1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
22 #include "mifareutil.h"
24 static uint32_t iso14a_timeout
;
25 uint8_t *trace
= (uint8_t *) BigBuf
+TRACE_OFFSET
;
30 // the block number for the ISO14443-4 PCB
31 static uint8_t iso14_pcb_blocknum
= 0;
36 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
37 #define REQUEST_GUARD_TIME (7000/16 + 1)
38 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
39 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
40 // bool LastCommandWasRequest = FALSE;
43 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
45 // When the PM acts as reader and is receiving tag data, it takes
46 // 3 ticks delay in the AD converter
47 // 16 ticks until the modulation detector completes and sets curbit
48 // 8 ticks until bit_to_arm is assigned from curbit
49 // 8*16 ticks for the transfer from FPGA to ARM
50 // 4*16 ticks until we measure the time
51 // - 8*16 ticks because we measure the time of the previous transfer
52 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
54 // When the PM acts as a reader and is sending, it takes
55 // 4*16 ticks until we can write data to the sending hold register
56 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
57 // 8 ticks until the first transfer starts
58 // 8 ticks later the FPGA samples the data
59 // 1 tick to assign mod_sig_coil
60 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
62 // When the PM acts as tag and is receiving it takes
63 // 2 ticks delay in the RF part (for the first falling edge),
64 // 3 ticks for the A/D conversion,
65 // 8 ticks on average until the start of the SSC transfer,
66 // 8 ticks until the SSC samples the first data
67 // 7*16 ticks to complete the transfer from FPGA to ARM
68 // 8 ticks until the next ssp_clk rising edge
69 // 4*16 ticks until we measure the time
70 // - 8*16 ticks because we measure the time of the previous transfer
71 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
73 // The FPGA will report its internal sending delay in
74 uint16_t FpgaSendQueueDelay
;
75 // the 5 first bits are the number of bits buffered in mod_sig_buf
76 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
77 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
79 // When the PM acts as tag and is sending, it takes
80 // 4*16 ticks until we can write data to the sending hold register
81 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
82 // 8 ticks until the first transfer starts
83 // 8 ticks later the FPGA samples the data
84 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
85 // + 1 tick to assign mod_sig_coil
86 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
88 // When the PM acts as sniffer and is receiving tag data, it takes
89 // 3 ticks A/D conversion
90 // 14 ticks to complete the modulation detection
91 // 8 ticks (on average) until the result is stored in to_arm
92 // + the delays in transferring data - which is the same for
93 // sniffing reader and tag data and therefore not relevant
94 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
96 // When the PM acts as sniffer and is receiving reader data, it takes
97 // 2 ticks delay in analogue RF receiver (for the falling edge of the
98 // start bit, which marks the start of the communication)
99 // 3 ticks A/D conversion
100 // 8 ticks on average until the data is stored in to_arm.
101 // + the delays in transferring data - which is the same for
102 // sniffing reader and tag data and therefore not relevant
103 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
105 //variables used for timing purposes:
106 //these are in ssp_clk cycles:
107 uint32_t NextTransferTime
;
108 uint32_t LastTimeProxToAirStart
;
109 uint32_t LastProxToAirDuration
;
113 // CARD TO READER - manchester
114 // Sequence D: 11110000 modulation with subcarrier during first half
115 // Sequence E: 00001111 modulation with subcarrier during second half
116 // Sequence F: 00000000 no modulation with subcarrier
117 // READER TO CARD - miller
118 // Sequence X: 00001100 drop after half a period
119 // Sequence Y: 00000000 no drop
120 // Sequence Z: 11000000 drop at start
128 const uint8_t OddByteParity
[256] = {
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
144 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
148 void iso14a_set_trigger(bool enable
) {
152 void iso14a_clear_trace() {
153 memset(trace
, 0x44, TRACE_SIZE
);
157 void iso14a_set_tracing(bool enable
) {
161 void iso14a_set_timeout(uint32_t timeout
) {
162 iso14a_timeout
= timeout
;
165 //-----------------------------------------------------------------------------
166 // Generate the parity value for a byte sequence
168 //-----------------------------------------------------------------------------
169 byte_t
oddparity (const byte_t bt
)
171 return OddByteParity
[bt
];
174 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
179 // Generate the parity bits
180 for (i
= 0; i
< iLen
; i
++) {
181 // and save them to a 32Bit word
182 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
187 void AppendCrc14443a(uint8_t* data
, int len
)
189 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
192 // The function LogTrace() is also used by the iClass implementation in iClass.c
193 bool RAMFUNC
LogTrace(const uint8_t * btBytes
, uint8_t iLen
, uint32_t timestamp
, uint32_t dwParity
, bool bReader
)
195 // Return when trace is full
196 if (traceLen
+ sizeof(timestamp
) + sizeof(dwParity
) + iLen
>= TRACE_SIZE
) {
197 tracing
= FALSE
; // don't trace any more
201 // Trace the random, i'm curious
202 trace
[traceLen
++] = ((timestamp
>> 0) & 0xff);
203 trace
[traceLen
++] = ((timestamp
>> 8) & 0xff);
204 trace
[traceLen
++] = ((timestamp
>> 16) & 0xff);
205 trace
[traceLen
++] = ((timestamp
>> 24) & 0xff);
207 trace
[traceLen
- 1] |= 0x80;
209 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
210 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
211 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
212 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
213 trace
[traceLen
++] = iLen
;
214 if (btBytes
!= NULL
&& iLen
!= 0) {
215 memcpy(trace
+ traceLen
, btBytes
, iLen
);
221 //=============================================================================
222 // ISO 14443 Type A - Miller decoder
223 //=============================================================================
225 // This decoder is used when the PM3 acts as a tag.
226 // The reader will generate "pauses" by temporarily switching of the field.
227 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
228 // The FPGA does a comparison with a threshold and would deliver e.g.:
229 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230 // The Miller decoder needs to identify the following sequences:
231 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234 // Note 1: the bitstream may start at any time. We therefore need to sync.
235 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
236 //-----------------------------------------------------------------------------
239 // Lookup-Table to decide if 4 raw bits are a modulation.
240 // We accept two or three consecutive "0" in any position with the rest "1"
241 const bool Mod_Miller_LUT
[] = {
242 TRUE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
,
243 TRUE
, TRUE
, FALSE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
245 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
246 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
250 Uart
.state
= STATE_UNSYNCD
;
252 Uart
.len
= 0; // number of decoded data bytes
253 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
254 Uart
.parityBits
= 0; //
255 Uart
.twoBits
= 0x0000; // buffer for 2 Bits
262 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
263 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
266 Uart
.twoBits
= (Uart
.twoBits
<< 8) | bit
;
268 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
269 if (Uart
.highCnt
< 7) { // wait for a stable unmodulated signal
270 if (Uart
.twoBits
== 0xffff) {
276 Uart
.syncBit
= 0xFFFF; // not set
277 // look for 00xx1111 (the start bit)
278 if ((Uart
.twoBits
& 0x6780) == 0x0780) Uart
.syncBit
= 7;
279 else if ((Uart
.twoBits
& 0x33C0) == 0x03C0) Uart
.syncBit
= 6;
280 else if ((Uart
.twoBits
& 0x19E0) == 0x01E0) Uart
.syncBit
= 5;
281 else if ((Uart
.twoBits
& 0x0CF0) == 0x00F0) Uart
.syncBit
= 4;
282 else if ((Uart
.twoBits
& 0x0678) == 0x0078) Uart
.syncBit
= 3;
283 else if ((Uart
.twoBits
& 0x033C) == 0x003C) Uart
.syncBit
= 2;
284 else if ((Uart
.twoBits
& 0x019E) == 0x001E) Uart
.syncBit
= 1;
285 else if ((Uart
.twoBits
& 0x00CF) == 0x000F) Uart
.syncBit
= 0;
286 if (Uart
.syncBit
!= 0xFFFF) {
287 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
288 Uart
.startTime
-= Uart
.syncBit
;
289 Uart
.endTime
= Uart
.startTime
;
290 Uart
.state
= STATE_START_OF_COMMUNICATION
;
296 if (IsMillerModulationNibble1(Uart
.twoBits
>> Uart
.syncBit
)) {
297 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
300 } else { // Modulation in first half = Sequence Z = logic "0"
301 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
306 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
307 Uart
.state
= STATE_MILLER_Z
;
308 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
309 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
310 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
311 Uart
.parityBits
<<= 1; // make room for the parity bit
312 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
319 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
321 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
322 Uart
.state
= STATE_MILLER_X
;
323 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
324 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
325 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
326 Uart
.parityBits
<<= 1; // make room for the new parity bit
327 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
331 } else { // no modulation in both halves - Sequence Y
332 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
333 Uart
.state
= STATE_UNSYNCD
;
334 if(Uart
.len
== 0 && Uart
.bitCount
> 0) { // if we decoded some bits
335 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // add them to the output
336 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
337 Uart
.parityBits
<<= 1; // no parity bit - add "0"
338 Uart
.bitCount
--; // last "0" was part of the EOC sequence
342 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
345 } else { // a logic "0"
347 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
348 Uart
.state
= STATE_MILLER_Y
;
349 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
350 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
351 Uart
.parityBits
<<= 1; // make room for the parity bit
352 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
362 return FALSE
; // not finished yet, need more data
367 //=============================================================================
368 // ISO 14443 Type A - Manchester decoder
369 //=============================================================================
371 // This decoder is used when the PM3 acts as a reader.
372 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
373 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
374 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
375 // The Manchester decoder needs to identify the following sequences:
376 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
377 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
378 // 8 ticks unmodulated: Sequence F = end of communication
379 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
380 // Note 1: the bitstream may start at any time. We therefore need to sync.
381 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
384 // Lookup-Table to decide if 4 raw bits are a modulation.
385 // We accept three or four "1" in any position
386 const bool Mod_Manchester_LUT
[] = {
387 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
388 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
391 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
392 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
397 Demod
.state
= DEMOD_UNSYNCD
;
398 Demod
.len
= 0; // number of decoded data bytes
399 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
400 Demod
.parityBits
= 0; //
401 Demod
.collisionPos
= 0; // Position of collision bit
402 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
408 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
409 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
412 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
414 if (Demod
.state
== DEMOD_UNSYNCD
) {
416 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
417 if (Demod
.twoBits
== 0x0000) {
423 Demod
.syncBit
= 0xFFFF; // not set
424 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
425 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
426 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
427 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
428 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
429 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
430 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
431 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
432 if (Demod
.syncBit
!= 0xFFFF) {
433 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
434 Demod
.startTime
-= Demod
.syncBit
;
435 Demod
.bitCount
= offset
; // number of decoded data bits
436 Demod
.state
= DEMOD_MANCHESTER_DATA
;
442 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
443 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
444 if (!Demod
.collisionPos
) {
445 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
447 } // modulation in first half only - Sequence D = 1
449 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
450 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
451 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
452 Demod
.parityBits
<<= 1; // make room for the parity bit
453 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
457 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
458 } else { // no modulation in first half
459 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
461 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
462 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
463 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
464 Demod
.parityBits
<<= 1; // make room for the new parity bit
465 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
469 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
470 } else { // no modulation in both halves - End of communication
471 if (Demod
.len
> 0 || Demod
.bitCount
> 0) { // received something
472 if(Demod
.bitCount
> 0) { // if we decoded bits
473 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // add the remaining decoded bits to the output
474 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff;
475 // No parity bit, so just shift a 0
476 Demod
.parityBits
<<= 1;
478 return TRUE
; // we are finished with decoding the raw data sequence
479 } else { // nothing received. Start over
487 return FALSE
; // not finished yet, need more data
490 //=============================================================================
491 // Finally, a `sniffer' for ISO 14443 Type A
492 // Both sides of communication!
493 //=============================================================================
495 //-----------------------------------------------------------------------------
496 // Record the sequence of commands sent by the reader to the tag, with
497 // triggering so that we start recording at the point that the tag is moved
499 //-----------------------------------------------------------------------------
500 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
502 // bit 0 - trigger from first card answer
503 // bit 1 - trigger from first reader 7-bit request
507 iso14a_clear_trace();
509 // We won't start recording the frames that we acquire until we trigger;
510 // a good trigger condition to get started is probably when we see a
511 // response from the tag.
512 // triggered == FALSE -- to wait first for card
513 bool triggered
= !(param
& 0x03);
515 // The command (reader -> tag) that we're receiving.
516 // The length of a received command will in most cases be no more than 18 bytes.
517 // So 32 should be enough!
518 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
519 // The response (tag -> reader) that we're receiving.
520 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
522 // As we receive stuff, we copy it from receivedCmd or receivedResponse
523 // into trace, along with its length and other annotations.
524 //uint8_t *trace = (uint8_t *)BigBuf;
526 // The DMA buffer, used to stream samples from the FPGA
527 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
528 uint8_t *data
= dmaBuf
;
529 uint8_t previous_data
= 0;
532 bool TagIsActive
= FALSE
;
533 bool ReaderIsActive
= FALSE
;
535 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
537 // Set up the demodulator for tag -> reader responses.
538 Demod
.output
= receivedResponse
;
540 // Set up the demodulator for the reader -> tag commands
541 Uart
.output
= receivedCmd
;
543 // Setup and start DMA.
544 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
546 // And now we loop, receiving samples.
547 for(uint32_t rsamples
= 0; TRUE
; ) {
550 DbpString("cancelled by button");
557 int register readBufDataP
= data
- dmaBuf
;
558 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
559 if (readBufDataP
<= dmaBufDataP
){
560 dataLen
= dmaBufDataP
- readBufDataP
;
562 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
564 // test for length of buffer
565 if(dataLen
> maxDataLen
) {
566 maxDataLen
= dataLen
;
568 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
572 if(dataLen
< 1) continue;
574 // primary buffer was stopped( <-- we lost data!
575 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
576 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
577 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
578 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
580 // secondary buffer sets as primary, secondary buffer was stopped
581 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
582 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
583 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
588 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
590 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
591 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
592 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
595 // check - if there is a short 7bit request from reader
596 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
599 if (!LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, Uart
.parityBits
, TRUE
)) break;
600 if (!LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, 0, TRUE
)) break;
602 /* And ready to receive another command. */
604 /* And also reset the demod code, which might have been */
605 /* false-triggered by the commands from the reader. */
609 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
612 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
613 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
614 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
617 if (!LogTrace(receivedResponse
, Demod
.len
, Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, Demod
.parityBits
, FALSE
)) break;
618 if (!LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, 0, FALSE
)) break;
620 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
622 // And ready to receive another response.
626 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
630 previous_data
= *data
;
633 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
638 DbpString("COMMAND FINISHED");
641 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
642 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen
, (uint32_t)Uart
.output
[0]);
646 //-----------------------------------------------------------------------------
647 // Prepare tag messages
648 //-----------------------------------------------------------------------------
649 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, int len
, uint32_t dwParity
)
655 // Correction bit, might be removed when not needed
660 ToSendStuffBit(1); // 1
666 ToSend
[++ToSendMax
] = SEC_D
;
667 LastProxToAirDuration
= 8 * ToSendMax
- 4;
669 for(i
= 0; i
< len
; i
++) {
674 for(j
= 0; j
< 8; j
++) {
676 ToSend
[++ToSendMax
] = SEC_D
;
678 ToSend
[++ToSendMax
] = SEC_E
;
683 // Get the parity bit
684 if ((dwParity
>> i
) & 0x01) {
685 ToSend
[++ToSendMax
] = SEC_D
;
686 LastProxToAirDuration
= 8 * ToSendMax
- 4;
688 ToSend
[++ToSendMax
] = SEC_E
;
689 LastProxToAirDuration
= 8 * ToSendMax
;
694 ToSend
[++ToSendMax
] = SEC_F
;
696 // Convert from last byte pos to length
700 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
){
701 CodeIso14443aAsTagPar(cmd
, len
, GetParity(cmd
, len
));
705 static void Code4bitAnswerAsTag(uint8_t cmd
)
711 // Correction bit, might be removed when not needed
716 ToSendStuffBit(1); // 1
722 ToSend
[++ToSendMax
] = SEC_D
;
725 for(i
= 0; i
< 4; i
++) {
727 ToSend
[++ToSendMax
] = SEC_D
;
728 LastProxToAirDuration
= 8 * ToSendMax
- 4;
730 ToSend
[++ToSendMax
] = SEC_E
;
731 LastProxToAirDuration
= 8 * ToSendMax
;
737 ToSend
[++ToSendMax
] = SEC_F
;
739 // Convert from last byte pos to length
743 //-----------------------------------------------------------------------------
744 // Wait for commands from reader
745 // Stop when button is pressed
746 // Or return TRUE when command is captured
747 //-----------------------------------------------------------------------------
748 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
750 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
751 // only, since we are receiving, not transmitting).
752 // Signal field is off with the appropriate LED
754 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
756 // Now run a `software UART' on the stream of incoming samples.
758 Uart
.output
= received
;
761 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
766 if(BUTTON_PRESS()) return FALSE
;
768 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
769 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
770 if(MillerDecoding(b
, 0)) {
778 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
);
779 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
780 int EmSend4bit(uint8_t resp
);
781 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
782 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
783 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
);
784 int EmSendCmd(uint8_t *resp
, int respLen
);
785 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
);
786 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
787 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
);
789 static uint8_t* free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
796 uint32_t ProxToAirDuration
;
797 } tag_response_info_t
;
799 void reset_free_buffer() {
800 free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
803 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
804 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
805 // This will need the following byte array for a modulation sequence
806 // 144 data bits (18 * 8)
809 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
810 // 1 just for the case
812 // 166 bytes, since every bit that needs to be send costs us a byte
815 // Prepare the tag modulation bits from the message
816 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
818 // Make sure we do not exceed the free buffer space
819 if (ToSendMax
> max_buffer_size
) {
820 Dbprintf("Out of memory, when modulating bits for tag answer:");
821 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
825 // Copy the byte array, used for this modulation to the buffer position
826 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
828 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
829 response_info
->modulation_n
= ToSendMax
;
830 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
835 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
836 // Retrieve and store the current buffer index
837 response_info
->modulation
= free_buffer_pointer
;
839 // Determine the maximum size we can use from our buffer
840 size_t max_buffer_size
= (((uint8_t *)BigBuf
)+FREE_BUFFER_OFFSET
+FREE_BUFFER_SIZE
)-free_buffer_pointer
;
842 // Forward the prepare tag modulation function to the inner function
843 if (prepare_tag_modulation(response_info
,max_buffer_size
)) {
844 // Update the free buffer offset
845 free_buffer_pointer
+= ToSendMax
;
852 //-----------------------------------------------------------------------------
853 // Main loop of simulated tag: receive commands from reader, decide what
854 // response to send, and send it.
855 //-----------------------------------------------------------------------------
856 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
858 // Enable and clear the trace
859 iso14a_clear_trace();
860 iso14a_set_tracing(TRUE
);
864 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
865 uint8_t response1
[2];
868 case 1: { // MIFARE Classic
869 // Says: I am Mifare 1k - original line
874 case 2: { // MIFARE Ultralight
875 // Says: I am a stupid memory tag, no crypto
880 case 3: { // MIFARE DESFire
881 // Says: I am a DESFire tag, ph33r me
886 case 4: { // ISO/IEC 14443-4
887 // Says: I am a javacard (JCOP)
893 Dbprintf("Error: unkown tagtype (%d)",tagType
);
898 // The second response contains the (mandatory) first 24 bits of the UID
899 uint8_t response2
[5];
901 // Check if the uid uses the (optional) part
902 uint8_t response2a
[5];
905 num_to_bytes(uid_1st
,3,response2
+1);
906 num_to_bytes(uid_2nd
,4,response2a
);
907 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
909 // Configure the ATQA and SAK accordingly
910 response1
[0] |= 0x40;
913 num_to_bytes(uid_1st
,4,response2
);
914 // Configure the ATQA and SAK accordingly
915 response1
[0] &= 0xBF;
919 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
920 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
922 // Prepare the mandatory SAK (for 4 and 7 byte UID)
923 uint8_t response3
[3];
925 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
927 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
928 uint8_t response3a
[3];
929 response3a
[0] = sak
& 0xFB;
930 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
932 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
933 uint8_t response6
[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
934 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
936 #define TAG_RESPONSE_COUNT 7
937 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
938 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
939 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
940 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
941 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
942 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
943 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
944 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
947 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
948 // Such a response is less time critical, so we can prepare them on the fly
949 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
950 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
951 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
952 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
953 tag_response_info_t dynamic_response_info
= {
954 .response
= dynamic_response_buffer
,
956 .modulation
= dynamic_modulation_buffer
,
960 // Reset the offset pointer of the free buffer
963 // Prepare the responses of the anticollision phase
964 // there will be not enough time to do this at the moment the reader sends it REQA
965 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
966 prepare_allocated_tag_modulation(&responses
[i
]);
969 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
972 // To control where we are in the protocol
976 // Just to allow some checks
981 // We need to listen to the high-frequency, peak-detected path.
982 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
985 tag_response_info_t
* p_response
;
989 // Clean receive command buffer
991 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, RECV_CMD_SIZE
)) {
992 DbpString("Button press");
998 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
999 // Okay, look at the command now.
1001 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1002 p_response
= &responses
[0]; order
= 1;
1003 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1004 p_response
= &responses
[0]; order
= 6;
1005 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1006 p_response
= &responses
[1]; order
= 2;
1007 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1008 p_response
= &responses
[2]; order
= 20;
1009 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1010 p_response
= &responses
[3]; order
= 3;
1011 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1012 p_response
= &responses
[4]; order
= 30;
1013 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1014 EmSendCmdEx(data
+(4*receivedCmd
[0]),16,false);
1015 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1016 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1018 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1019 // DbpString("Reader requested we HALT!:");
1021 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1022 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1025 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1026 p_response
= &responses
[5]; order
= 7;
1027 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1028 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1029 EmSend4bit(CARD_NACK_NA
);
1032 p_response
= &responses
[6]; order
= 70;
1034 } else if (order
== 7 && len
== 8) { // Received authentication request
1036 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1037 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1039 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1040 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1041 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1043 // Check for ISO 14443A-4 compliant commands, look at left nibble
1044 switch (receivedCmd
[0]) {
1047 case 0x0A: { // IBlock (command)
1048 dynamic_response_info
.response
[0] = receivedCmd
[0];
1049 dynamic_response_info
.response
[1] = 0x00;
1050 dynamic_response_info
.response
[2] = 0x90;
1051 dynamic_response_info
.response
[3] = 0x00;
1052 dynamic_response_info
.response_n
= 4;
1056 case 0x1B: { // Chaining command
1057 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1058 dynamic_response_info
.response_n
= 2;
1063 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1064 dynamic_response_info
.response_n
= 2;
1068 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1069 dynamic_response_info
.response_n
= 2;
1073 case 0xC2: { // Readers sends deselect command
1074 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1075 dynamic_response_info
.response_n
= 2;
1079 // Never seen this command before
1081 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1082 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1084 Dbprintf("Received unknown command (len=%d):",len
);
1085 Dbhexdump(len
,receivedCmd
,false);
1087 dynamic_response_info
.response_n
= 0;
1091 if (dynamic_response_info
.response_n
> 0) {
1092 // Copy the CID from the reader query
1093 dynamic_response_info
.response
[1] = receivedCmd
[1];
1095 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1096 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1097 dynamic_response_info
.response_n
+= 2;
1099 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1100 Dbprintf("Error preparing tag response");
1102 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1103 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1107 p_response
= &dynamic_response_info
;
1111 // Count number of wakeups received after a halt
1112 if(order
== 6 && lastorder
== 5) { happened
++; }
1114 // Count number of other messages after a halt
1115 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1117 if(cmdsRecvd
> 999) {
1118 DbpString("1000 commands later...");
1123 if (p_response
!= NULL
) {
1124 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1125 // do the tracing for the previous reader request and this tag answer:
1126 EmLogTrace(Uart
.output
,
1128 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1129 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1131 p_response
->response
,
1132 p_response
->response_n
,
1133 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1134 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1135 SwapBits(GetParity(p_response
->response
, p_response
->response_n
), p_response
->response_n
));
1139 Dbprintf("Trace Full. Simulation stopped.");
1144 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1149 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1150 // of bits specified in the delay parameter.
1151 void PrepareDelayedTransfer(uint16_t delay
)
1153 uint8_t bitmask
= 0;
1154 uint8_t bits_to_shift
= 0;
1155 uint8_t bits_shifted
= 0;
1159 for (uint16_t i
= 0; i
< delay
; i
++) {
1160 bitmask
|= (0x01 << i
);
1162 ToSend
[ToSendMax
++] = 0x00;
1163 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1164 bits_to_shift
= ToSend
[i
] & bitmask
;
1165 ToSend
[i
] = ToSend
[i
] >> delay
;
1166 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1167 bits_shifted
= bits_to_shift
;
1173 //-------------------------------------------------------------------------------------
1174 // Transmit the command (to the tag) that was placed in ToSend[].
1175 // Parameter timing:
1176 // if NULL: transfer at next possible time, taking into account
1177 // request guard time and frame delay time
1178 // if == 0: transfer immediately and return time of transfer
1179 // if != 0: delay transfer until time specified
1180 //-------------------------------------------------------------------------------------
1181 static void TransmitFor14443a(const uint8_t *cmd
, int len
, uint32_t *timing
)
1184 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1186 uint32_t ThisTransferTime
= 0;
1189 if(*timing
== 0) { // Measure time
1190 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1192 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1194 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1195 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1196 LastTimeProxToAirStart
= *timing
;
1198 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1199 while(GetCountSspClk() < ThisTransferTime
);
1200 LastTimeProxToAirStart
= ThisTransferTime
;
1204 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1206 // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
1207 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1208 // AT91C_BASE_SSC->SSC_THR = SEC_Y;
1215 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1216 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1224 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1229 //-----------------------------------------------------------------------------
1230 // Prepare reader command (in bits, support short frames) to send to FPGA
1231 //-----------------------------------------------------------------------------
1232 void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd
, int bits
, uint32_t dwParity
)
1240 // Start of Communication (Seq. Z)
1241 ToSend
[++ToSendMax
] = SEC_Z
;
1242 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1245 size_t bytecount
= nbytes(bits
);
1246 // Generate send structure for the data bits
1247 for (i
= 0; i
< bytecount
; i
++) {
1248 // Get the current byte to send
1250 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1252 for (j
= 0; j
< bitsleft
; j
++) {
1255 ToSend
[++ToSendMax
] = SEC_X
;
1256 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1261 ToSend
[++ToSendMax
] = SEC_Z
;
1262 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1265 ToSend
[++ToSendMax
] = SEC_Y
;
1272 // Only transmit (last) parity bit if we transmitted a complete byte
1274 // Get the parity bit
1275 if ((dwParity
>> i
) & 0x01) {
1277 ToSend
[++ToSendMax
] = SEC_X
;
1278 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1283 ToSend
[++ToSendMax
] = SEC_Z
;
1284 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1287 ToSend
[++ToSendMax
] = SEC_Y
;
1294 // End of Communication: Logic 0 followed by Sequence Y
1297 ToSend
[++ToSendMax
] = SEC_Z
;
1298 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1301 ToSend
[++ToSendMax
] = SEC_Y
;
1304 ToSend
[++ToSendMax
] = SEC_Y
;
1306 // Convert to length of command:
1310 //-----------------------------------------------------------------------------
1311 // Prepare reader command to send to FPGA
1312 //-----------------------------------------------------------------------------
1313 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1315 CodeIso14443aBitsAsReaderPar(cmd
,len
*8,dwParity
);
1318 //-----------------------------------------------------------------------------
1319 // Wait for commands from reader
1320 // Stop when button is pressed (return 1) or field was gone (return 2)
1321 // Or return 0 when command is captured
1322 //-----------------------------------------------------------------------------
1323 static int EmGetCmd(uint8_t *received
, int *len
)
1327 uint32_t timer
= 0, vtime
= 0;
1331 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1332 // only, since we are receiving, not transmitting).
1333 // Signal field is off with the appropriate LED
1335 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1337 // Set ADC to read field strength
1338 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1339 AT91C_BASE_ADC
->ADC_MR
=
1340 ADC_MODE_PRESCALE(32) |
1341 ADC_MODE_STARTUP_TIME(16) |
1342 ADC_MODE_SAMPLE_HOLD_TIME(8);
1343 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1345 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1347 // Now run a 'software UART' on the stream of incoming samples.
1349 Uart
.output
= received
;
1352 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1357 if (BUTTON_PRESS()) return 1;
1359 // test if the field exists
1360 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1362 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1363 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1364 if (analogCnt
>= 32) {
1365 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1366 vtime
= GetTickCount();
1367 if (!timer
) timer
= vtime
;
1368 // 50ms no field --> card to idle state
1369 if (vtime
- timer
> 50) return 2;
1371 if (timer
) timer
= 0;
1377 // receive and test the miller decoding
1378 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1379 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1380 if(MillerDecoding(b
, 0)) {
1390 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
)
1394 uint32_t ThisTransferTime
;
1396 // Modulate Manchester
1397 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1399 // include correction bit if necessary
1400 if (Uart
.parityBits
& 0x01) {
1401 correctionNeeded
= TRUE
;
1403 if(correctionNeeded
) {
1404 // 1236, so correction bit needed
1410 // clear receiving shift register and holding register
1411 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1412 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1413 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1414 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1416 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1417 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1418 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1419 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1422 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1425 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1428 for(; i
<= respLen
; ) {
1429 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1430 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1431 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1434 if(BUTTON_PRESS()) {
1439 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1440 for (i
= 0; i
< 2 ; ) {
1441 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1442 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1443 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1448 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1453 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1454 Code4bitAnswerAsTag(resp
);
1455 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1456 // do the tracing for the previous reader request and this tag answer:
1457 EmLogTrace(Uart
.output
,
1459 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1460 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1464 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1465 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1466 SwapBits(GetParity(&resp
, 1), 1));
1470 int EmSend4bit(uint8_t resp
){
1471 return EmSend4bitEx(resp
, false);
1474 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
){
1475 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1476 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1477 // do the tracing for the previous reader request and this tag answer:
1478 EmLogTrace(Uart
.output
,
1480 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1481 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1485 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1486 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1487 SwapBits(GetParity(resp
, respLen
), respLen
));
1491 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
){
1492 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, GetParity(resp
, respLen
));
1495 int EmSendCmd(uint8_t *resp
, int respLen
){
1496 return EmSendCmdExPar(resp
, respLen
, false, GetParity(resp
, respLen
));
1499 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
){
1500 return EmSendCmdExPar(resp
, respLen
, false, par
);
1503 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
1504 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
)
1507 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1508 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1509 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1510 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1511 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1512 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1513 reader_EndTime
= tag_StartTime
- exact_fdt
;
1514 reader_StartTime
= reader_EndTime
- reader_modlen
;
1515 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_Parity
, TRUE
)) {
1517 } else if (!LogTrace(NULL
, 0, reader_EndTime
, 0, TRUE
)) {
1519 } else if (!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_Parity
, FALSE
)) {
1522 return (!LogTrace(NULL
, 0, tag_EndTime
, 0, FALSE
));
1529 //-----------------------------------------------------------------------------
1530 // Wait a certain time for tag response
1531 // If a response is captured return TRUE
1532 // If it takes too long return FALSE
1533 //-----------------------------------------------------------------------------
1534 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint16_t offset
, int maxLen
)
1538 // Set FPGA mode to "reader listen mode", no modulation (listen
1539 // only, since we are receiving, not transmitting).
1540 // Signal field is on with the appropriate LED
1542 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1544 // Now get the answer from the card
1546 Demod
.output
= receivedResponse
;
1549 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1555 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1556 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1557 if(ManchesterDecoding(b
, offset
, 0)) {
1558 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1560 } else if(c
++ > iso14a_timeout
) {
1567 void ReaderTransmitBitsPar(uint8_t* frame
, int bits
, uint32_t par
, uint32_t *timing
)
1570 CodeIso14443aBitsAsReaderPar(frame
,bits
,par
);
1572 // Send command to tag
1573 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1577 // Log reader command in trace buffer
1579 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1580 LogTrace(NULL
, 0, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, 0, TRUE
);
1584 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
, uint32_t *timing
)
1586 ReaderTransmitBitsPar(frame
,len
*8,par
, timing
);
1589 void ReaderTransmitBits(uint8_t* frame
, int len
, uint32_t *timing
)
1591 // Generate parity and redirect
1592 ReaderTransmitBitsPar(frame
,len
,GetParity(frame
,len
/8), timing
);
1595 void ReaderTransmit(uint8_t* frame
, int len
, uint32_t *timing
)
1597 // Generate parity and redirect
1598 ReaderTransmitBitsPar(frame
,len
*8,GetParity(frame
,len
), timing
);
1601 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
)
1603 if (!GetIso14443aAnswerFromTag(receivedAnswer
,offset
,160)) return FALSE
;
1605 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1606 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1611 int ReaderReceive(uint8_t* receivedAnswer
)
1613 return ReaderReceiveOffset(receivedAnswer
, 0);
1616 int ReaderReceivePar(uint8_t *receivedAnswer
, uint32_t *parptr
)
1618 if (!GetIso14443aAnswerFromTag(receivedAnswer
,0,160)) return FALSE
;
1620 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1621 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1623 *parptr
= Demod
.parityBits
;
1627 /* performs iso14443a anticollision procedure
1628 * fills the uid pointer unless NULL
1629 * fills resp_data unless NULL */
1630 int iso14443a_select_card(byte_t
* uid_ptr
, iso14a_card_select_t
* p_hi14a_card
, uint32_t* cuid_ptr
) {
1631 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1632 uint8_t sel_all
[] = { 0x93,0x20 };
1633 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1634 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1635 uint8_t* resp
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
); // was 3560 - tied to other size changes
1637 size_t uid_resp_len
;
1639 uint8_t sak
= 0x04; // cascade uid
1640 int cascade_level
= 0;
1643 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1644 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1647 if(!ReaderReceive(resp
)) return 0;
1648 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1651 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1652 p_hi14a_card
->uidlen
= 0;
1653 memset(p_hi14a_card
->uid
,0,10);
1658 memset(uid_ptr
,0,10);
1661 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1662 // which case we need to make a cascade 2 request and select - this is a long UID
1663 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1664 for(; sak
& 0x04; cascade_level
++) {
1665 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1666 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1669 ReaderTransmit(sel_all
,sizeof(sel_all
), NULL
);
1670 if (!ReaderReceive(resp
)) return 0;
1672 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1673 memset(uid_resp
, 0, 4);
1674 uint16_t uid_resp_bits
= 0;
1675 uint16_t collision_answer_offset
= 0;
1676 // anti-collision-loop:
1677 while (Demod
.collisionPos
) {
1678 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1679 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1680 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1681 uid_resp
[uid_resp_bits
& 0xf8] |= UIDbit
<< (uid_resp_bits
% 8);
1683 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1685 // construct anticollosion command:
1686 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1687 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1688 sel_uid
[2+i
] = uid_resp
[i
];
1690 collision_answer_offset
= uid_resp_bits
%8;
1691 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1692 if (!ReaderReceiveOffset(resp
, collision_answer_offset
)) return 0;
1694 // finally, add the last bits and BCC of the UID
1695 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1696 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1697 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1700 } else { // no collision, use the response to SELECT_ALL as current uid
1701 memcpy(uid_resp
,resp
,4);
1704 // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
1706 // calculate crypto UID. Always use last 4 Bytes.
1708 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1711 // Construct SELECT UID command
1712 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1713 memcpy(sel_uid
+2,uid_resp
,4); // the UID
1714 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1715 AppendCrc14443a(sel_uid
,7); // calculate and add CRC
1716 ReaderTransmit(sel_uid
,sizeof(sel_uid
), NULL
);
1719 if (!ReaderReceive(resp
)) return 0;
1722 // Test if more parts of the uid are comming
1723 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1724 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1725 // http://www.nxp.com/documents/application_note/AN10927.pdf
1726 memcpy(uid_resp
, uid_resp
+ 1, 3);
1731 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1735 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1736 p_hi14a_card
->uidlen
+= uid_resp_len
;
1741 p_hi14a_card
->sak
= sak
;
1742 p_hi14a_card
->ats_len
= 0;
1745 if( (sak
& 0x20) == 0) {
1746 return 2; // non iso14443a compliant tag
1749 // Request for answer to select
1750 AppendCrc14443a(rats
, 2);
1751 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1753 if (!(len
= ReaderReceive(resp
))) return 0;
1756 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1757 p_hi14a_card
->ats_len
= len
;
1760 // reset the PCB block number
1761 iso14_pcb_blocknum
= 0;
1765 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1766 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1767 // Set up the synchronous serial port
1769 // connect Demodulated Signal to ADC:
1770 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1772 // Signal field is on with the appropriate LED
1773 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1774 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1779 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1786 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1787 iso14a_set_timeout(1050); // 10ms default
1790 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1791 uint8_t real_cmd
[cmd_len
+4];
1792 real_cmd
[0] = 0x0a; //I-Block
1793 // put block number into the PCB
1794 real_cmd
[0] |= iso14_pcb_blocknum
;
1795 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1796 memcpy(real_cmd
+2, cmd
, cmd_len
);
1797 AppendCrc14443a(real_cmd
,cmd_len
+2);
1799 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1800 size_t len
= ReaderReceive(data
);
1801 uint8_t * data_bytes
= (uint8_t *) data
;
1803 return 0; //DATA LINK ERROR
1804 // if we received an I- or R(ACK)-Block with a block number equal to the
1805 // current block number, toggle the current block number
1806 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1807 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1808 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1809 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1811 iso14_pcb_blocknum
^= 1;
1817 //-----------------------------------------------------------------------------
1818 // Read an ISO 14443a tag. Send out commands and store answers.
1820 //-----------------------------------------------------------------------------
1821 void ReaderIso14443a(UsbCommand
*c
)
1823 iso14a_command_t param
= c
->arg
[0];
1824 uint8_t *cmd
= c
->d
.asBytes
;
1825 size_t len
= c
->arg
[1];
1826 size_t lenbits
= c
->arg
[2];
1828 byte_t buf
[USB_CMD_DATA_SIZE
];
1830 if(param
& ISO14A_CONNECT
) {
1831 iso14a_clear_trace();
1834 iso14a_set_tracing(TRUE
);
1836 if(param
& ISO14A_REQUEST_TRIGGER
) {
1837 iso14a_set_trigger(TRUE
);
1840 if(param
& ISO14A_CONNECT
) {
1841 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1842 if(!(param
& ISO14A_NO_SELECT
)) {
1843 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1844 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1845 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1849 if(param
& ISO14A_SET_TIMEOUT
) {
1850 iso14a_timeout
= c
->arg
[2];
1853 if(param
& ISO14A_APDU
) {
1854 arg0
= iso14_apdu(cmd
, len
, buf
);
1855 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1858 if(param
& ISO14A_RAW
) {
1859 if(param
& ISO14A_APPEND_CRC
) {
1860 AppendCrc14443a(cmd
,len
);
1864 ReaderTransmitBitsPar(cmd
,lenbits
,GetParity(cmd
,lenbits
/8), NULL
);
1866 ReaderTransmit(cmd
,len
, NULL
);
1868 arg0
= ReaderReceive(buf
);
1869 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1872 if(param
& ISO14A_REQUEST_TRIGGER
) {
1873 iso14a_set_trigger(FALSE
);
1876 if(param
& ISO14A_NO_DISCONNECT
) {
1880 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1885 // Determine the distance between two nonces.
1886 // Assume that the difference is small, but we don't know which is first.
1887 // Therefore try in alternating directions.
1888 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1891 uint32_t nttmp1
, nttmp2
;
1893 if (nt1
== nt2
) return 0;
1898 for (i
= 1; i
< 32768; i
++) {
1899 nttmp1
= prng_successor(nttmp1
, 1);
1900 if (nttmp1
== nt2
) return i
;
1901 nttmp2
= prng_successor(nttmp2
, 1);
1902 if (nttmp2
== nt1
) return -i
;
1905 return(-99999); // either nt1 or nt2 are invalid nonces
1909 //-----------------------------------------------------------------------------
1910 // Recover several bits of the cypher stream. This implements (first stages of)
1911 // the algorithm described in "The Dark Side of Security by Obscurity and
1912 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1913 // (article by Nicolas T. Courtois, 2009)
1914 //-----------------------------------------------------------------------------
1915 void ReaderMifare(bool first_try
)
1918 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1919 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1920 static uint8_t mf_nr_ar3
;
1922 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1924 iso14a_clear_trace();
1925 iso14a_set_tracing(TRUE
);
1929 //byte_t par_mask = 0xff;
1930 static byte_t par_low
= 0;
1935 uint32_t nt
, previous_nt
;
1936 static uint32_t nt_attacked
= 0;
1937 byte_t par_list
[8] = {0,0,0,0,0,0,0,0};
1938 byte_t ks_list
[8] = {0,0,0,0,0,0,0,0};
1940 static uint32_t sync_time
;
1941 static uint32_t sync_cycles
;
1942 int catch_up_cycles
= 0;
1943 int last_catch_up
= 0;
1944 uint16_t consecutive_resyncs
= 0;
1951 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
1952 sync_time
= GetCountSspClk() & 0xfffffff8;
1953 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1959 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1960 // nt_attacked = prng_successor(nt_attacked, 1);
1962 mf_nr_ar
[3] = mf_nr_ar3
;
1971 for(uint16_t i
= 0; TRUE
; i
++) {
1975 // Test if the action was cancelled
1976 if(BUTTON_PRESS()) {
1982 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1983 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
1987 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
1988 catch_up_cycles
= 0;
1990 // if we missed the sync time already, advance to the next nonce repeat
1991 while(GetCountSspClk() > sync_time
) {
1992 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
1995 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
1996 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
1998 // Receive the (4 Byte) "random" nonce
1999 if (!ReaderReceive(receivedAnswer
)) {
2000 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2005 nt
= bytes_to_num(receivedAnswer
, 4);
2007 // Transmit reader nonce with fake par
2008 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2010 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2011 int nt_distance
= dist_nt(previous_nt
, nt
);
2012 if (nt_distance
== 0) {
2016 if (nt_distance
== -99999) { // invalid nonce received, try again
2019 sync_cycles
= (sync_cycles
- nt_distance
);
2020 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2025 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2026 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2027 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2028 catch_up_cycles
= 0;
2031 if (catch_up_cycles
== last_catch_up
) {
2032 consecutive_resyncs
++;
2035 last_catch_up
= catch_up_cycles
;
2036 consecutive_resyncs
= 0;
2038 if (consecutive_resyncs
< 3) {
2039 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2042 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2043 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2048 consecutive_resyncs
= 0;
2050 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2051 if (ReaderReceive(receivedAnswer
))
2053 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2057 par_low
= par
& 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2061 if(led_on
) LED_B_ON(); else LED_B_OFF();
2063 par_list
[nt_diff
] = par
;
2064 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2066 // Test if the information is complete
2067 if (nt_diff
== 0x07) {
2072 nt_diff
= (nt_diff
+ 1) & 0x07;
2073 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2076 if (nt_diff
== 0 && first_try
)
2080 par
= (((par
>> 3) + 1) << 3) | par_low
;
2086 mf_nr_ar
[3] &= 0x1F;
2089 memcpy(buf
+ 0, uid
, 4);
2090 num_to_bytes(nt
, 4, buf
+ 4);
2091 memcpy(buf
+ 8, par_list
, 8);
2092 memcpy(buf
+ 16, ks_list
, 8);
2093 memcpy(buf
+ 24, mf_nr_ar
, 4);
2095 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2098 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2101 iso14a_set_tracing(FALSE
);
2105 *MIFARE 1K simulate.
2108 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2109 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2110 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2111 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2112 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2114 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2116 int cardSTATE
= MFEMUL_NOFIELD
;
2118 int vHf
= 0; // in mV
2120 uint32_t selTimer
= 0;
2121 uint32_t authTimer
= 0;
2124 uint8_t cardWRBL
= 0;
2125 uint8_t cardAUTHSC
= 0;
2126 uint8_t cardAUTHKEY
= 0xff; // no authentication
2127 uint32_t cardRr
= 0;
2129 //uint32_t rn_enc = 0;
2131 uint32_t cardINTREG
= 0;
2132 uint8_t cardINTBLOCK
= 0;
2133 struct Crypto1State mpcs
= {0, 0};
2134 struct Crypto1State
*pcs
;
2136 uint32_t numReads
= 0;//Counts numer of times reader read a block
2137 uint8_t* receivedCmd
= eml_get_bigbufptr_recbuf();
2138 uint8_t *response
= eml_get_bigbufptr_sendbuf();
2140 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2141 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2142 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2143 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2144 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2146 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2147 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2149 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2150 // This can be used in a reader-only attack.
2151 // (it can also be retrieved via 'hf 14a list', but hey...
2152 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2153 uint8_t ar_nr_collected
= 0;
2156 iso14a_clear_trace();
2157 iso14a_set_tracing(TRUE
);
2159 // Authenticate response - nonce
2160 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2162 //-- Determine the UID
2163 // Can be set from emulator memory, incoming data
2164 // and can be 7 or 4 bytes long
2165 if (flags
& FLAG_4B_UID_IN_DATA
)
2167 // 4B uid comes from data-portion of packet
2168 memcpy(rUIDBCC1
,datain
,4);
2169 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2171 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2172 // 7B uid comes from data-portion of packet
2173 memcpy(&rUIDBCC1
[1],datain
,3);
2174 memcpy(rUIDBCC2
, datain
+3, 4);
2177 // get UID from emul memory
2178 emlGetMemBt(receivedCmd
, 7, 1);
2179 _7BUID
= !(receivedCmd
[0] == 0x00);
2180 if (!_7BUID
) { // ---------- 4BUID
2181 emlGetMemBt(rUIDBCC1
, 0, 4);
2182 } else { // ---------- 7BUID
2183 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2184 emlGetMemBt(rUIDBCC2
, 3, 4);
2189 * Regardless of what method was used to set the UID, set fifth byte and modify
2190 * the ATQA for 4 or 7-byte UID
2192 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2196 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2199 // We need to listen to the high-frequency, peak-detected path.
2200 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2203 if (MF_DBGLEVEL
>= 1) {
2205 Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1
[0] , rUIDBCC1
[1] , rUIDBCC1
[2] , rUIDBCC1
[3]);
2207 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1
[0] , rUIDBCC1
[1] , rUIDBCC1
[2] , rUIDBCC1
[3],rUIDBCC2
[0],rUIDBCC2
[1] ,rUIDBCC2
[2] , rUIDBCC2
[3]);
2211 bool finished
= FALSE
;
2212 while (!BUTTON_PRESS() && !finished
) {
2215 // find reader field
2216 // Vref = 3300mV, and an 10:1 voltage divider on the input
2217 // can measure voltages up to 33000 mV
2218 if (cardSTATE
== MFEMUL_NOFIELD
) {
2219 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2220 if (vHf
> MF_MINFIELDV
) {
2221 cardSTATE_TO_IDLE();
2225 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2229 res
= EmGetCmd(receivedCmd
, &len
);
2230 if (res
== 2) { //Field is off!
2231 cardSTATE
= MFEMUL_NOFIELD
;
2234 } else if (res
== 1) {
2235 break; //return value 1 means button press
2238 // REQ or WUP request in ANY state and WUP in HALTED state
2239 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2240 selTimer
= GetTickCount();
2241 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2242 cardSTATE
= MFEMUL_SELECT1
;
2244 // init crypto block
2247 crypto1_destroy(pcs
);
2252 switch (cardSTATE
) {
2253 case MFEMUL_NOFIELD
:
2256 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2257 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2260 case MFEMUL_SELECT1
:{
2262 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2263 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2264 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2268 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2270 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2274 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2275 EmSendCmd(_7BUID
?rSAK1
:rSAK
, sizeof(_7BUID
?rSAK1
:rSAK
));
2276 cuid
= bytes_to_num(rUIDBCC1
, 4);
2278 cardSTATE
= MFEMUL_WORK
;
2280 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2283 cardSTATE
= MFEMUL_SELECT2
;
2291 cardSTATE_TO_IDLE();
2292 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2293 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2296 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2297 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2300 if(ar_nr_collected
< 2){
2301 if(ar_nr_responses
[2] != ar
)
2302 {// Avoid duplicates... probably not necessary, ar should vary.
2303 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2304 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2305 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2306 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2312 crypto1_word(pcs
, ar
, 1);
2313 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2316 if (cardRr
!= prng_successor(nonce
, 64)){
2317 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr
, prng_successor(nonce
, 64));
2318 // Shouldn't we respond anything here?
2319 // Right now, we don't nack or anything, which causes the
2320 // reader to do a WUPA after a while. /Martin
2321 cardSTATE_TO_IDLE();
2322 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2323 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2327 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2329 num_to_bytes(ans
, 4, rAUTH_AT
);
2331 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2333 cardSTATE
= MFEMUL_WORK
;
2334 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED. sector=%d, key=%d time=%d", cardAUTHSC
, cardAUTHKEY
, GetTickCount() - authTimer
);
2337 case MFEMUL_SELECT2
:{
2339 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2340 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2343 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2344 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2350 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2351 EmSendCmd(rSAK
, sizeof(rSAK
));
2352 cuid
= bytes_to_num(rUIDBCC2
, 4);
2353 cardSTATE
= MFEMUL_WORK
;
2355 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2359 // i guess there is a command). go into the work state.
2361 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2362 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2365 cardSTATE
= MFEMUL_WORK
;
2367 //intentional fall-through to the next case-stmt
2372 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2373 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2377 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2379 if(encrypted_data
) {
2381 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2384 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2385 authTimer
= GetTickCount();
2386 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2387 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2388 crypto1_destroy(pcs
);//Added by martin
2389 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2391 if (!encrypted_data
) { // first authentication
2392 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2394 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2395 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2396 } else { // nested authentication
2397 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2398 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2399 num_to_bytes(ans
, 4, rAUTH_AT
);
2401 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2402 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2403 cardSTATE
= MFEMUL_AUTH1
;
2407 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2408 // BUT... ACK --> NACK
2409 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2410 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2414 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2415 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2416 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2421 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2422 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2426 if(receivedCmd
[0] == 0x30 // read block
2427 || receivedCmd
[0] == 0xA0 // write block
2428 || receivedCmd
[0] == 0xC0
2429 || receivedCmd
[0] == 0xC1
2430 || receivedCmd
[0] == 0xC2 // inc dec restore
2431 || receivedCmd
[0] == 0xB0) { // transfer
2432 if (receivedCmd
[1] >= 16 * 4) {
2433 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2434 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2438 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2439 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2440 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2445 if (receivedCmd
[0] == 0x30) {
2446 if (MF_DBGLEVEL
>= 2) {
2447 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2449 emlGetMem(response
, receivedCmd
[1], 1);
2450 AppendCrc14443a(response
, 16);
2451 mf_crypto1_encrypt(pcs
, response
, 18, &par
);
2452 EmSendCmdPar(response
, 18, par
);
2454 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2455 Dbprintf("%d reads done, exiting", numReads
);
2461 if (receivedCmd
[0] == 0xA0) {
2462 if (MF_DBGLEVEL
>= 2) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2463 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2464 cardSTATE
= MFEMUL_WRITEBL2
;
2465 cardWRBL
= receivedCmd
[1];
2468 // increment, decrement, restore
2469 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2470 if (MF_DBGLEVEL
>= 2) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2471 if (emlCheckValBl(receivedCmd
[1])) {
2472 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2473 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2476 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2477 if (receivedCmd
[0] == 0xC1)
2478 cardSTATE
= MFEMUL_INTREG_INC
;
2479 if (receivedCmd
[0] == 0xC0)
2480 cardSTATE
= MFEMUL_INTREG_DEC
;
2481 if (receivedCmd
[0] == 0xC2)
2482 cardSTATE
= MFEMUL_INTREG_REST
;
2483 cardWRBL
= receivedCmd
[1];
2487 if (receivedCmd
[0] == 0xB0) {
2488 if (MF_DBGLEVEL
>= 2) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2489 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2490 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2492 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2496 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2499 cardSTATE
= MFEMUL_HALTED
;
2500 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2501 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2502 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2506 if (receivedCmd
[0] == 0xe0) {//RATS
2507 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2510 // command not allowed
2511 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2512 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2515 case MFEMUL_WRITEBL2
:{
2517 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2518 emlSetMem(receivedCmd
, cardWRBL
, 1);
2519 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2520 cardSTATE
= MFEMUL_WORK
;
2522 cardSTATE_TO_IDLE();
2523 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2524 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2529 case MFEMUL_INTREG_INC
:{
2530 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2531 memcpy(&ans
, receivedCmd
, 4);
2532 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2533 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2534 cardSTATE_TO_IDLE();
2537 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2538 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2539 cardINTREG
= cardINTREG
+ ans
;
2540 cardSTATE
= MFEMUL_WORK
;
2543 case MFEMUL_INTREG_DEC
:{
2544 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2545 memcpy(&ans
, receivedCmd
, 4);
2546 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2547 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2548 cardSTATE_TO_IDLE();
2551 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2552 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2553 cardINTREG
= cardINTREG
- ans
;
2554 cardSTATE
= MFEMUL_WORK
;
2557 case MFEMUL_INTREG_REST
:{
2558 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2559 memcpy(&ans
, receivedCmd
, 4);
2560 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2561 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2562 cardSTATE_TO_IDLE();
2565 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2566 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2567 cardSTATE
= MFEMUL_WORK
;
2573 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2576 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2578 //May just aswell send the collected ar_nr in the response aswell
2579 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,0,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2582 if(flags
& FLAG_NR_AR_ATTACK
)
2584 if(ar_nr_collected
> 1) {
2585 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2586 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2587 ar_nr_responses
[0], // UID
2588 ar_nr_responses
[1], //NT
2589 ar_nr_responses
[2], //AR1
2590 ar_nr_responses
[3], //NR1
2591 ar_nr_responses
[6], //AR2
2592 ar_nr_responses
[7] //NR2
2595 Dbprintf("Failed to obtain two AR/NR pairs!");
2596 if(ar_nr_collected
>0) {
2597 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2598 ar_nr_responses
[0], // UID
2599 ar_nr_responses
[1], //NT
2600 ar_nr_responses
[2], //AR1
2601 ar_nr_responses
[3] //NR1
2606 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2611 //-----------------------------------------------------------------------------
2614 //-----------------------------------------------------------------------------
2615 void RAMFUNC
SniffMifare(uint8_t param
) {
2617 // bit 0 - trigger from first card answer
2618 // bit 1 - trigger from first reader 7-bit request
2620 // C(red) A(yellow) B(green)
2622 // init trace buffer
2623 iso14a_clear_trace();
2625 // The command (reader -> tag) that we're receiving.
2626 // The length of a received command will in most cases be no more than 18 bytes.
2627 // So 32 should be enough!
2628 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
2629 // The response (tag -> reader) that we're receiving.
2630 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
2632 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2633 // into trace, along with its length and other annotations.
2634 //uint8_t *trace = (uint8_t *)BigBuf;
2636 // The DMA buffer, used to stream samples from the FPGA
2637 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
2638 uint8_t *data
= dmaBuf
;
2639 uint8_t previous_data
= 0;
2642 bool ReaderIsActive
= FALSE
;
2643 bool TagIsActive
= FALSE
;
2645 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2647 // Set up the demodulator for tag -> reader responses.
2648 Demod
.output
= receivedResponse
;
2650 // Set up the demodulator for the reader -> tag commands
2651 Uart
.output
= receivedCmd
;
2653 // Setup for the DMA.
2654 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2661 // And now we loop, receiving samples.
2662 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2664 if(BUTTON_PRESS()) {
2665 DbpString("cancelled by button");
2672 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2673 // check if a transaction is completed (timeout after 2000ms).
2674 // if yes, stop the DMA transfer and send what we have so far to the client
2675 if (MfSniffSend(2000)) {
2676 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2680 ReaderIsActive
= FALSE
;
2681 TagIsActive
= FALSE
;
2682 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2686 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2687 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2688 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2689 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2691 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2693 // test for length of buffer
2694 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2695 maxDataLen
= dataLen
;
2697 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2701 if(dataLen
< 1) continue;
2703 // primary buffer was stopped ( <-- we lost data!
2704 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2705 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2706 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2707 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2709 // secondary buffer sets as primary, secondary buffer was stopped
2710 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2711 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2712 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2717 if (sniffCounter
& 0x01) {
2719 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2720 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2721 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2723 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parityBits
, Uart
.bitCount
, TRUE
)) break;
2725 /* And ready to receive another command. */
2728 /* And also reset the demod code */
2731 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2734 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2735 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2736 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2739 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parityBits
, Demod
.bitCount
, FALSE
)) break;
2741 // And ready to receive another response.
2744 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2748 previous_data
= *data
;
2751 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2757 DbpString("COMMAND FINISHED");
2759 FpgaDisableSscDma();
2762 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);