TRUE
; // we are finished with decoding the raw data sequence
545 } else { // nothing received. Start over
551 return FALSE
; // not finished yet, need more data
554 //=============================================================================
555 // Finally, a `sniffer' for ISO 14443 Type A
556 // Both sides of communication!
557 //=============================================================================
559 //-----------------------------------------------------------------------------
560 // Record the sequence of commands sent by the reader to the tag, with
561 // triggering so that we start recording at the point that the tag is moved
563 //-----------------------------------------------------------------------------
564 void RAMFUNC
SniffIso14443a(uint8_t param
) {
566 // bit 0 - trigger from first card answer
567 // bit 1 - trigger from first reader 7-bit request
570 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
572 // Allocate memory from BigBuf for some buffers
573 // free all previous allocations first
580 // The command (reader -> tag) that we're receiving.
581 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
582 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
584 // The response (tag -> reader) that we're receiving.
585 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
586 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
588 // The DMA buffer, used to stream samples from the FPGA
589 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
591 uint8_t *data
= dmaBuf
;
592 uint8_t previous_data
= 0;
595 bool TagIsActive
= FALSE
;
596 bool ReaderIsActive
= FALSE
;
598 // Set up the demodulator for tag -> reader responses.
599 DemodInit(receivedResponse
, receivedResponsePar
);
601 // Set up the demodulator for the reader -> tag commands
602 UartInit(receivedCmd
, receivedCmdPar
);
604 // Setup and start DMA.
605 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
607 // We won't start recording the frames that we acquire until we trigger;
608 // a good trigger condition to get started is probably when we see a
609 // response from the tag.
610 // triggered == FALSE -- to wait first for card
611 bool triggered
= !(param
& 0x03);
613 // And now we loop, receiving samples.
614 for(uint32_t rsamples
= 0; TRUE
; ) {
617 DbpString("cancelled by button");
624 int register readBufDataP
= data
- dmaBuf
;
625 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
626 if (readBufDataP
<= dmaBufDataP
){
627 dataLen
= dmaBufDataP
- readBufDataP
;
629 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
631 // test for length of buffer
632 if(dataLen
> maxDataLen
) {
633 maxDataLen
= dataLen
;
634 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
635 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
639 if(dataLen
< 1) continue;
641 // primary buffer was stopped( <-- we lost data!
642 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
643 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
644 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
645 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
647 // secondary buffer sets as primary, secondary buffer was stopped
648 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
649 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
650 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
655 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
657 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
658 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
659 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
662 // check - if there is a short 7bit request from reader
663 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
666 if (!LogTrace(receivedCmd
,
668 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
669 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
673 /* And ready to receive another command. */
675 /* And also reset the demod code, which might have been */
676 /* false-triggered by the commands from the reader. */
680 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
683 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
684 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
685 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
688 if (!LogTrace(receivedResponse
,
690 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
691 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
695 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
697 // And ready to receive another response.
699 // And reset the Miller decoder including itS (now outdated) input buffer
700 UartInit(receivedCmd
, receivedCmdPar
);
704 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
708 previous_data
= *data
;
711 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
719 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
720 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
725 //-----------------------------------------------------------------------------
726 // Prepare tag messages
727 //-----------------------------------------------------------------------------
728 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
732 // Correction bit, might be removed when not needed
737 ToSendStuffBit(1); // 1
743 ToSend
[++ToSendMax
] = SEC_D
;
744 LastProxToAirDuration
= 8 * ToSendMax
- 4;
746 for(uint16_t i
= 0; i
< len
; i
++) {
750 for(uint16_t j
= 0; j
< 8; j
++) {
752 ToSend
[++ToSendMax
] = SEC_D
;
754 ToSend
[++ToSendMax
] = SEC_E
;
759 // Get the parity bit
760 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
761 ToSend
[++ToSendMax
] = SEC_D
;
762 LastProxToAirDuration
= 8 * ToSendMax
- 4;
764 ToSend
[++ToSendMax
] = SEC_E
;
765 LastProxToAirDuration
= 8 * ToSendMax
;
770 ToSend
[++ToSendMax
] = SEC_F
;
772 // Convert from last byte pos to length
776 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
)
778 uint8_t par
[MAX_PARITY_SIZE
];
780 GetParity(cmd
, len
, par
);
781 CodeIso14443aAsTagPar(cmd
, len
, par
);
785 static void Code4bitAnswerAsTag(uint8_t cmd
)
791 // Correction bit, might be removed when not needed
796 ToSendStuffBit(1); // 1
802 ToSend
[++ToSendMax
] = SEC_D
;
805 for(i
= 0; i
< 4; i
++) {
807 ToSend
[++ToSendMax
] = SEC_D
;
808 LastProxToAirDuration
= 8 * ToSendMax
- 4;
810 ToSend
[++ToSendMax
] = SEC_E
;
811 LastProxToAirDuration
= 8 * ToSendMax
;
817 ToSend
[++ToSendMax
] = SEC_F
;
819 // Convert from last byte pos to length
823 //-----------------------------------------------------------------------------
824 // Wait for commands from reader
825 // Stop when button is pressed
826 // Or return TRUE when command is captured
827 //-----------------------------------------------------------------------------
828 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
830 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
831 // only, since we are receiving, not transmitting).
832 // Signal field is off with the appropriate LED
834 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
836 // Now run a `software UART' on the stream of incoming samples.
837 UartInit(received
, parity
);
840 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
845 if(BUTTON_PRESS()) return FALSE
;
847 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
848 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
849 if(MillerDecoding(b
, 0)) {
857 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
858 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
859 int EmSend4bit(uint8_t resp
);
860 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
);
861 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
862 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
863 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
864 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
865 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
);
867 static uint8_t* free_buffer_pointer
;
874 uint32_t ProxToAirDuration
;
875 } tag_response_info_t
;
877 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
878 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
879 // This will need the following byte array for a modulation sequence
880 // 144 data bits (18 * 8)
883 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
884 // 1 just for the case
886 // 166 bytes, since every bit that needs to be send costs us a byte
890 // Prepare the tag modulation bits from the message
891 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
893 // Make sure we do not exceed the free buffer space
894 if (ToSendMax
> max_buffer_size
) {
895 Dbprintf("Out of memory, when modulating bits for tag answer:");
896 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
900 // Copy the byte array, used for this modulation to the buffer position
901 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
903 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
904 response_info
->modulation_n
= ToSendMax
;
905 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
911 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
912 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
913 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
914 // -> need 273 bytes buffer
915 // 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
916 // 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
917 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
919 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
920 // Retrieve and store the current buffer index
921 response_info
->modulation
= free_buffer_pointer
;
923 // Determine the maximum size we can use from our buffer
924 size_t max_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
926 // Forward the prepare tag modulation function to the inner function
927 if (prepare_tag_modulation(response_info
, max_buffer_size
)) {
928 // Update the free buffer offset
929 free_buffer_pointer
+= ToSendMax
;
936 //-----------------------------------------------------------------------------
937 // Main loop of simulated tag: receive commands from reader, decide what
938 // response to send, and send it.
939 //-----------------------------------------------------------------------------
940 void SimulateIso14443aTag(int tagType
, int flags
, byte_t
* data
)
942 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
943 // This can be used in a reader-only attack.
944 // (it can also be retrieved via 'hf 14a list', but hey...
945 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0,0,0};
946 uint8_t ar_nr_collected
= 0;
950 // PACK response to PWD AUTH for EV1/NTAG
951 uint8_t response8
[4] = {0,0,0,0};
953 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
954 uint8_t response1
[2] = {0,0};
957 case 1: { // MIFARE Classic
958 // Says: I am Mifare 1k - original line
963 case 2: { // MIFARE Ultralight
964 // Says: I am a stupid memory tag, no crypto
969 case 3: { // MIFARE DESFire
970 // Says: I am a DESFire tag, ph33r me
975 case 4: { // ISO/IEC 14443-4
976 // Says: I am a javacard (JCOP)
981 case 5: { // MIFARE TNP3XXX
987 case 6: { // MIFARE Mini
988 // Says: I am a Mifare Mini, 320b
994 // Says: I am a NTAG,
1000 response8
[1] = 0x80;
1001 ComputeCrc14443(CRC_14443_A
, response8
, 2, &response8
[2], &response8
[3]);
1004 Dbprintf("Error: unkown tagtype (%d)",tagType
);
1009 // The second response contains the (mandatory) first 24 bits of the UID
1010 uint8_t response2
[5] = {0x00};
1012 // Check if the uid uses the (optional) part
1013 uint8_t response2a
[5] = {0x00};
1015 if (flags
& FLAG_7B_UID_IN_DATA
) {
1016 response2
[0] = 0x88;
1017 response2
[1] = data
[0];
1018 response2
[2] = data
[1];
1019 response2
[3] = data
[2];
1021 response2a
[0] = data
[3];
1022 response2a
[1] = data
[4];
1023 response2a
[2] = data
[5];
1024 response2a
[3] = data
[6]; //??
1025 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
1027 // Configure the ATQA and SAK accordingly
1028 response1
[0] |= 0x40;
1031 memcpy(response2
, data
, 4);
1032 //num_to_bytes(uid_1st,4,response2);
1033 // Configure the ATQA and SAK accordingly
1034 response1
[0] &= 0xBF;
1038 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1039 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
1041 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1042 uint8_t response3
[3] = {0x00};
1044 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
1046 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1047 uint8_t response3a
[3] = {0x00};
1048 response3a
[0] = sak
& 0xFB;
1049 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
1051 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1052 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1053 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1054 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1055 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1056 // TC(1) = 0x02: CID supported, NAD not supported
1057 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1059 // Prepare GET_VERSION (different for EV-1 / NTAG)
1060 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
1061 uint8_t response7_NTAG
[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
1063 // Prepare CHK_TEARING
1064 uint8_t response9
[] = {0xBD,0x90,0x3f};
1066 #define TAG_RESPONSE_COUNT 10
1067 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1068 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1069 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1070 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1071 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1072 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1073 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1074 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1075 { .response
= response7_NTAG
, .response_n
= sizeof(response7_NTAG
) }, // EV1/NTAG GET_VERSION response
1076 { .response
= response8
, .response_n
= sizeof(response8
) }, // EV1/NTAG PACK response
1077 { .response
= response9
, .response_n
= sizeof(response9
) } // EV1/NTAG CHK_TEAR response
1080 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1081 // Such a response is less time critical, so we can prepare them on the fly
1082 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1083 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1084 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1085 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1086 tag_response_info_t dynamic_response_info
= {
1087 .response
= dynamic_response_buffer
,
1089 .modulation
= dynamic_modulation_buffer
,
1093 // We need to listen to the high-frequency, peak-detected path.
1094 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1096 BigBuf_free_keep_EM();
1098 // allocate buffers:
1099 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1100 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1101 free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1107 // Prepare the responses of the anticollision phase
1108 // there will be not enough time to do this at the moment the reader sends it REQA
1109 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1110 prepare_allocated_tag_modulation(&responses
[i
]);
1115 // To control where we are in the protocol
1119 // Just to allow some checks
1125 tag_response_info_t
* p_response
;
1129 // Clean receive command buffer
1131 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1132 DbpString("Button press");
1138 // Okay, look at the command now.
1140 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1141 p_response
= &responses
[0]; order
= 1;
1142 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1143 p_response
= &responses
[0]; order
= 6;
1144 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1145 p_response
= &responses
[1]; order
= 2;
1146 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1147 p_response
= &responses
[2]; order
= 20;
1148 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1149 p_response
= &responses
[3]; order
= 3;
1150 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1151 p_response
= &responses
[4]; order
= 30;
1152 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1153 uint8_t block
= receivedCmd
[1];
1154 if ( tagType
== 7 ) {
1155 uint16_t start
= 4 * block
;
1157 /*if ( block < 4 ) {
1159 uint8_t blockdata[50] = {
1160 data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
1161 data[3],data[4],data[5],data[6],
1162 data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
1163 0xe1,0x10,0x12,0x00,
1164 0x03,0x00,0xfe,0x00,
1165 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1166 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1167 0x00,0x00,0x00,0x00,
1169 AppendCrc14443a(blockdata+start, 16);
1170 EmSendCmdEx( blockdata+start, MAX_MIFARE_FRAME_SIZE, false);
1172 uint8_t emdata
[MAX_MIFARE_FRAME_SIZE
];
1173 emlGetMemBt( emdata
, start
, 16);
1174 AppendCrc14443a(emdata
, 16);
1175 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1180 EmSendCmdEx(data
+(4*block
),16,false);
1181 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1182 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1185 } else if(receivedCmd
[0] == 0x3A) { // Received a FAST READ (ranged read) -- just returns all zeros.
1187 uint8_t emdata
[MAX_FRAME_SIZE
];
1188 int start
= receivedCmd
[1] * 4;
1189 int len
= (receivedCmd
[2] - receivedCmd
[1] + 1) * 4;
1190 emlGetMemBt( emdata
, start
, len
);
1191 AppendCrc14443a(emdata
, len
);
1192 EmSendCmdEx(emdata
, len
+2, false);
1195 } else if(receivedCmd
[0] == 0x3C && tagType
== 7) { // Received a READ SIGNATURE --
1196 // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
1197 uint8_t data
[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
1198 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
1199 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
1200 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
1202 AppendCrc14443a(data
, sizeof(data
)-2);
1203 EmSendCmdEx(data
,sizeof(data
),false);
1205 } else if(receivedCmd
[0] == 0x39 && tagType
== 7) { // Received a READ COUNTER --
1206 uint8_t data
[] = {0x00,0x00,0x00,0x14,0xa5};
1207 EmSendCmdEx(data
,sizeof(data
),false);
1209 } else if(receivedCmd
[0] == 0xA5 && tagType
== 7) { // Received a INC COUNTER --
1210 // number of counter
1211 //uint8_t counter = receivedCmd[1];
1212 //uint32_t val = bytes_to_num(receivedCmd+2,4);
1215 uint8_t ack
[] = {0x0a};
1216 EmSendCmdEx(ack
,sizeof(ack
),false);
1219 } else if(receivedCmd
[0] == 0x3E && tagType
== 7) { // Received a CHECK_TEARING_EVENT --
1220 p_response
= &responses
[9];
1221 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1224 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1227 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1229 if ( tagType
== 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1230 p_response
= &responses
[7];
1232 p_response
= &responses
[5]; order
= 7;
1234 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1235 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1236 EmSend4bit(CARD_NACK_NA
);
1239 p_response
= &responses
[6]; order
= 70;
1241 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1243 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1245 uint32_t nonce
= bytes_to_num(response5
,4);
1246 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1247 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1248 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1250 if(flags
& FLAG_NR_AR_ATTACK
)
1252 if(ar_nr_collected
< 2){
1253 // Avoid duplicates... probably not necessary, nr should vary.
1254 //if(ar_nr_responses[3] != nr){
1255 ar_nr_responses
[ar_nr_collected
*5] = 0;
1256 ar_nr_responses
[ar_nr_collected
*5+1] = 0;
1257 ar_nr_responses
[ar_nr_collected
*5+2] = nonce
;
1258 ar_nr_responses
[ar_nr_collected
*5+3] = nr
;
1259 ar_nr_responses
[ar_nr_collected
*5+4] = ar
;
1264 if(ar_nr_collected
> 1 ) {
1266 if (MF_DBGLEVEL
>= 2) {
1267 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1268 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1269 ar_nr_responses
[0], // UID1
1270 ar_nr_responses
[1], // UID2
1271 ar_nr_responses
[2], // NT
1272 ar_nr_responses
[3], // AR1
1273 ar_nr_responses
[4], // NR1
1274 ar_nr_responses
[8], // AR2
1275 ar_nr_responses
[9] // NR2
1277 Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
1278 ar_nr_responses
[0], // UID1
1279 ar_nr_responses
[1], // UID2
1280 ar_nr_responses
[2], // NT1
1281 ar_nr_responses
[3], // AR1
1282 ar_nr_responses
[4], // NR1
1283 ar_nr_responses
[7], // NT2
1284 ar_nr_responses
[8], // AR2
1285 ar_nr_responses
[9] // NR2
1288 uint8_t len
= ar_nr_collected
*5*4;
1289 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,len
,0,&ar_nr_responses
,len
);
1290 ar_nr_collected
= 0;
1291 memset(ar_nr_responses
, 0x00, len
);
1294 } else if (receivedCmd
[0] == 0x1a ) // ULC authentication
1298 else if (receivedCmd
[0] == 0x1b) // NTAG / EV-1 authentication
1300 if ( tagType
== 7 ) {
1301 p_response
= &responses
[8]; // PACK response
1302 uint32_t pwd
= bytes_to_num(receivedCmd
+1,4);
1304 if ( MF_DBGLEVEL
>= 3) Dbprintf("Auth attempt: %08x", pwd
);
1308 // Check for ISO 14443A-4 compliant commands, look at left nibble
1309 switch (receivedCmd
[0]) {
1311 case 0x03: { // IBlock (command no CID)
1312 dynamic_response_info
.response
[0] = receivedCmd
[0];
1313 dynamic_response_info
.response
[1] = 0x90;
1314 dynamic_response_info
.response
[2] = 0x00;
1315 dynamic_response_info
.response_n
= 3;
1318 case 0x0A: { // IBlock (command CID)
1319 dynamic_response_info
.response
[0] = receivedCmd
[0];
1320 dynamic_response_info
.response
[1] = 0x00;
1321 dynamic_response_info
.response
[2] = 0x90;
1322 dynamic_response_info
.response
[3] = 0x00;
1323 dynamic_response_info
.response_n
= 4;
1327 case 0x1B: { // Chaining command
1328 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1329 dynamic_response_info
.response_n
= 2;
1334 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1335 dynamic_response_info
.response_n
= 2;
1338 case 0xBA: { // ping / pong
1339 dynamic_response_info
.response
[0] = 0xAB;
1340 dynamic_response_info
.response
[1] = 0x00;
1341 dynamic_response_info
.response_n
= 2;
1345 case 0xC2: { // Readers sends deselect command
1346 dynamic_response_info
.response
[0] = 0xCA;
1347 dynamic_response_info
.response
[1] = 0x00;
1348 dynamic_response_info
.response_n
= 2;
1352 // Never seen this command before
1354 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1356 Dbprintf("Received unknown command (len=%d):",len
);
1357 Dbhexdump(len
,receivedCmd
,false);
1359 dynamic_response_info
.response_n
= 0;
1363 if (dynamic_response_info
.response_n
> 0) {
1364 // Copy the CID from the reader query
1365 dynamic_response_info
.response
[1] = receivedCmd
[1];
1367 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1368 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1369 dynamic_response_info
.response_n
+= 2;
1371 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1372 Dbprintf("Error preparing tag response");
1374 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1378 p_response
= &dynamic_response_info
;
1382 // Count number of wakeups received after a halt
1383 if(order
== 6 && lastorder
== 5) { happened
++; }
1385 // Count number of other messages after a halt
1386 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1388 if(cmdsRecvd
> 999) {
1389 DbpString("1000 commands later...");
1394 if (p_response
!= NULL
) {
1395 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1396 // do the tracing for the previous reader request and this tag answer:
1397 uint8_t par
[MAX_PARITY_SIZE
];
1398 GetParity(p_response
->response
, p_response
->response_n
, par
);
1400 EmLogTrace(Uart
.output
,
1402 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1403 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1405 p_response
->response
,
1406 p_response
->response_n
,
1407 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1408 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1413 Dbprintf("Trace Full. Simulation stopped.");
1418 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1420 BigBuf_free_keep_EM();
1423 if (MF_DBGLEVEL
>= 4){
1424 Dbprintf("-[ Wake ups after halt [%d]", happened
);
1425 Dbprintf("-[ Messages after halt [%d]", happened2
);
1426 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd
);
1431 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1432 // of bits specified in the delay parameter.
1433 void PrepareDelayedTransfer(uint16_t delay
)
1435 uint8_t bitmask
= 0;
1436 uint8_t bits_to_shift
= 0;
1437 uint8_t bits_shifted
= 0;
1441 for (uint16_t i
= 0; i
< delay
; i
++) {
1442 bitmask
|= (0x01 << i
);
1444 ToSend
[ToSendMax
++] = 0x00;
1445 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1446 bits_to_shift
= ToSend
[i
] & bitmask
;
1447 ToSend
[i
] = ToSend
[i
] >> delay
;
1448 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1449 bits_shifted
= bits_to_shift
;
1455 //-------------------------------------------------------------------------------------
1456 // Transmit the command (to the tag) that was placed in ToSend[].
1457 // Parameter timing:
1458 // if NULL: transfer at next possible time, taking into account
1459 // request guard time and frame delay time
1460 // if == 0: transfer immediately and return time of transfer
1461 // if != 0: delay transfer until time specified
1462 //-------------------------------------------------------------------------------------
1463 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1466 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1468 uint32_t ThisTransferTime
= 0;
1471 if(*timing
== 0) { // Measure time
1472 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1474 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1476 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1477 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1478 LastTimeProxToAirStart
= *timing
;
1480 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1481 while(GetCountSspClk() < ThisTransferTime
);
1482 LastTimeProxToAirStart
= ThisTransferTime
;
1486 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1490 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1491 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1499 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1503 //-----------------------------------------------------------------------------
1504 // Prepare reader command (in bits, support short frames) to send to FPGA
1505 //-----------------------------------------------------------------------------
1506 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1514 // Start of Communication (Seq. Z)
1515 ToSend
[++ToSendMax
] = SEC_Z
;
1516 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1519 size_t bytecount
= nbytes(bits
);
1520 // Generate send structure for the data bits
1521 for (i
= 0; i
< bytecount
; i
++) {
1522 // Get the current byte to send
1524 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1526 for (j
= 0; j
< bitsleft
; j
++) {
1529 ToSend
[++ToSendMax
] = SEC_X
;
1530 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1535 ToSend
[++ToSendMax
] = SEC_Z
;
1536 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1539 ToSend
[++ToSendMax
] = SEC_Y
;
1546 // Only transmit parity bit if we transmitted a complete byte
1547 if (j
== 8 && parity
!= NULL
) {
1548 // Get the parity bit
1549 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1551 ToSend
[++ToSendMax
] = SEC_X
;
1552 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1557 ToSend
[++ToSendMax
] = SEC_Z
;
1558 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1561 ToSend
[++ToSendMax
] = SEC_Y
;
1568 // End of Communication: Logic 0 followed by Sequence Y
1571 ToSend
[++ToSendMax
] = SEC_Z
;
1572 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1575 ToSend
[++ToSendMax
] = SEC_Y
;
1578 ToSend
[++ToSendMax
] = SEC_Y
;
1580 // Convert to length of command:
1584 //-----------------------------------------------------------------------------
1585 // Prepare reader command to send to FPGA
1586 //-----------------------------------------------------------------------------
1587 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
)
1589 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1593 //-----------------------------------------------------------------------------
1594 // Wait for commands from reader
1595 // Stop when button is pressed (return 1) or field was gone (return 2)
1596 // Or return 0 when command is captured
1597 //-----------------------------------------------------------------------------
1598 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1602 uint32_t timer
= 0, vtime
= 0;
1606 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1607 // only, since we are receiving, not transmitting).
1608 // Signal field is off with the appropriate LED
1610 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1612 // Set ADC to read field strength
1613 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1614 AT91C_BASE_ADC
->ADC_MR
=
1615 ADC_MODE_PRESCALE(63) |
1616 ADC_MODE_STARTUP_TIME(1) |
1617 ADC_MODE_SAMPLE_HOLD_TIME(15);
1618 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1620 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1622 // Now run a 'software UART' on the stream of incoming samples.
1623 UartInit(received
, parity
);
1626 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1631 if (BUTTON_PRESS()) return 1;
1633 // test if the field exists
1634 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1636 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1637 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1638 if (analogCnt
>= 32) {
1639 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1640 vtime
= GetTickCount();
1641 if (!timer
) timer
= vtime
;
1642 // 50ms no field --> card to idle state
1643 if (vtime
- timer
> 50) return 2;
1645 if (timer
) timer
= 0;
1651 // receive and test the miller decoding
1652 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1653 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1654 if(MillerDecoding(b
, 0)) {
1664 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
)
1668 uint32_t ThisTransferTime
;
1670 // Modulate Manchester
1671 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1673 // include correction bit if necessary
1674 if (Uart
.parityBits
& 0x01) {
1675 correctionNeeded
= TRUE
;
1677 if(correctionNeeded
) {
1678 // 1236, so correction bit needed
1684 // clear receiving shift register and holding register
1685 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1686 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1687 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1688 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1690 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1691 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1692 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1693 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1696 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1699 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1702 for(; i
< respLen
; ) {
1703 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1704 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1705 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1708 if(BUTTON_PRESS()) break;
1711 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1712 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3;
1713 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
1714 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1715 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1716 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1721 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1726 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1727 Code4bitAnswerAsTag(resp
);
1728 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1729 // do the tracing for the previous reader request and this tag answer:
1731 GetParity(&resp
, 1, par
);
1732 EmLogTrace(Uart
.output
,
1734 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1735 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1739 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1740 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1745 int EmSend4bit(uint8_t resp
){
1746 return EmSend4bitEx(resp
, false);
1749 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1750 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1751 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1752 // do the tracing for the previous reader request and this tag answer:
1753 EmLogTrace(Uart
.output
,
1755 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1756 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1760 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1761 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1766 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1767 uint8_t par
[MAX_PARITY_SIZE
];
1768 GetParity(resp
, respLen
, par
);
1769 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1772 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1773 uint8_t par
[MAX_PARITY_SIZE
];
1774 GetParity(resp
, respLen
, par
);
1775 return EmSendCmdExPar(resp
, respLen
, false, par
);
1778 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1779 return EmSendCmdExPar(resp
, respLen
, false, par
);
1782 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1783 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1786 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1787 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1788 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1789 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1790 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1791 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1792 reader_EndTime
= tag_StartTime
- exact_fdt
;
1793 reader_StartTime
= reader_EndTime
- reader_modlen
;
1794 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
)) {
1796 } else return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1802 //-----------------------------------------------------------------------------
1803 // Wait a certain time for tag response
1804 // If a response is captured return TRUE
1805 // If it takes too long return FALSE
1806 //-----------------------------------------------------------------------------
1807 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1811 // Set FPGA mode to "reader listen mode", no modulation (listen
1812 // only, since we are receiving, not transmitting).
1813 // Signal field is on with the appropriate LED
1815 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1817 // Now get the answer from the card
1818 DemodInit(receivedResponse
, receivedResponsePar
);
1821 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1826 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1827 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1828 if(ManchesterDecoding(b
, offset
, 0)) {
1829 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1831 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1838 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1840 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1842 // Send command to tag
1843 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1847 // Log reader command in trace buffer
1849 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1853 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1855 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1858 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1860 // Generate parity and redirect
1861 uint8_t par
[MAX_PARITY_SIZE
];
1862 GetParity(frame
, len
/8, par
);
1863 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1866 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1868 // Generate parity and redirect
1869 uint8_t par
[MAX_PARITY_SIZE
];
1870 GetParity(frame
, len
, par
);
1871 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1874 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1876 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
)) return FALSE
;
1878 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1883 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1885 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return FALSE
;
1887 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1892 /* performs iso14443a anticollision procedure
1893 * fills the uid pointer unless NULL
1894 * fills resp_data unless NULL */
1895 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
) {
1896 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1897 uint8_t sel_all
[] = { 0x93,0x20 };
1898 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1899 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1900 uint8_t resp
[MAX_FRAME_SIZE
]; // theoretically. A usual RATS will be much smaller
1901 uint8_t resp_par
[MAX_PARITY_SIZE
];
1903 size_t uid_resp_len
;
1905 uint8_t sak
= 0x04; // cascade uid
1906 int cascade_level
= 0;
1909 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1910 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1913 if(!ReaderReceive(resp
, resp_par
)) return 0;
1916 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1917 p_hi14a_card
->uidlen
= 0;
1918 memset(p_hi14a_card
->uid
,0,10);
1923 memset(uid_ptr
,0,10);
1926 // check for proprietary anticollision:
1927 if ((resp
[0] & 0x1F) == 0) {
1931 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1932 // which case we need to make a cascade 2 request and select - this is a long UID
1933 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1934 for(; sak
& 0x04; cascade_level
++) {
1935 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1936 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1939 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1940 if (!ReaderReceive(resp
, resp_par
)) return 0;
1942 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1943 memset(uid_resp
, 0, 4);
1944 uint16_t uid_resp_bits
= 0;
1945 uint16_t collision_answer_offset
= 0;
1946 // anti-collision-loop:
1947 while (Demod
.collisionPos
) {
1948 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1949 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1950 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1951 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1953 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1955 // construct anticollosion command:
1956 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1957 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1958 sel_uid
[2+i
] = uid_resp
[i
];
1960 collision_answer_offset
= uid_resp_bits
%8;
1961 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1962 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1964 // finally, add the last bits and BCC of the UID
1965 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1966 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1967 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1970 } else { // no collision, use the response to SELECT_ALL as current uid
1971 memcpy(uid_resp
, resp
, 4);
1975 // calculate crypto UID. Always use last 4 Bytes.
1977 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1980 // Construct SELECT UID command
1981 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1982 memcpy(sel_uid
+2, uid_resp
, 4); // the UID
1983 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1984 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1985 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1988 if (!ReaderReceive(resp
, resp_par
)) return 0;
1991 // Test if more parts of the uid are coming
1992 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1993 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1994 // http://www.nxp.com/documents/application_note/AN10927.pdf
1995 uid_resp
[0] = uid_resp
[1];
1996 uid_resp
[1] = uid_resp
[2];
1997 uid_resp
[2] = uid_resp
[3];
2003 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
2007 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
2008 p_hi14a_card
->uidlen
+= uid_resp_len
;
2013 p_hi14a_card
->sak
= sak
;
2014 p_hi14a_card
->ats_len
= 0;
2017 // non iso14443a compliant tag
2018 if( (sak
& 0x20) == 0) return 2;
2020 // Request for answer to select
2021 AppendCrc14443a(rats
, 2);
2022 ReaderTransmit(rats
, sizeof(rats
), NULL
);
2024 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
2028 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
2029 p_hi14a_card
->ats_len
= len
;
2032 // reset the PCB block number
2033 iso14_pcb_blocknum
= 0;
2035 // set default timeout based on ATS
2036 iso14a_set_ATS_timeout(resp
);
2041 void iso14443a_setup(uint8_t fpga_minor_mode
) {
2042 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
2043 // Set up the synchronous serial port
2045 // connect Demodulated Signal to ADC:
2046 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
2048 // Signal field is on with the appropriate LED
2049 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
2050 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
2055 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
2062 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
2063 iso14a_set_timeout(10*106); // 10ms default
2066 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
2067 uint8_t parity
[MAX_PARITY_SIZE
];
2068 uint8_t real_cmd
[cmd_len
+4];
2069 real_cmd
[0] = 0x0a; //I-Block
2070 // put block number into the PCB
2071 real_cmd
[0] |= iso14_pcb_blocknum
;
2072 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
2073 memcpy(real_cmd
+2, cmd
, cmd_len
);
2074 AppendCrc14443a(real_cmd
,cmd_len
+2);
2076 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
2077 size_t len
= ReaderReceive(data
, parity
);
2078 uint8_t *data_bytes
= (uint8_t *) data
;
2080 return 0; //DATA LINK ERROR
2081 // if we received an I- or R(ACK)-Block with a block number equal to the
2082 // current block number, toggle the current block number
2083 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
2084 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
2085 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2086 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
2088 iso14_pcb_blocknum
^= 1;
2094 //-----------------------------------------------------------------------------
2095 // Read an ISO 14443a tag. Send out commands and store answers.
2097 //-----------------------------------------------------------------------------
2098 void ReaderIso14443a(UsbCommand
*c
)
2100 iso14a_command_t param
= c
->arg
[0];
2101 uint8_t *cmd
= c
->d
.asBytes
;
2102 size_t len
= c
->arg
[1] & 0xffff;
2103 size_t lenbits
= c
->arg
[1] >> 16;
2104 uint32_t timeout
= c
->arg
[2];
2106 byte_t buf
[USB_CMD_DATA_SIZE
];
2107 uint8_t par
[MAX_PARITY_SIZE
];
2109 if(param
& ISO14A_CONNECT
) {
2115 if(param
& ISO14A_REQUEST_TRIGGER
) {
2116 iso14a_set_trigger(TRUE
);
2119 if(param
& ISO14A_CONNECT
) {
2120 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
2121 if(!(param
& ISO14A_NO_SELECT
)) {
2122 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
2123 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
2124 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
2128 if(param
& ISO14A_SET_TIMEOUT
) {
2129 iso14a_set_timeout(timeout
);
2132 if(param
& ISO14A_APDU
) {
2133 arg0
= iso14_apdu(cmd
, len
, buf
);
2134 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2137 if(param
& ISO14A_RAW
) {
2138 if(param
& ISO14A_APPEND_CRC
) {
2139 if(param
& ISO14A_TOPAZMODE
) {
2140 AppendCrc14443b(cmd
,len
);
2142 AppendCrc14443a(cmd
,len
);
2145 if (lenbits
) lenbits
+= 16;
2147 if(lenbits
>0) { // want to send a specific number of bits (e.g. short commands)
2148 if(param
& ISO14A_TOPAZMODE
) {
2149 int bits_to_send
= lenbits
;
2151 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 7), NULL
, NULL
); // first byte is always short (7bits) and no parity
2153 while (bits_to_send
> 0) {
2154 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 8), NULL
, NULL
); // following bytes are 8 bit and no parity
2158 GetParity(cmd
, lenbits
/8, par
);
2159 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
); // bytes are 8 bit with odd parity
2161 } else { // want to send complete bytes only
2162 if(param
& ISO14A_TOPAZMODE
) {
2164 ReaderTransmitBitsPar(&cmd
[i
++], 7, NULL
, NULL
); // first byte: 7 bits, no paritiy
2166 ReaderTransmitBitsPar(&cmd
[i
++], 8, NULL
, NULL
); // following bytes: 8 bits, no paritiy
2169 ReaderTransmit(cmd
,len
, NULL
); // 8 bits, odd parity
2172 arg0
= ReaderReceive(buf
, par
);
2173 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2176 if(param
& ISO14A_REQUEST_TRIGGER
) {
2177 iso14a_set_trigger(FALSE
);
2180 if(param
& ISO14A_NO_DISCONNECT
) {
2184 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2190 // Determine the distance between two nonces.
2191 // Assume that the difference is small, but we don't know which is first.
2192 // Therefore try in alternating directions.
2193 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
2196 uint32_t nttmp1
, nttmp2
;
2198 if (nt1
== nt2
) return 0;
2203 for (i
= 1; i
< 0xFFFF; i
++) {
2204 nttmp1
= prng_successor(nttmp1
, 1);
2205 if (nttmp1
== nt2
) return i
;
2206 nttmp2
= prng_successor(nttmp2
, 1);
2207 if (nttmp2
== nt1
) return -i
;
2210 return(-99999); // either nt1 or nt2 are invalid nonces
2214 //-----------------------------------------------------------------------------
2215 // Recover several bits of the cypher stream. This implements (first stages of)
2216 // the algorithm described in "The Dark Side of Security by Obscurity and
2217 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2218 // (article by Nicolas T. Courtois, 2009)
2219 //-----------------------------------------------------------------------------
2220 void ReaderMifare(bool first_try
)
2223 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
2224 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2225 static uint8_t mf_nr_ar3
;
2227 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
];
2228 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
];
2231 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2234 // free eventually allocated BigBuf memory. We want all for tracing.
2241 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2242 static byte_t par_low
= 0;
2244 uint8_t uid
[10] ={0};
2248 uint32_t previous_nt
= 0;
2249 static uint32_t nt_attacked
= 0;
2250 byte_t par_list
[8] = {0x00};
2251 byte_t ks_list
[8] = {0x00};
2253 #define PRNG_SEQUENCE_LENGTH (1 << 16);
2254 static uint32_t sync_time
= 0;
2255 static int32_t sync_cycles
= 0;
2256 int catch_up_cycles
= 0;
2257 int last_catch_up
= 0;
2258 uint16_t elapsed_prng_sequences
;
2259 uint16_t consecutive_resyncs
= 0;
2264 sync_time
= GetCountSspClk() & 0xfffffff8;
2265 sync_cycles
= PRNG_SEQUENCE_LENGTH
; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2270 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2272 mf_nr_ar
[3] = mf_nr_ar3
;
2281 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2282 #define MAX_SYNC_TRIES 32
2283 #define NUM_DEBUG_INFOS 8 // per strategy
2284 #define MAX_STRATEGY 3
2285 uint16_t unexpected_random
= 0;
2286 uint16_t sync_tries
= 0;
2287 int16_t debug_info_nr
= -1;
2288 uint16_t strategy
= 0;
2289 int32_t debug_info
[MAX_STRATEGY
][NUM_DEBUG_INFOS
];
2290 uint32_t select_time
;
2293 for(uint16_t i
= 0; TRUE
; i
++) {
2298 // Test if the action was cancelled
2299 if(BUTTON_PRESS()) {
2304 if (strategy
== 2) {
2305 // test with additional hlt command
2307 int len
= mifare_sendcmd_short(NULL
, false, 0x50, 0x00, receivedAnswer
, receivedAnswerPar
, &halt_time
);
2308 if (len
&& MF_DBGLEVEL
>= 3) {
2309 Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len
);
2313 if (strategy
== 3) {
2314 // test with FPGA power off/on
2315 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2317 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2321 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2322 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2325 select_time
= GetCountSspClk();
2327 elapsed_prng_sequences
= 1;
2328 if (debug_info_nr
== -1) {
2329 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2330 catch_up_cycles
= 0;
2332 // if we missed the sync time already, advance to the next nonce repeat
2333 while(GetCountSspClk() > sync_time
) {
2334 elapsed_prng_sequences
++;
2335 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2338 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2339 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2341 // collect some information on tag nonces for debugging:
2342 #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
2343 if (strategy
== 0) {
2344 // nonce distances at fixed time after card select:
2345 sync_time
= select_time
+ DEBUG_FIXED_SYNC_CYCLES
;
2346 } else if (strategy
== 1) {
2347 // nonce distances at fixed time between authentications:
2348 sync_time
= sync_time
+ DEBUG_FIXED_SYNC_CYCLES
;
2349 } else if (strategy
== 2) {
2350 // nonce distances at fixed time after halt:
2351 sync_time
= halt_time
+ DEBUG_FIXED_SYNC_CYCLES
;
2353 // nonce_distances at fixed time after power on
2354 sync_time
= DEBUG_FIXED_SYNC_CYCLES
;
2356 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2359 // Receive the (4 Byte) "random" nonce
2360 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2361 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2366 nt
= bytes_to_num(receivedAnswer
, 4);
2368 // Transmit reader nonce with fake par
2369 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2371 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2372 int nt_distance
= dist_nt(previous_nt
, nt
);
2373 if (nt_distance
== 0) {
2376 if (nt_distance
== -99999) { // invalid nonce received
2377 unexpected_random
++;
2378 if (unexpected_random
> MAX_UNEXPECTED_RANDOM
) {
2379 isOK
= -3; // Card has an unpredictable PRNG. Give up
2382 continue; // continue trying...
2385 if (++sync_tries
> MAX_SYNC_TRIES
) {
2386 if (strategy
> MAX_STRATEGY
|| MF_DBGLEVEL
< 3) {
2387 isOK
= -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2389 } else { // continue for a while, just to collect some debug info
2390 debug_info
[strategy
][debug_info_nr
] = nt_distance
;
2392 if (debug_info_nr
== NUM_DEBUG_INFOS
) {
2399 sync_cycles
= (sync_cycles
- nt_distance
/elapsed_prng_sequences
);
2400 if (sync_cycles
<= 0) {
2401 sync_cycles
+= PRNG_SEQUENCE_LENGTH
;
2403 if (MF_DBGLEVEL
>= 3) {
2404 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i
, nt_distance
, elapsed_prng_sequences
, sync_cycles
);
2410 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2411 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2412 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2413 catch_up_cycles
= 0;
2416 catch_up_cycles
/= elapsed_prng_sequences
;
2417 if (catch_up_cycles
== last_catch_up
) {
2418 consecutive_resyncs
++;
2421 last_catch_up
= catch_up_cycles
;
2422 consecutive_resyncs
= 0;
2424 if (consecutive_resyncs
< 3) {
2425 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2428 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2429 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2431 catch_up_cycles
= 0;
2432 consecutive_resyncs
= 0;
2437 consecutive_resyncs
= 0;
2439 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2440 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2441 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2444 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2448 if(led_on
) LED_B_ON(); else LED_B_OFF();
2450 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2451 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2453 // Test if the information is complete
2454 if (nt_diff
== 0x07) {
2459 nt_diff
= (nt_diff
+ 1) & 0x07;
2460 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2463 if (nt_diff
== 0 && first_try
)
2466 if (par
[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2471 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2477 mf_nr_ar
[3] &= 0x1F;
2480 if (MF_DBGLEVEL
>= 3) {
2481 for (uint16_t i
= 0; i
<= MAX_STRATEGY
; i
++) {
2482 for(uint16_t j
= 0; j
< NUM_DEBUG_INFOS
; j
++) {
2483 Dbprintf("collected debug info[%d][%d] = %d", i
, j
, debug_info
[i
][j
]);
2490 memcpy(buf
+ 0, uid
, 4);
2491 num_to_bytes(nt
, 4, buf
+ 4);
2492 memcpy(buf
+ 8, par_list
, 8);
2493 memcpy(buf
+ 16, ks_list
, 8);
2494 memcpy(buf
+ 24, mf_nr_ar
, 4);
2496 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2499 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2506 *MIFARE 1K simulate.
2509 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2510 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2511 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2512 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2513 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2515 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2517 int cardSTATE
= MFEMUL_NOFIELD
;
2519 int vHf
= 0; // in mV
2521 uint32_t selTimer
= 0;
2522 uint32_t authTimer
= 0;
2524 uint8_t cardWRBL
= 0;
2525 uint8_t cardAUTHSC
= 0;
2526 uint8_t cardAUTHKEY
= 0xff; // no authentication
2527 // uint32_t cardRr = 0;
2529 //uint32_t rn_enc = 0;
2531 uint32_t cardINTREG
= 0;
2532 uint8_t cardINTBLOCK
= 0;
2533 struct Crypto1State mpcs
= {0, 0};
2534 struct Crypto1State
*pcs
;
2536 uint32_t numReads
= 0;//Counts numer of times reader read a block
2537 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2538 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
];
2539 uint8_t response
[MAX_MIFARE_FRAME_SIZE
];
2540 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
];
2542 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2543 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2544 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2545 //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2546 uint8_t rSAK
[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2547 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2549 uint8_t rAUTH_NT
[] = {0x01, 0x01, 0x01, 0x01};
2550 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2552 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2553 // This can be used in a reader-only attack.
2554 // (it can also be retrieved via 'hf 14a list', but hey...
2555 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0,0,0};
2556 uint8_t ar_nr_collected
= 0;
2558 // Authenticate response - nonce
2559 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2561 //-- Determine the UID
2562 // Can be set from emulator memory, incoming data
2563 // and can be 7 or 4 bytes long
2564 if (flags
& FLAG_4B_UID_IN_DATA
)
2566 // 4B uid comes from data-portion of packet
2567 memcpy(rUIDBCC1
,datain
,4);
2568 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2570 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2571 // 7B uid comes from data-portion of packet
2572 memcpy(&rUIDBCC1
[1],datain
,3);
2573 memcpy(rUIDBCC2
, datain
+3, 4);
2576 // get UID from emul memory
2577 emlGetMemBt(receivedCmd
, 7, 1);
2578 _7BUID
= !(receivedCmd
[0] == 0x00);
2579 if (!_7BUID
) { // ---------- 4BUID
2580 emlGetMemBt(rUIDBCC1
, 0, 4);
2581 } else { // ---------- 7BUID
2582 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2583 emlGetMemBt(rUIDBCC2
, 3, 4);
2588 ar_nr_responses
[0*5] = bytes_to_num(rUIDBCC1
+1, 3);
2590 ar_nr_responses
[0*5+1] = bytes_to_num(rUIDBCC2
, 4);
2593 * Regardless of what method was used to set the UID, set fifth byte and modify
2594 * the ATQA for 4 or 7-byte UID
2596 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2600 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2601 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2604 if (MF_DBGLEVEL
>= 1) {
2606 Dbprintf("4B UID: %02x%02x%02x%02x",
2607 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
2609 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2610 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
2611 rUIDBCC2
[0], rUIDBCC2
[1] ,rUIDBCC2
[2], rUIDBCC2
[3]);
2615 // We need to listen to the high-frequency, peak-detected path.
2616 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2618 // free eventually allocated BigBuf memory but keep Emulator Memory
2619 BigBuf_free_keep_EM();
2626 bool finished
= FALSE
;
2627 while (!BUTTON_PRESS() && !finished
) {
2630 // find reader field
2631 if (cardSTATE
== MFEMUL_NOFIELD
) {
2632 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
2633 if (vHf
> MF_MINFIELDV
) {
2634 cardSTATE_TO_IDLE();
2638 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2641 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2642 if (res
== 2) { //Field is off!
2643 cardSTATE
= MFEMUL_NOFIELD
;
2646 } else if (res
== 1) {
2647 break; //return value 1 means button press
2650 // REQ or WUP request in ANY state and WUP in HALTED state
2651 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2652 selTimer
= GetTickCount();
2653 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2654 cardSTATE
= MFEMUL_SELECT1
;
2656 // init crypto block
2659 crypto1_destroy(pcs
);
2664 switch (cardSTATE
) {
2665 case MFEMUL_NOFIELD
:
2668 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2671 case MFEMUL_SELECT1
:{
2673 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2674 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2675 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2679 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2681 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2685 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2686 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2687 cuid
= bytes_to_num(rUIDBCC1
, 4);
2689 cardSTATE
= MFEMUL_WORK
;
2691 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2694 cardSTATE
= MFEMUL_SELECT2
;
2702 cardSTATE_TO_IDLE();
2703 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2707 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2708 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2711 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2712 if(ar_nr_collected
< 2){
2713 if(ar_nr_responses
[2] != ar
)
2714 {// Avoid duplicates... probably not necessary, ar should vary.
2715 //ar_nr_responses[ar_nr_collected*5] = 0;
2716 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2717 ar_nr_responses
[ar_nr_collected
*5+2] = nonce
;
2718 ar_nr_responses
[ar_nr_collected
*5+3] = nr
;
2719 ar_nr_responses
[ar_nr_collected
*5+4] = ar
;
2722 // Interactive mode flag, means we need to send ACK
2723 if(flags
& FLAG_INTERACTIVE
&& ar_nr_collected
== 2)
2730 //crypto1_word(pcs, ar , 1);
2731 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2734 //if (cardRr != prng_successor(nonce, 64)){
2736 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2737 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2738 // cardRr, prng_successor(nonce, 64));
2739 // Shouldn't we respond anything here?
2740 // Right now, we don't nack or anything, which causes the
2741 // reader to do a WUPA after a while. /Martin
2742 // -- which is the correct response. /piwi
2743 //cardSTATE_TO_IDLE();
2744 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2748 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2750 num_to_bytes(ans
, 4, rAUTH_AT
);
2752 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2754 cardSTATE
= MFEMUL_WORK
;
2755 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2756 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2757 GetTickCount() - authTimer
);
2760 case MFEMUL_SELECT2
:{
2762 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2765 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2766 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2772 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2773 EmSendCmd(rSAK
, sizeof(rSAK
));
2774 cuid
= bytes_to_num(rUIDBCC2
, 4);
2775 cardSTATE
= MFEMUL_WORK
;
2777 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2781 // i guess there is a command). go into the work state.
2783 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2786 cardSTATE
= MFEMUL_WORK
;
2788 //intentional fall-through to the next case-stmt
2793 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2797 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2799 if(encrypted_data
) {
2801 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2804 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2805 authTimer
= GetTickCount();
2806 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2807 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2808 crypto1_destroy(pcs
);//Added by martin
2809 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2811 if (!encrypted_data
) { // first authentication
2812 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2814 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2815 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2816 } else { // nested authentication
2817 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2818 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2819 num_to_bytes(ans
, 4, rAUTH_AT
);
2822 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2823 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2824 cardSTATE
= MFEMUL_AUTH1
;
2828 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2829 // BUT... ACK --> NACK
2830 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2831 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2835 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2836 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2837 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2842 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2846 if(receivedCmd
[0] == 0x30 // read block
2847 || receivedCmd
[0] == 0xA0 // write block
2848 || receivedCmd
[0] == 0xC0 // inc
2849 || receivedCmd
[0] == 0xC1 // dec
2850 || receivedCmd
[0] == 0xC2 // restore
2851 || receivedCmd
[0] == 0xB0) { // transfer
2852 if (receivedCmd
[1] >= 16 * 4) {
2853 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2854 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2858 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2859 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2860 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2865 if (receivedCmd
[0] == 0x30) {
2866 if (MF_DBGLEVEL
>= 4) {
2867 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2869 emlGetMem(response
, receivedCmd
[1], 1);
2870 AppendCrc14443a(response
, 16);
2871 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2872 EmSendCmdPar(response
, 18, response_par
);
2874 if(exitAfterNReads
> 0 && numReads
>= exitAfterNReads
) {
2875 Dbprintf("%d reads done, exiting", numReads
);
2881 if (receivedCmd
[0] == 0xA0) {
2882 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2883 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2884 cardSTATE
= MFEMUL_WRITEBL2
;
2885 cardWRBL
= receivedCmd
[1];
2888 // increment, decrement, restore
2889 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2890 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2891 if (emlCheckValBl(receivedCmd
[1])) {
2892 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2893 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2896 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2897 if (receivedCmd
[0] == 0xC1)
2898 cardSTATE
= MFEMUL_INTREG_INC
;
2899 if (receivedCmd
[0] == 0xC0)
2900 cardSTATE
= MFEMUL_INTREG_DEC
;
2901 if (receivedCmd
[0] == 0xC2)
2902 cardSTATE
= MFEMUL_INTREG_REST
;
2903 cardWRBL
= receivedCmd
[1];
2907 if (receivedCmd
[0] == 0xB0) {
2908 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2909 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2910 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2912 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2916 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2919 cardSTATE
= MFEMUL_HALTED
;
2920 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2921 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2925 if (receivedCmd
[0] == 0xe0) {//RATS
2926 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2929 // command not allowed
2930 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2931 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2934 case MFEMUL_WRITEBL2
:{
2936 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2937 emlSetMem(receivedCmd
, cardWRBL
, 1);
2938 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2939 cardSTATE
= MFEMUL_WORK
;
2941 cardSTATE_TO_IDLE();
2942 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2947 case MFEMUL_INTREG_INC
:{
2948 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2949 memcpy(&ans
, receivedCmd
, 4);
2950 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2951 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2952 cardSTATE_TO_IDLE();
2955 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2956 cardINTREG
= cardINTREG
+ ans
;
2957 cardSTATE
= MFEMUL_WORK
;
2960 case MFEMUL_INTREG_DEC
:{
2961 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2962 memcpy(&ans
, receivedCmd
, 4);
2963 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2964 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2965 cardSTATE_TO_IDLE();
2968 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2969 cardINTREG
= cardINTREG
- ans
;
2970 cardSTATE
= MFEMUL_WORK
;
2973 case MFEMUL_INTREG_REST
:{
2974 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2975 memcpy(&ans
, receivedCmd
, 4);
2976 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2977 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2978 cardSTATE_TO_IDLE();
2981 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2982 cardSTATE
= MFEMUL_WORK
;
2988 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2991 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2993 //May just aswell send the collected ar_nr in the response aswell
2994 uint8_t len
= ar_nr_collected
*5*4;
2995 cmd_send(CMD_ACK
, CMD_SIMULATE_MIFARE_CARD
, len
, 0, &ar_nr_responses
, len
);
2998 if(flags
& FLAG_NR_AR_ATTACK
&& MF_DBGLEVEL
>= 1 )
3000 if(ar_nr_collected
> 1 ) {
3001 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
3002 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
3003 ar_nr_responses
[0], // UID1
3004 ar_nr_responses
[1], // UID2
3005 ar_nr_responses
[2], // NT
3006 ar_nr_responses
[3], // AR1
3007 ar_nr_responses
[4], // NR1
3008 ar_nr_responses
[8], // AR2
3009 ar_nr_responses
[9] // NR2
3011 Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
3012 ar_nr_responses
[0], // UID1
3013 ar_nr_responses
[1], // UID2
3014 ar_nr_responses
[2], // NT1
3015 ar_nr_responses
[3], // AR1
3016 ar_nr_responses
[4], // NR1
3017 ar_nr_responses
[7], // NT2
3018 ar_nr_responses
[8], // AR2
3019 ar_nr_responses
[9] // NR2
3022 Dbprintf("Failed to obtain two AR/NR pairs!");
3023 if(ar_nr_collected
> 0 ) {
3024 Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
3025 ar_nr_responses
[0], // UID1
3026 ar_nr_responses
[1], // UID2
3027 ar_nr_responses
[2], // NT
3028 ar_nr_responses
[3], // AR1
3029 ar_nr_responses
[4] // NR1
3034 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
3040 //-----------------------------------------------------------------------------
3043 //-----------------------------------------------------------------------------
3044 void RAMFUNC
SniffMifare(uint8_t param
) {
3046 // bit 0 - trigger from first card answer
3047 // bit 1 - trigger from first reader 7-bit request
3049 // C(red) A(yellow) B(green)
3051 // init trace buffer
3055 // The command (reader -> tag) that we're receiving.
3056 // The length of a received command will in most cases be no more than 18 bytes.
3057 // So 32 should be enough!
3058 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
3059 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
];
3060 // The response (tag -> reader) that we're receiving.
3061 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
];
3062 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
];
3064 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
3066 // free eventually allocated BigBuf memory
3068 // allocate the DMA buffer, used to stream samples from the FPGA
3069 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
3070 uint8_t *data
= dmaBuf
;
3071 uint8_t previous_data
= 0;
3074 bool ReaderIsActive
= FALSE
;
3075 bool TagIsActive
= FALSE
;
3077 // Set up the demodulator for tag -> reader responses.
3078 DemodInit(receivedResponse
, receivedResponsePar
);
3080 // Set up the demodulator for the reader -> tag commands
3081 UartInit(receivedCmd
, receivedCmdPar
);
3083 // Setup for the DMA.
3084 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
3091 // And now we loop, receiving samples.
3092 for(uint32_t sniffCounter
= 0; TRUE
; ) {
3094 if(BUTTON_PRESS()) {
3095 DbpString("cancelled by button");
3102 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
3103 // check if a transaction is completed (timeout after 2000ms).
3104 // if yes, stop the DMA transfer and send what we have so far to the client
3105 if (MfSniffSend(2000)) {
3106 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
3110 ReaderIsActive
= FALSE
;
3111 TagIsActive
= FALSE
;
3112 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
3116 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
3117 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
3118 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
3119 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
3121 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
3123 // test for length of buffer
3124 if(dataLen
> maxDataLen
) { // we are more behind than ever...
3125 maxDataLen
= dataLen
;
3126 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
3127 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
3131 if(dataLen
< 1) continue;
3133 // primary buffer was stopped ( <-- we lost data!
3134 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
3135 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
3136 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
3137 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
3139 // secondary buffer sets as primary, secondary buffer was stopped
3140 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
3141 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
3142 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
3147 if (sniffCounter
& 0x01) {
3149 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
3150 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
3151 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
3153 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
3155 /* And ready to receive another command. */
3158 /* And also reset the demod code */
3161 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
3164 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
3165 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
3166 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
3169 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
3171 // And ready to receive another response.
3174 // And reset the Miller decoder including its (now outdated) input buffer
3175 UartInit(receivedCmd
, receivedCmdPar
);
3176 // why not UartReset?
3178 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
3182 previous_data
= *data
;
3185 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
3191 FpgaDisableSscDma();
3194 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);