1 //-----------------------------------------------------------------------------
2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // LEGIC RF simulation code
9 //-----------------------------------------------------------------------------
12 static struct legic_frame
{
23 static crc_t legic_crc
;
24 static int legic_read_count
;
25 static uint32_t legic_prng_bc
;
26 static uint32_t legic_prng_iv
;
28 static int legic_phase_drift
;
29 static int legic_frame_drift
;
30 static int legic_reqresp_drift
;
36 static void setup_timer(void) {
37 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
38 // this it won't be terribly accurate but should be good enough.
40 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
41 timer = AT91C_BASE_TC1;
42 timer->TC_CCR = AT91C_TC_CLKDIS;
43 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
44 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
47 // Set up Timer 2 to use for measuring time between frames in
48 // tag simulation mode. Runs 4x faster as Timer 1
50 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
51 prng_timer = AT91C_BASE_TC2;
52 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
53 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
54 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
57 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
58 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
61 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
62 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
63 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
64 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
65 AT91C_BASE_TC0->TC_RA = 1;
66 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
70 // At TIMER_CLOCK3 (MCK/32)
71 //#define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */
72 //#define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */
73 //#define RWD_TIME_PAUSE 30 /* 20us */
75 // testing calculating in (us) microseconds.
76 #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
77 #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
78 #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
79 #define TAG_BIT_PERIOD 150 // 100us == 100 * 1.5 == 150ticks
80 #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
82 #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
84 #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
85 #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
87 #define OFFSET_LOG 1024
89 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
92 //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x)
93 # define SHORT_COIL LOW(GPIO_SSC_DOUT);
96 //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x)
97 # define OPEN_COIL HIGH(GPIO_SSC_DOUT);
100 uint32_t sendFrameStop
= 0;
102 // Pause pulse, off in 20us / 30ticks,
103 // ONE / ZERO bit pulse,
104 // one == 80us / 120ticks
105 // zero == 40us / 60ticks
107 # define COIL_PULSE(x) { \
109 WaitTicks(RWD_TIME_PAUSE); \
115 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
116 // Historically it used to be FREE_BUFFER_SIZE, which was 2744.
117 #define LEGIC_CARD_MEMSIZE 1024
118 static uint8_t* cardmem
;
120 static void frame_append_bit(struct legic_frame
* const f
, int bit
) {
121 // Overflow, won't happen
122 if (f
->bits
>= 31) return;
124 f
->data
|= (bit
<< f
->bits
);
128 static void frame_clean(struct legic_frame
* const f
) {
133 // Prng works when waiting in 99.1us cycles.
134 // and while sending/receiving in bit frames (100, 60)
135 /*static void CalibratePrng( uint32_t time){
136 // Calculate Cycles based on timer 100us
137 uint32_t i = (time - sendFrameStop) / 100 ;
139 // substract cycles of finished frames
140 int k = i - legic_prng_count()+1;
142 // substract current frame length, rewind to beginning
144 legic_prng_forward(k);
148 /* Generate Keystream */
149 uint32_t get_key_stream(int skip
, int count
) {
153 // Use int to enlarge timer tc to 32bit
154 legic_prng_bc
+= prng_timer
->TC_CV
;
156 // reset the prng timer.
157 ResetTimer(prng_timer
);
159 /* If skip == -1, forward prng time based */
161 i
= (legic_prng_bc
+ SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */
162 i
-= legic_prng_count(); /* substract cycles of finished frames */
163 i
-= count
; /* substract current frame length, rewind to beginning */
164 legic_prng_forward(i
);
166 legic_prng_forward(skip
);
169 i
= (count
== 6) ? -1 : legic_read_count
;
171 /* Write Time Data into LOG */
172 // uint8_t *BigBuf = BigBuf_get_addr();
173 // BigBuf[OFFSET_LOG+128+i] = legic_prng_count();
174 // BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff;
175 // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff;
176 // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff;
177 // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff;
178 // BigBuf[OFFSET_LOG+384+i] = count;
180 /* Generate KeyStream */
181 for(i
=0; i
<count
; i
++) {
182 key
|= legic_prng_get_bit() << i
;
183 legic_prng_forward(1);
188 /* Send a frame in tag mode, the FPGA must have been set up by
191 void frame_send_tag(uint16_t response
, uint8_t bits
, uint8_t crypt
) {
192 /* Bitbang the response */
194 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
195 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
197 /* Use time to crypt frame */
199 legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */
200 response
^= legic_prng_get_bits(bits
);
203 /* Wait for the frame start */
204 WaitUS( TAG_FRAME_WAIT
);
207 for(int i
= 0; i
< bits
; i
++) {
222 /* Send a frame in reader mode, the FPGA must have been set up by
225 void frame_sendAsReader(uint32_t data
, uint8_t bits
){
227 uint32_t starttime
= GET_TICKS
, send
= 0;
229 uint8_t prng1
= legic_prng_count() ;
231 // xor lsfr onto data.
232 send
= data
^ legic_prng_get_bits(bits
);
234 for (; mask
< BITMASK(bits
); mask
<<= 1) {
236 COIL_PULSE(RWD_TIME_1
);
238 COIL_PULSE(RWD_TIME_0
);
242 // Final pause to mark the end of the frame
245 sendFrameStop
= GET_TICKS
;
246 uint8_t cmdbytes
[] = {
253 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, sendFrameStop
, NULL
, TRUE
);
256 /* Receive a frame from the card in reader emulation mode, the FPGA and
257 * timer must have been set up by LegicRfReader and frame_sendAsReader.
259 * The LEGIC RF protocol from card to reader does not include explicit
260 * frame start/stop information or length information. The reader must
261 * know beforehand how many bits it wants to receive. (Notably: a card
262 * sending a stream of 0-bits is indistinguishable from no card present.)
264 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
265 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
266 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
267 * for edges. Count the edges in each bit interval. If they are approximately
268 * 0 this was a 0-bit, if they are approximately equal to the number of edges
269 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
270 * timer that's still running from frame_sendAsReader in order to get a synchronization
271 * with the frame that we just sent.
273 * FIXME: Because we're relying on the hysteresis to just do the right thing
274 * the range is severely reduced (and you'll probably also need a good antenna).
275 * So this should be fixed some time in the future for a proper receiver.
277 static void frame_receiveAsReader(struct legic_frame
* const f
, uint8_t bits
) {
280 if ( bits
> 32 ) return;
282 uint8_t i
= bits
, edges
= 0;
284 uint32_t the_bit
= 1, next_bit_at
= 0, data
;
285 int old_level
= 0, level
= 0;
287 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
288 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
290 // calibrate the prng.
291 legic_prng_forward(2);
293 // precompute the cipher
294 uint8_t prng_before
= legic_prng_count() ;
296 lsfr
= legic_prng_get_bits(bits
);
300 //FIXED time between sending frame and now listening frame. 330us
301 //WaitTicks( GET_TICKS - sendFrameStop - TAG_FRAME_WAIT);
304 uint32_t starttime
= GET_TICKS
;
306 next_bit_at
= GET_TICKS
+ TAG_BIT_PERIOD
;
310 while ( GET_TICKS
< next_bit_at
) {
312 level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
314 if (level
!= old_level
)
319 next_bit_at
+= TAG_BIT_PERIOD
;
321 // We expect 42 edges == ONE
322 if(edges
> 30 && edges
< 64)
333 sendFrameStop
= GET_TICKS
;
335 uint8_t cmdbytes
[] = {
341 BYTEx(data
, 0) ^ BYTEx(lsfr
,0),
342 BYTEx(data
, 1) ^ BYTEx(lsfr
,1),
346 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, sendFrameStop
, NULL
, FALSE
);
349 // Setup pm3 as a Legic Reader
350 static uint32_t setup_phase_reader(uint8_t iv
) {
352 // Switch on carrier and let the tag charge for 1ms
362 frame_sendAsReader(iv
, 7);
364 // Now both tag and reader has same IV. Prng can start.
367 frame_receiveAsReader(¤t_frame
, 6);
369 // fixed delay before sending ack.
370 WaitTicks(387); // 244us
371 legic_prng_forward(3); //240us / 100 == 2.4 iterations
373 // Send obsfuscated acknowledgment frame.
374 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
375 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
376 switch ( current_frame
.data
) {
377 case 0x0D: frame_sendAsReader(0x19, 6); break;
379 case 0x3D: frame_sendAsReader(0x39, 6); break;
382 return current_frame
.data
;
385 static void LegicCommonInit(void) {
387 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
388 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
);
389 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
391 /* Bitbang the transmitter */
393 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
394 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
396 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
397 cardmem
= BigBuf_malloc(LEGIC_CARD_MEMSIZE
);
398 memset(cardmem
, 0x00, LEGIC_CARD_MEMSIZE
);
402 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
407 // Switch off carrier, make sure tag is reset
408 static void switch_off_tag_rwd(void) {
412 Dbprintf("Exit Switch_off_tag_rwd");
415 // calculate crc4 for a legic READ command
416 // 5,8,10 address size.
417 static uint32_t legic4Crc(uint8_t legicCmd
, uint16_t byte_index
, uint8_t value
, uint8_t cmd_sz
) {
418 crc_clear(&legic_crc
);
419 //uint32_t temp = (value << cmd_sz) | (byte_index << 1) | legicCmd;
420 //crc_update(&legic_crc, temp, cmd_sz + 8 );
421 crc_update(&legic_crc
, 1, 1); /* CMD_READ */
422 crc_update(&legic_crc
, byte_index
, cmd_sz
-1);
423 crc_update(&legic_crc
, value
, 8);
424 return crc_finish(&legic_crc
);
427 int legic_read_byte(int byte_index
, int cmd_sz
) {
436 legic_prng_forward(2); // 460 / 100 = 4.6 iterations
438 uint8_t byte
= 0, crc
= 0, calcCrc
= 0;
439 uint32_t cmd
= (byte_index
<< 1) | LEGIC_READ
;
441 frame_sendAsReader(cmd
, cmd_sz
);
442 frame_receiveAsReader(¤t_frame
, 12);
444 byte
= BYTEx(current_frame
.data
, 0);
445 calcCrc
= legic4Crc(LEGIC_READ
, byte_index
, byte
, cmd_sz
);
446 crc
= BYTEx(current_frame
.data
, 1);
448 if( calcCrc
!= crc
) {
449 Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc
, crc
);
454 // legic_prng_forward(2); // 460 / 100 = 4.6 iterations
459 * - assemble a write_cmd_frame with crc and send it
460 * - wait until the tag sends back an ACK ('1' bit unencrypted)
461 * - forward the prng based on the timing
463 //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
464 int legic_write_byte(uint8_t byte
, uint16_t addr
, uint8_t addr_sz
) {
466 //do not write UID, CRC at offset 0-4.
467 if (addr
<= 4) return 0;
470 crc_clear(&legic_crc
);
471 crc_update(&legic_crc
, 0, 1); /* CMD_WRITE */
472 crc_update(&legic_crc
, addr
, addr_sz
);
473 crc_update(&legic_crc
, byte
, 8);
474 uint32_t crc
= crc_finish(&legic_crc
);
476 uint32_t crc2
= legic4Crc(LEGIC_WRITE
, addr
, byte
, addr_sz
+1);
478 Dbprintf("crc is missmatch");
480 // send write command
481 uint32_t cmd
= ((crc
<<(addr_sz
+1+8)) //CRC
482 |(byte
<<(addr_sz
+1)) //Data
483 |(addr
<<1) //Address
484 | LEGIC_WRITE
); //CMD = Write
486 uint32_t cmd_sz
= addr_sz
+1+8+4; //crc+data+cmd
488 legic_prng_forward(2); /* we wait anyways */
490 WaitUS(TAG_FRAME_WAIT
);
492 frame_sendAsReader(cmd
, cmd_sz
);
494 // wllm-rbnt doesnt have these
495 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
496 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
499 int t
, old_level
= 0, edges
= 0;
502 WaitUS(TAG_FRAME_WAIT
);
504 for( t
= 0; t
< 80; ++t
) {
506 next_bit_at
+= TAG_BIT_PERIOD
;
507 while(timer
->TC_CV
< next_bit_at
) {
508 int level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
509 if(level
!= old_level
)
514 if(edges
> 20 && edges
< 60) { /* expected are 42 edges */
515 int t
= timer
->TC_CV
;
516 int c
= t
/ TAG_BIT_PERIOD
;
519 legic_prng_forward(c
);
528 int LegicRfReader(int offset
, int bytes
, int iv
) {
530 uint16_t byte_index
= 0;
535 if ( MF_DBGLEVEL
>= 2)
536 Dbprintf("setting up legic card, IV = 0x%02x", iv
);
540 uint32_t tag_type
= setup_phase_reader(iv
);
542 //we lose to mutch time with dprintf
543 switch_off_tag_rwd();
547 if ( MF_DBGLEVEL
>= 2) DbpString("MIM22 card found, reading card");
552 if ( MF_DBGLEVEL
>= 2) DbpString("MIM256 card found, reading card");
557 if ( MF_DBGLEVEL
>= 2) DbpString("MIM1024 card found, reading card");
562 if ( MF_DBGLEVEL
>= 1) Dbprintf("Unknown card format: %x", tag_type
);
570 if (bytes
+ offset
>= card_sz
)
571 bytes
= card_sz
- offset
;
573 // Start setup and read bytes.
574 setup_phase_reader(iv
);
577 while (byte_index
< bytes
) {
578 int r
= legic_read_byte(byte_index
+ offset
, cmd_sz
);
580 if (r
== -1 || BUTTON_PRESS()) {
581 if ( MF_DBGLEVEL
>= 2) DbpString("operation aborted");
585 cardmem
[++byte_index
] = r
;
591 switch_off_tag_rwd();
593 uint8_t len
= (bytes
& 0x3FF);
594 cmd_send(CMD_ACK
,isOK
,len
,0,cardmem
,len
);
598 /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
602 setup_phase_reader(iv);
603 //legic_prng_forward(2);
604 while(byte_index < bytes) {
607 //check if the DCF should be changed
608 if ( (offset == 0x05) && (bytes == 0x02) ) {
609 //write DCF in reverse order (addr 0x06 before 0x05)
610 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
611 //legic_prng_forward(1);
614 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
616 //legic_prng_forward(1);
619 r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
621 if((r != 0) || BUTTON_PRESS()) {
622 Dbprintf("operation aborted @ 0x%03.3x", byte_index);
623 switch_off_tag_rwd();
631 if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
635 DbpString("write successful");
639 void LegicRfWriter(int offset
, int bytes
, int iv
) {
641 int byte_index
= 0, addr_sz
= 0;
645 if ( MF_DBGLEVEL
>= 2) DbpString("setting up legic card");
647 uint32_t tag_type
= setup_phase_reader(iv
);
649 switch_off_tag_rwd();
653 if(offset
+bytes
> 22) {
654 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset
+ bytes
);
658 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+ bytes
);
661 if(offset
+bytes
> 0x100) {
662 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset
+ bytes
);
666 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+ bytes
);
669 if(offset
+bytes
> 0x400) {
670 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset
+ bytes
);
674 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset
, offset
+ bytes
);
677 Dbprintf("No or unknown card found, aborting");
682 setup_phase_reader(iv
);
684 while(byte_index
< bytes
) {
686 //check if the DCF should be changed
687 if ( ((byte_index
+offset
) == 0x05) && (bytes
>= 0x02) ) {
688 //write DCF in reverse order (addr 0x06 before 0x05)
689 r
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
);
691 // write second byte on success...
694 r
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
);
698 r
= legic_write_byte(cardmem
[byte_index
+offset
], byte_index
+offset
, addr_sz
);
701 if ((r
!= 0) || BUTTON_PRESS()) {
702 Dbprintf("operation aborted @ 0x%03.3x", byte_index
);
703 switch_off_tag_rwd();
712 if ( MF_DBGLEVEL
>= 1) DbpString("write successful");
715 void LegicRfRawWriter(int address
, int byte
, int iv
) {
717 int byte_index
= 0, addr_sz
= 0;
721 if ( MF_DBGLEVEL
>= 2) DbpString("setting up legic card");
723 uint32_t tag_type
= setup_phase_reader(iv
);
725 switch_off_tag_rwd();
730 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address
);
734 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
);
737 if(address
> 0x100) {
738 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address
);
742 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
);
745 if(address
> 0x400) {
746 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address
);
750 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address
, byte
);
753 Dbprintf("No or unknown card found, aborting");
757 Dbprintf("integer value: %d address: %d addr_sz: %d", byte
, address
, addr_sz
);
760 setup_phase_reader(iv
);
762 int r
= legic_write_byte(byte
, address
, addr_sz
);
764 if((r
!= 0) || BUTTON_PRESS()) {
765 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index
, r
);
766 switch_off_tag_rwd();
772 if ( MF_DBGLEVEL
>= 1) DbpString("write successful");
775 /* Handle (whether to respond) a frame in tag mode
776 * Only called when simulating a tag.
778 static void frame_handle_tag(struct legic_frame
const * const f
)
780 uint8_t *BigBuf
= BigBuf_get_addr();
782 /* First Part of Handshake (IV) */
788 ResetTimer(prng_timer
);
790 legic_prng_init(f
->data
);
791 frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */
792 legic_state
= STATE_IV
;
793 legic_read_count
= 0;
795 legic_prng_iv
= f
->data
;
804 if(legic_state
== STATE_IV
) {
805 int local_key
= get_key_stream(3, 6);
806 int xored
= 0x39 ^ local_key
;
807 if((f
->bits
== 6) && (f
->data
== xored
)) {
808 legic_state
= STATE_CON
;
815 legic_state
= STATE_DISCON
;
817 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
);
824 if(legic_state
== STATE_CON
) {
825 int key
= get_key_stream(2, 11); //legic_phase_drift, 11);
826 int addr
= f
->data
^ key
; addr
= addr
>> 1;
827 int data
= BigBuf
[addr
];
828 int hash
= legic4Crc(LEGIC_READ
, addr
, data
, 11) << 8;
829 BigBuf
[OFFSET_LOG
+legic_read_count
] = (uint8_t)addr
;
832 //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
833 legic_prng_forward(legic_reqresp_drift
);
835 frame_send_tag(hash
| data
, 12, 1);
838 legic_prng_forward(2);
846 int key
= get_key_stream(-1, 23); //legic_frame_drift, 23);
847 int addr
= f
->data
^ key
; addr
= addr
>> 1; addr
= addr
& 0x3ff;
848 int data
= f
->data
^ key
; data
= data
>> 11; data
= data
& 0xff;
851 legic_state
= STATE_DISCON
;
853 Dbprintf("write - addr: %x, data: %x", addr
, data
);
857 if(legic_state
!= STATE_DISCON
) {
858 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
);
860 Dbprintf("IV: %03.3x", legic_prng_iv
);
861 for(i
= 0; i
<legic_read_count
; i
++) {
862 Dbprintf("Read Nb: %u, Addr: %u", i
, BigBuf
[OFFSET_LOG
+i
]);
865 for(i
= -1; i
<legic_read_count
; i
++) {
867 t
= BigBuf
[OFFSET_LOG
+256+i
*4];
868 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+1] << 8;
869 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+2] <<16;
870 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+3] <<24;
872 Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",
873 BigBuf
[OFFSET_LOG
+128+i
],
874 BigBuf
[OFFSET_LOG
+384+i
],
878 legic_state
= STATE_DISCON
;
879 legic_read_count
= 0;
885 /* Read bit by bit untill full frame is received
886 * Call to process frame end answer
888 static void emit(int bit
) {
892 frame_append_bit(¤t_frame
, 1);
895 frame_append_bit(¤t_frame
, 0);
898 if(current_frame
.bits
<= 4) {
899 frame_clean(¤t_frame
);
901 frame_handle_tag(¤t_frame
);
902 frame_clean(¤t_frame
);
909 void LegicRfSimulate(int phase
, int frame
, int reqresp
)
911 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
912 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
913 * envelope waveform on DIN and should send our response on DOUT.
915 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
916 * measure the time between two rising edges on DIN, and no encoding on the
917 * subcarrier from card to reader, so we'll just shift out our verbatim data
918 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
919 * seems to be 300us-ish.
922 legic_phase_drift
= phase
;
923 legic_frame_drift
= frame
;
924 legic_reqresp_drift
= reqresp
;
926 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
927 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
929 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_212K
);
931 /* Bitbang the receiver */
932 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
933 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
936 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
940 legic_state
= STATE_DISCON
;
943 DbpString("Starting Legic emulator, press button to end");
945 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
946 int level
= !!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
947 int time
= timer
->TC_CV
;
949 if(level
!= old_level
) {
951 timer
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
953 if (FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) {
958 } else if (FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) {
973 if(time
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) {
979 if(time
>= (20*RWD_TIME_1
) && (timer
->TC_SR
& AT91C_TC_CLKSTA
)) {
980 timer
->TC_CCR
= AT91C_TC_CLKDIS
;
986 if ( MF_DBGLEVEL
>= 1) DbpString("Stopped");
990 //-----------------------------------------------------------------------------
991 // Code up a string of octets at layer 2 (including CRC, we don't generate
992 // that here) so that they can be transmitted to the reader. Doesn't transmit
993 // them yet, just leaves them ready to send in ToSend[].
994 //-----------------------------------------------------------------------------
995 // static void CodeLegicAsTag(const uint8_t *cmd, int len)
1001 // // Transmit a burst of ones, as the initial thing that lets the
1002 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
1003 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
1004 // // so I will too.
1005 // for(i = 0; i < 20; i++) {
1006 // ToSendStuffBit(1);
1007 // ToSendStuffBit(1);
1008 // ToSendStuffBit(1);
1009 // ToSendStuffBit(1);
1013 // for(i = 0; i < 10; i++) {
1014 // ToSendStuffBit(0);
1015 // ToSendStuffBit(0);
1016 // ToSendStuffBit(0);
1017 // ToSendStuffBit(0);
1019 // for(i = 0; i < 2; i++) {
1020 // ToSendStuffBit(1);
1021 // ToSendStuffBit(1);
1022 // ToSendStuffBit(1);
1023 // ToSendStuffBit(1);
1026 // for(i = 0; i < len; i++) {
1028 // uint8_t b = cmd[i];
1031 // ToSendStuffBit(0);
1032 // ToSendStuffBit(0);
1033 // ToSendStuffBit(0);
1034 // ToSendStuffBit(0);
1037 // for(j = 0; j < 8; j++) {
1039 // ToSendStuffBit(1);
1040 // ToSendStuffBit(1);
1041 // ToSendStuffBit(1);
1042 // ToSendStuffBit(1);
1044 // ToSendStuffBit(0);
1045 // ToSendStuffBit(0);
1046 // ToSendStuffBit(0);
1047 // ToSendStuffBit(0);
1053 // ToSendStuffBit(1);
1054 // ToSendStuffBit(1);
1055 // ToSendStuffBit(1);
1056 // ToSendStuffBit(1);
1060 // for(i = 0; i < 10; i++) {
1061 // ToSendStuffBit(0);
1062 // ToSendStuffBit(0);
1063 // ToSendStuffBit(0);
1064 // ToSendStuffBit(0);
1066 // for(i = 0; i < 2; i++) {
1067 // ToSendStuffBit(1);
1068 // ToSendStuffBit(1);
1069 // ToSendStuffBit(1);
1070 // ToSendStuffBit(1);
1073 // // Convert from last byte pos to length
1077 //-----------------------------------------------------------------------------
1078 // The software UART that receives commands from the reader, and its state
1080 //-----------------------------------------------------------------------------
1084 STATE_GOT_FALLING_EDGE_OF_SOF
,
1085 STATE_AWAITING_START_BIT
,
1086 STATE_RECEIVING_DATA
1096 /* Receive & handle a bit coming from the reader.
1098 * This function is called 4 times per bit (every 2 subcarrier cycles).
1099 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1102 * LED A -> ON once we have received the SOF and are expecting the rest.
1103 * LED A -> OFF once we have received EOF or are in error state or unsynced
1105 * Returns: true if we received a EOF
1106 * false if we are still waiting for some more
1108 // static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1110 // switch(Uart.state) {
1111 // case STATE_UNSYNCD:
1113 // // we went low, so this could be the beginning of an SOF
1114 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1120 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1122 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1124 // if(Uart.bitCnt > 9) {
1125 // // we've seen enough consecutive
1126 // // zeros that it's a valid SOF
1128 // Uart.byteCnt = 0;
1129 // Uart.state = STATE_AWAITING_START_BIT;
1130 // LED_A_ON(); // Indicate we got a valid SOF
1132 // // didn't stay down long enough
1133 // // before going high, error
1134 // Uart.state = STATE_UNSYNCD;
1137 // // do nothing, keep waiting
1141 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1142 // if(Uart.bitCnt > 12) {
1143 // // Give up if we see too many zeros without
1146 // Uart.state = STATE_UNSYNCD;
1150 // case STATE_AWAITING_START_BIT:
1153 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1154 // // stayed high for too long between
1155 // // characters, error
1156 // Uart.state = STATE_UNSYNCD;
1159 // // falling edge, this starts the data byte
1162 // Uart.shiftReg = 0;
1163 // Uart.state = STATE_RECEIVING_DATA;
1167 // case STATE_RECEIVING_DATA:
1169 // if(Uart.posCnt == 2) {
1170 // // time to sample a bit
1171 // Uart.shiftReg >>= 1;
1173 // Uart.shiftReg |= 0x200;
1177 // if(Uart.posCnt >= 4) {
1180 // if(Uart.bitCnt == 10) {
1181 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1183 // // this is a data byte, with correct
1184 // // start and stop bits
1185 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1188 // if(Uart.byteCnt >= Uart.byteCntMax) {
1189 // // Buffer overflowed, give up
1191 // Uart.state = STATE_UNSYNCD;
1193 // // so get the next byte now
1195 // Uart.state = STATE_AWAITING_START_BIT;
1197 // } else if (Uart.shiftReg == 0x000) {
1198 // // this is an EOF byte
1199 // LED_A_OFF(); // Finished receiving
1200 // Uart.state = STATE_UNSYNCD;
1201 // if (Uart.byteCnt != 0) {
1205 // // this is an error
1207 // Uart.state = STATE_UNSYNCD;
1214 // Uart.state = STATE_UNSYNCD;
1222 static void UartReset() {
1223 Uart
.byteCntMax
= 3;
1224 Uart
.state
= STATE_UNSYNCD
;
1228 memset(Uart
.output
, 0x00, 3);
1231 // static void UartInit(uint8_t *data) {
1232 // Uart.output = data;
1236 //=============================================================================
1237 // An LEGIC reader. We take layer two commands, code them
1238 // appropriately, and then send them to the tag. We then listen for the
1239 // tag's response, which we leave in the buffer to be demodulated on the
1241 //=============================================================================
1246 DEMOD_PHASE_REF_TRAINING
,
1247 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
1248 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
1249 DEMOD_AWAITING_START_BIT
,
1250 DEMOD_RECEIVING_DATA
1263 * Handles reception of a bit from the tag
1265 * This function is called 2 times per bit (every 4 subcarrier cycles).
1266 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1269 * LED C -> ON once we have received the SOF and are expecting the rest.
1270 * LED C -> OFF once we have received EOF or are unsynced
1272 * Returns: true if we received a EOF
1273 * false if we are still waiting for some more
1277 #ifndef SUBCARRIER_DETECT_THRESHOLD
1278 # define SUBCARRIER_DETECT_THRESHOLD 8
1281 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
1282 #ifndef CHECK_FOR_SUBCARRIER
1283 # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); }
1286 // The soft decision on the bit uses an estimate of just the
1287 // quadrant of the reference angle, not the exact angle.
1288 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
1289 #define MAKE_SOFT_DECISION() { \
1290 if(Demod.sumI > 0) \
1295 if(Demod.sumQ > 0) \
1302 static RAMFUNC
int HandleLegicSamplesDemod(int ci
, int cq
)
1307 int halfci
= (ai
>> 1);
1308 int halfcq
= (aq
>> 1);
1310 switch(Demod
.state
) {
1313 CHECK_FOR_SUBCARRIER()
1315 if(v
> SUBCARRIER_DETECT_THRESHOLD
) { // subcarrier detected
1316 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
1323 case DEMOD_PHASE_REF_TRAINING
:
1324 if(Demod
.posCount
< 8) {
1326 CHECK_FOR_SUBCARRIER()
1328 if (v
> SUBCARRIER_DETECT_THRESHOLD
) {
1329 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1330 // note: synchronization time > 80 1/fs
1336 Demod
.state
= DEMOD_UNSYNCD
;
1339 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
1343 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
1345 MAKE_SOFT_DECISION()
1347 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1348 // logic '0' detected
1351 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
1353 // start of SOF sequence
1356 // maximum length of TR1 = 200 1/fs
1357 if(Demod
.posCount
> 25*2) Demod
.state
= DEMOD_UNSYNCD
;
1362 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
1365 MAKE_SOFT_DECISION()
1368 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1369 if(Demod
.posCount
< 10*2) {
1370 Demod
.state
= DEMOD_UNSYNCD
;
1372 LED_C_ON(); // Got SOF
1373 Demod
.state
= DEMOD_AWAITING_START_BIT
;
1378 // low phase of SOF too long (> 12 etu)
1379 if(Demod
.posCount
> 13*2) {
1380 Demod
.state
= DEMOD_UNSYNCD
;
1386 case DEMOD_AWAITING_START_BIT
:
1389 MAKE_SOFT_DECISION()
1392 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1393 if(Demod
.posCount
> 3*2) {
1394 Demod
.state
= DEMOD_UNSYNCD
;
1398 // start bit detected
1400 Demod
.posCount
= 1; // this was the first half
1403 Demod
.state
= DEMOD_RECEIVING_DATA
;
1407 case DEMOD_RECEIVING_DATA
:
1409 MAKE_SOFT_DECISION()
1411 if(Demod
.posCount
== 0) {
1412 // first half of bit
1416 // second half of bit
1418 Demod
.shiftReg
>>= 1;
1420 if(Demod
.thisBit
> 0)
1421 Demod
.shiftReg
|= 0x200;
1425 if(Demod
.bitCount
== 10) {
1427 uint16_t s
= Demod
.shiftReg
;
1429 if((s
& 0x200) && !(s
& 0x001)) {
1430 // stop bit == '1', start bit == '0'
1431 uint8_t b
= (s
>> 1);
1432 Demod
.output
[Demod
.len
] = b
;
1434 Demod
.state
= DEMOD_AWAITING_START_BIT
;
1436 Demod
.state
= DEMOD_UNSYNCD
;
1440 // This is EOF (start, stop and all data bits == '0'
1450 Demod
.state
= DEMOD_UNSYNCD
;
1457 // Clear out the state of the "UART" that receives from the tag.
1458 static void DemodReset() {
1460 Demod
.state
= DEMOD_UNSYNCD
;
1467 memset(Demod
.output
, 0x00, 3);
1470 static void DemodInit(uint8_t *data
) {
1471 Demod
.output
= data
;
1476 * Demodulate the samples we received from the tag, also log to tracebuffer
1477 * quiet: set to 'TRUE' to disable debug output
1479 #define LEGIC_DMA_BUFFER_SIZE 256
1480 static void GetSamplesForLegicDemod(int n
, bool quiet
)
1483 bool gotFrame
= FALSE
;
1484 int lastRxCounter
= LEGIC_DMA_BUFFER_SIZE
;
1485 int ci
, cq
, samples
= 0;
1489 // And put the FPGA in the appropriate mode
1490 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_QUARTER_FREQ
);
1492 // The response (tag -> reader) that we're receiving.
1493 // Set up the demodulator for tag -> reader responses.
1494 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1496 // The DMA buffer, used to stream samples from the FPGA
1497 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE
);
1498 int8_t *upTo
= dmaBuf
;
1500 // Setup and start DMA.
1501 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, LEGIC_DMA_BUFFER_SIZE
) ){
1502 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1506 // Signal field is ON with the appropriate LED:
1509 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
1510 if(behindBy
> max
) max
= behindBy
;
1512 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (LEGIC_DMA_BUFFER_SIZE
-1)) > 2) {
1516 if(upTo
>= dmaBuf
+ LEGIC_DMA_BUFFER_SIZE
) {
1518 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
1519 AT91C_BASE_PDC_SSC
->PDC_RNCR
= LEGIC_DMA_BUFFER_SIZE
;
1522 if(lastRxCounter
<= 0)
1523 lastRxCounter
= LEGIC_DMA_BUFFER_SIZE
;
1527 gotFrame
= HandleLegicSamplesDemod(ci
, cq
);
1532 if(samples
> n
|| gotFrame
)
1536 FpgaDisableSscDma();
1538 if (!quiet
&& Demod
.len
== 0) {
1539 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1550 if (Demod
.len
> 0) {
1551 uint8_t parity
[MAX_PARITY_SIZE
] = {0x00};
1552 LogTrace(Demod
.output
, Demod
.len
, 0, 0, parity
, FALSE
);
1555 //-----------------------------------------------------------------------------
1556 // Transmit the command (to the tag) that was placed in ToSend[].
1557 //-----------------------------------------------------------------------------
1558 static void TransmitForLegic(void)
1564 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))
1565 AT91C_BASE_SSC
->SSC_THR
= 0xff;
1567 // Signal field is ON with the appropriate Red LED
1570 // Signal we are transmitting with the Green LED
1572 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1574 for(c
= 0; c
< 10;) {
1575 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1576 AT91C_BASE_SSC
->SSC_THR
= 0xff;
1579 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1580 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1588 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1589 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
1590 legic_prng_forward(1); // forward the lfsr
1592 if(c
>= ToSendMax
) {
1596 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1597 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1606 //-----------------------------------------------------------------------------
1607 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
1608 // so that it is ready to transmit to the tag using TransmitForLegic().
1609 //-----------------------------------------------------------------------------
1610 static void CodeLegicBitsAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
)
1618 for(i
= 0; i
< 7; i
++)
1622 for(i
= 0; i
< cmdlen
; i
++) {
1628 for(j
= 0; j
< bits
; j
++) {
1638 // Convert from last character reference to length
1643 Convenience function to encode, transmit and trace Legic comms
1645 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
)
1647 CodeLegicBitsAsReader(cmd
, cmdlen
, bits
);
1650 uint8_t parity
[1] = {0x00};
1651 LogTrace(cmd
, cmdlen
, 0, 0, parity
, TRUE
);
1655 int ice_legic_select_card()
1657 //int cmd_size=0, card_size=0;
1658 uint8_t wakeup
[] = { 0x7F };
1659 uint8_t getid
[] = {0x19};
1661 //legic_prng_init(SESSION_IV);
1663 // first, wake up the tag, 7bits
1664 CodeAndTransmitLegicAsReader(wakeup
, sizeof(wakeup
), 7);
1666 GetSamplesForLegicDemod(1000, TRUE
);
1668 //frame_receiveAsReader(¤t_frame, 6, 1);
1670 legic_prng_forward(1); /* we wait anyways */
1672 //while(timer->TC_CV < 387) ; /* ~ 258us */
1673 //frame_sendAsReader(0x19, 6);
1674 CodeAndTransmitLegicAsReader(getid
, sizeof(getid
), 8);
1675 GetSamplesForLegicDemod(1000, TRUE
);
1677 //if (Demod.len < 14) return 2;
1678 Dbprintf("CARD TYPE: %02x LEN: %d", Demod
.output
[0], Demod
.len
);
1680 switch(Demod
.output
[0]) {
1682 DbpString("MIM 256 card found");
1687 DbpString("MIM 1024 card found");
1689 // card_size = 1024;
1696 // bytes = card_size;
1698 // if(bytes + offset >= card_size)
1699 // bytes = card_size - offset;
1701 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1706 // Set up LEGIC communication
1707 void ice_legic_setup() {
1710 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1711 BigBuf_free(); BigBuf_Clear_ext(false);
1717 // Set up the synchronous serial port
1720 // connect Demodulated Signal to ADC:
1721 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1723 // Signal field is on with the appropriate LED
1725 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1728 //StartCountSspClk();
1731 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);