1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
40 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
44 struct common_area common_area
__attribute__((section(".commonarea")));
46 void ToSendReset(void)
52 void ToSendStuffBit(int b
)
56 ToSend
[ToSendMax
] = 0;
61 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
66 if(ToSendMax
>= sizeof(ToSend
)) {
68 DbpString("ToSendStuffBit overflowed!");
72 //=============================================================================
73 // Debug print functions, to go out over USB, to the usual PC-side client.
74 //=============================================================================
76 void DbpString(char *str
)
78 byte_t len
= strlen(str
);
79 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
83 void DbpIntegers(int x1
, int x2
, int x3
)
85 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
89 void Dbprintf(const char *fmt
, ...) {
90 // should probably limit size here; oh well, let's just use a big buffer
91 char output_string
[128];
95 kvsprintf(fmt
, output_string
, 10, ap
);
98 DbpString(output_string
);
101 // prints HEX & ASCII
102 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
115 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
118 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
120 Dbprintf("%*D",l
,d
," ");
128 //-----------------------------------------------------------------------------
129 // Read an ADC channel and block till it completes, then return the result
130 // in ADC units (0 to 1023). Also a routine to average 32 samples and
132 //-----------------------------------------------------------------------------
133 static int ReadAdc(int ch
)
137 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
138 AT91C_BASE_ADC
->ADC_MR
=
139 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
140 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
141 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
143 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
144 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
145 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
148 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
150 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
152 // Note: with the "historic" values in the comments above, the error was 34% !!!
154 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
156 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
158 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
160 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
165 int AvgAdc(int ch
) // was static - merlok
170 for(i
= 0; i
< 32; i
++) {
174 return (a
+ 15) >> 5;
177 void MeasureAntennaTuning(void)
179 uint8_t LF_Results
[256];
180 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
181 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
186 * Sweeps the useful LF range of the proxmark from
187 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
188 * read the voltage in the antenna, the result left
189 * in the buffer is a graph which should clearly show
190 * the resonating frequency of your LF antenna
191 * ( hopefully around 95 if it is tuned to 125kHz!)
194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
195 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
196 for (i
=255; i
>=19; i
--) {
198 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
200 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
201 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
202 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
204 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
205 if(LF_Results
[i
] > peak
) {
207 peak
= LF_Results
[i
];
213 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
216 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
217 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
220 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
222 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
223 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
229 void MeasureAntennaTuningHf(void)
231 int vHf
= 0; // in mV
233 DbpString("Measuring HF antenna, press button to exit");
235 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
236 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
237 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
241 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
243 Dbprintf("%d mV",vHf
);
244 if (BUTTON_PRESS()) break;
246 DbpString("cancelled");
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
253 void SimulateTagHfListen(void)
255 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
256 // There might be a better size to be defined:
257 #define HF_14B_SNOOP_BUFFER_SIZE 2744
258 uint8_t *dest
= BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE
);
263 // We're using this mode just so that I can test it out; the simulated
264 // tag mode would work just as well and be simpler.
265 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
268 // We need to listen to the high-frequency, peak-detected path.
269 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
275 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
276 AT91C_BASE_SSC
->SSC_THR
= 0xff;
278 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
279 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
293 if(i
>= HF_14B_SNOOP_BUFFER_SIZE
) {
299 DbpString("simulate tag (now type bitsamples)");
302 void ReadMem(int addr
)
304 const uint8_t *data
= ((uint8_t *)addr
);
306 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
307 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
310 /* osimage version information is linked in */
311 extern struct version_information version_information
;
312 /* bootrom version information is pointed to from _bootphase1_version_pointer */
313 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __os_size__
;
314 void SendVersion(void)
316 char temp
[512]; /* Limited data payload in USB packets */
317 DbpString("Prox/RFID mark3 RFID instrument");
319 /* Try to find the bootrom version information. Expect to find a pointer at
320 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
321 * pointer, then use it.
323 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
324 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
325 DbpString("bootrom version information appears invalid");
327 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
331 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
334 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
336 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
339 // Send Chip ID and used flash memory
340 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), (uint32_t)&_bootrom_end
- (uint32_t)&_bootrom_start
+ (uint32_t)&__os_size__
, 0, NULL
, 0);
344 // samy's sniff and repeat routine
347 DbpString("Stand-alone mode! No PC necessary.");
348 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
350 // 3 possible options? no just 2 for now
353 int high
[OPTS
], low
[OPTS
];
355 // Oooh pretty -- notify user we're in elite samy mode now
357 LED(LED_ORANGE
, 200);
359 LED(LED_ORANGE
, 200);
361 LED(LED_ORANGE
, 200);
363 LED(LED_ORANGE
, 200);
370 // Turn on selected LED
371 LED(selected
+ 1, 0);
378 // Was our button held down or pressed?
379 int button_pressed
= BUTTON_HELD(1000);
382 // Button was held for a second, begin recording
383 if (button_pressed
> 0 && cardRead
== 0)
386 LED(selected
+ 1, 0);
390 DbpString("Starting recording");
392 // wait for button to be released
393 while(BUTTON_PRESS())
396 /* need this delay to prevent catching some weird data */
399 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
400 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
403 LED(selected
+ 1, 0);
404 // Finished recording
406 // If we were previously playing, set playing off
407 // so next button push begins playing what we recorded
414 else if (button_pressed
> 0 && cardRead
== 1)
417 LED(selected
+ 1, 0);
421 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
423 // wait for button to be released
424 while(BUTTON_PRESS())
427 /* need this delay to prevent catching some weird data */
430 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
431 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
434 LED(selected
+ 1, 0);
435 // Finished recording
437 // If we were previously playing, set playing off
438 // so next button push begins playing what we recorded
445 // Change where to record (or begin playing)
446 else if (button_pressed
)
448 // Next option if we were previously playing
450 selected
= (selected
+ 1) % OPTS
;
454 LED(selected
+ 1, 0);
456 // Begin transmitting
460 DbpString("Playing");
461 // wait for button to be released
462 while(BUTTON_PRESS())
464 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
465 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
466 DbpString("Done playing");
467 if (BUTTON_HELD(1000) > 0)
469 DbpString("Exiting");
474 /* We pressed a button so ignore it here with a delay */
477 // when done, we're done playing, move to next option
478 selected
= (selected
+ 1) % OPTS
;
481 LED(selected
+ 1, 0);
484 while(BUTTON_PRESS())
493 Listen and detect an external reader. Determine the best location
497 Inside the ListenReaderField() function, there is two mode.
498 By default, when you call the function, you will enter mode 1.
499 If you press the PM3 button one time, you will enter mode 2.
500 If you press the PM3 button a second time, you will exit the function.
502 DESCRIPTION OF MODE 1:
503 This mode just listens for an external reader field and lights up green
504 for HF and/or red for LF. This is the original mode of the detectreader
507 DESCRIPTION OF MODE 2:
508 This mode will visually represent, using the LEDs, the actual strength of the
509 current compared to the maximum current detected. Basically, once you know
510 what kind of external reader is present, it will help you spot the best location to place
511 your antenna. You will probably not get some good results if there is a LF and a HF reader
512 at the same place! :-)
516 static const char LIGHT_SCHEME
[] = {
517 0x0, /* ---- | No field detected */
518 0x1, /* X--- | 14% of maximum current detected */
519 0x2, /* -X-- | 29% of maximum current detected */
520 0x4, /* --X- | 43% of maximum current detected */
521 0x8, /* ---X | 57% of maximum current detected */
522 0xC, /* --XX | 71% of maximum current detected */
523 0xE, /* -XXX | 86% of maximum current detected */
524 0xF, /* XXXX | 100% of maximum current detected */
526 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
528 void ListenReaderField(int limit
)
530 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
531 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
532 int mode
=1, display_val
, display_max
, i
;
536 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
539 // switch off FPGA - we don't want to measure our own signal
540 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
541 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
545 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
547 if(limit
!= HF_ONLY
) {
548 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
552 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
554 if (limit
!= LF_ONLY
) {
555 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
560 if (BUTTON_PRESS()) {
565 DbpString("Signal Strength Mode");
569 DbpString("Stopped");
577 if (limit
!= HF_ONLY
) {
579 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
585 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
586 // see if there's a significant change
587 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
588 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
595 if (limit
!= LF_ONLY
) {
597 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
603 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
604 // see if there's a significant change
605 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
606 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
614 if (limit
== LF_ONLY
) {
616 display_max
= lf_max
;
617 } else if (limit
== HF_ONLY
) {
619 display_max
= hf_max
;
620 } else { /* Pick one at random */
621 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
623 display_max
= hf_max
;
626 display_max
= lf_max
;
629 for (i
=0; i
<LIGHT_LEN
; i
++) {
630 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
631 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
632 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
633 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
634 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
642 void UsbPacketReceived(uint8_t *packet
, int len
)
644 UsbCommand
*c
= (UsbCommand
*)packet
;
646 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
650 case CMD_SET_LF_SAMPLING_CONFIG
:
651 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
653 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
654 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
656 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
657 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
659 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
660 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
662 case CMD_HID_DEMOD_FSK
:
663 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
665 case CMD_HID_SIM_TAG
:
666 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
668 case CMD_FSK_SIM_TAG
:
669 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
671 case CMD_ASK_SIM_TAG
:
672 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
674 case CMD_PSK_SIM_TAG
:
675 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
677 case CMD_HID_CLONE_TAG
:
678 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
680 case CMD_IO_DEMOD_FSK
:
681 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
683 case CMD_IO_CLONE_TAG
:
684 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
686 case CMD_EM410X_DEMOD
:
687 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
689 case CMD_EM410X_WRITE_TAG
:
690 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
692 case CMD_READ_TI_TYPE
:
695 case CMD_WRITE_TI_TYPE
:
696 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
698 case CMD_SIMULATE_TAG_125K
:
700 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
703 case CMD_LF_SIMULATE_BIDIR
:
704 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
706 case CMD_INDALA_CLONE_TAG
:
707 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
709 case CMD_INDALA_CLONE_TAG_L
:
710 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
712 case CMD_T55XX_READ_BLOCK
:
713 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
715 case CMD_T55XX_WRITE_BLOCK
:
716 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
718 case CMD_T55XX_READ_TRACE
:
721 case CMD_PCF7931_READ
:
723 cmd_send(CMD_ACK
,0,0,0,0,0);
725 case CMD_EM4X_READ_WORD
:
726 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
728 case CMD_EM4X_WRITE_WORD
:
729 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
734 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
735 SnoopHitag(c
->arg
[0]);
737 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
738 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
740 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
741 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
746 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
747 AcquireRawAdcSamplesIso15693();
749 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
750 RecordRawAdcSamplesIso15693();
753 case CMD_ISO_15693_COMMAND
:
754 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
757 case CMD_ISO_15693_FIND_AFI
:
758 BruteforceIso15693Afi(c
->arg
[0]);
761 case CMD_ISO_15693_DEBUG
:
762 SetDebugIso15693(c
->arg
[0]);
765 case CMD_READER_ISO_15693
:
766 ReaderIso15693(c
->arg
[0]);
768 case CMD_SIMTAG_ISO_15693
:
769 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
774 case CMD_SIMULATE_TAG_LEGIC_RF
:
775 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
778 case CMD_WRITER_LEGIC_RF
:
779 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
782 case CMD_READER_LEGIC_RF
:
783 LegicRfReader(c
->arg
[0], c
->arg
[1]);
787 #ifdef WITH_ISO14443b
788 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
789 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
791 case CMD_READ_SRI512_TAG
:
792 ReadSTMemoryIso14443(0x0F);
794 case CMD_READ_SRIX4K_TAG
:
795 ReadSTMemoryIso14443(0x7F);
797 case CMD_SNOOP_ISO_14443
:
800 case CMD_SIMULATE_TAG_ISO_14443
:
801 SimulateIso14443Tag();
803 case CMD_ISO_14443B_COMMAND
:
804 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
808 #ifdef WITH_ISO14443a
809 case CMD_SNOOP_ISO_14443a
:
810 SnoopIso14443a(c
->arg
[0]);
812 case CMD_READER_ISO_14443a
:
815 case CMD_SIMULATE_TAG_ISO_14443a
:
816 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
819 case CMD_EPA_PACE_COLLECT_NONCE
:
820 EPA_PACE_Collect_Nonce(c
);
823 case CMD_READER_MIFARE
:
824 ReaderMifare(c
->arg
[0]);
826 case CMD_MIFARE_READBL
:
827 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
829 case CMD_MIFAREU_READBL
:
830 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
832 case CMD_MIFAREUC_AUTH
:
833 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
835 case CMD_MIFAREU_READCARD
:
836 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
838 case CMD_MIFAREUC_SETPWD
:
839 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
841 case CMD_MIFARE_READSC
:
842 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
844 case CMD_MIFARE_WRITEBL
:
845 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
847 case CMD_MIFAREU_WRITEBL_COMPAT
:
848 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
850 case CMD_MIFAREU_WRITEBL
:
851 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
853 case CMD_MIFARE_NESTED
:
854 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
856 case CMD_MIFARE_CHKKEYS
:
857 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
859 case CMD_SIMULATE_MIFARE_CARD
:
860 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
864 case CMD_MIFARE_SET_DBGMODE
:
865 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
867 case CMD_MIFARE_EML_MEMCLR
:
868 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
870 case CMD_MIFARE_EML_MEMSET
:
871 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
873 case CMD_MIFARE_EML_MEMGET
:
874 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
876 case CMD_MIFARE_EML_CARDLOAD
:
877 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
880 // Work with "magic Chinese" card
881 case CMD_MIFARE_CSETBLOCK
:
882 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
884 case CMD_MIFARE_CGETBLOCK
:
885 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
887 case CMD_MIFARE_CIDENT
:
892 case CMD_MIFARE_SNIFFER
:
893 SniffMifare(c
->arg
[0]);
899 // Makes use of ISO14443a FPGA Firmware
900 case CMD_SNOOP_ICLASS
:
903 case CMD_SIMULATE_TAG_ICLASS
:
904 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
906 case CMD_READER_ICLASS
:
907 ReaderIClass(c
->arg
[0]);
909 case CMD_READER_ICLASS_REPLAY
:
910 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
912 case CMD_ICLASS_EML_MEMSET
:
913 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
917 case CMD_SIMULATE_TAG_HF_LISTEN
:
918 SimulateTagHfListen();
925 case CMD_MEASURE_ANTENNA_TUNING
:
926 MeasureAntennaTuning();
929 case CMD_MEASURE_ANTENNA_TUNING_HF
:
930 MeasureAntennaTuningHf();
933 case CMD_LISTEN_READER_FIELD
:
934 ListenReaderField(c
->arg
[0]);
937 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
938 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
940 LED_D_OFF(); // LED D indicates field ON or OFF
943 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
946 uint8_t *BigBuf
= BigBuf_get_addr();
947 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
948 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
949 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
951 // Trigger a finish downloading signal with an ACK frame
952 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
956 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
957 uint8_t *b
= BigBuf_get_addr();
958 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
959 cmd_send(CMD_ACK
,0,0,0,0,0);
966 case CMD_SET_LF_DIVISOR
:
967 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
968 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
971 case CMD_SET_ADC_MUX
:
973 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
974 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
975 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
976 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
992 case CMD_SETUP_WRITE
:
993 case CMD_FINISH_WRITE
:
994 case CMD_HARDWARE_RESET
:
998 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1000 // We're going to reset, and the bootrom will take control.
1004 case CMD_START_FLASH
:
1005 if(common_area
.flags
.bootrom_present
) {
1006 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1009 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1013 case CMD_DEVICE_INFO
: {
1014 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1015 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1016 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1020 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1025 void __attribute__((noreturn
)) AppMain(void)
1029 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1030 /* Initialize common area */
1031 memset(&common_area
, 0, sizeof(common_area
));
1032 common_area
.magic
= COMMON_AREA_MAGIC
;
1033 common_area
.version
= 1;
1035 common_area
.flags
.osimage_present
= 1;
1045 // The FPGA gets its clock from us from PCK0 output, so set that up.
1046 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1047 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1048 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1049 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1050 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1051 AT91C_PMC_PRES_CLK_4
;
1052 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1055 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1057 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1059 // Load the FPGA image, which we have stored in our flash.
1060 // (the HF version by default)
1061 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1069 byte_t rx
[sizeof(UsbCommand
)];
1074 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1076 UsbPacketReceived(rx
,rx_len
);
1082 if (BUTTON_HELD(1000) > 0)