1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
39 #include "proxmark3.h"
45 #include "iso14443a.h"
46 // Needed for CRC in emulation mode;
47 // same construction as in ISO 14443;
48 // different initial value (CRC_ICLASS)
49 #include "iso14443crc.h"
50 #include "iso15693tools.h"
51 #include "protocols.h"
52 #include "optimized_cipher.h"
53 #include "usb_cdc.h" // for usb_poll_validate_length
54 #include "fpgaloader.h"
56 static int timeout
= 4096;
59 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
);
61 //-----------------------------------------------------------------------------
62 // The software UART that receives commands from the reader, and its state
64 //-----------------------------------------------------------------------------
68 STATE_START_OF_COMMUNICATION
,
88 static RAMFUNC
int OutOfNDecoding(int bit
)
94 Uart
.bitBuffer
= bit
^ 0xFF0;
99 Uart
.bitBuffer
^= bit
;
103 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
106 if(Uart.byteCnt > 15) { return true; }
112 if(Uart
.state
!= STATE_UNSYNCD
) {
115 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
121 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
127 if(bit
!= bitright
) { bit
= bitright
; }
130 // So, now we only have to deal with *bit*, lets see...
131 if(Uart
.posCnt
== 1) {
132 // measurement first half bitperiod
134 // Drop in first half means that we are either seeing
137 if(Uart
.nOutOfCnt
== 1) {
138 // End of Communication
139 Uart
.state
= STATE_UNSYNCD
;
141 if(Uart
.byteCnt
== 0) {
142 // Its not straightforward to show single EOFs
143 // So just leave it and do not return true
144 Uart
.output
[0] = 0xf0;
151 else if(Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
152 // When not part of SOF or EOF, it is an error
153 Uart
.state
= STATE_UNSYNCD
;
160 // measurement second half bitperiod
161 // Count the bitslot we are in... (ISO 15693)
165 if(Uart
.dropPosition
) {
166 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
172 // It is an error if we already have seen a drop in current frame
173 Uart
.state
= STATE_UNSYNCD
;
177 Uart
.dropPosition
= Uart
.nOutOfCnt
;
184 if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
187 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
188 if(Uart
.dropPosition
== 4) {
189 Uart
.state
= STATE_RECEIVING
;
192 else if(Uart
.dropPosition
== 3) {
193 Uart
.state
= STATE_RECEIVING
;
195 //Uart.output[Uart.byteCnt] = 0xdd;
199 Uart
.state
= STATE_UNSYNCD
;
202 Uart
.dropPosition
= 0;
207 if(!Uart
.dropPosition
) {
208 Uart
.state
= STATE_UNSYNCD
;
217 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
218 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
220 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
222 Uart
.dropPosition
= 0;
224 if(Uart
.bitCnt
== 8) {
225 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
233 else if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
236 if(!Uart
.dropPosition
) {
237 Uart
.state
= STATE_UNSYNCD
;
243 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
248 Uart
.dropPosition
= 0;
253 Uart.output[Uart.byteCnt] = 0xAA;
255 Uart.output[Uart.byteCnt] = error & 0xFF;
257 Uart.output[Uart.byteCnt] = 0xAA;
259 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
261 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
263 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
265 Uart.output[Uart.byteCnt] = 0xAA;
273 bit
= Uart
.bitBuffer
& 0xf0;
275 bit
^= 0x0F; // drops become 1s ;-)
277 // should have been high or at least (4 * 128) / fc
278 // according to ISO this should be at least (9 * 128 + 20) / fc
279 if(Uart
.highCnt
== 8) {
280 // we went low, so this could be start of communication
281 // it turns out to be safer to choose a less significant
282 // syncbit... so we check whether the neighbour also represents the drop
283 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
284 Uart
.syncBit
= bit
& 8;
286 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
287 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
288 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
289 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
290 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
291 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
294 // the first half bit period is expected in next sample
299 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
302 Uart
.state
= STATE_START_OF_COMMUNICATION
;
306 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
307 Uart
.dropPosition
= 0;
316 if(Uart
.highCnt
< 8) {
325 //=============================================================================
327 //=============================================================================
332 DEMOD_START_OF_COMMUNICATION
,
333 DEMOD_START_OF_COMMUNICATION2
,
334 DEMOD_START_OF_COMMUNICATION3
,
338 DEMOD_END_OF_COMMUNICATION
,
339 DEMOD_END_OF_COMMUNICATION2
,
362 static RAMFUNC
int ManchesterDecoding(int v
)
369 Demod
.buffer
= Demod
.buffer2
;
370 Demod
.buffer2
= Demod
.buffer3
;
378 if(Demod
.state
==DEMOD_UNSYNCD
) {
379 Demod
.output
[Demod
.len
] = 0xfa;
382 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
385 Demod
.syncBit
= 0x08;
392 Demod
.syncBit
= 0x04;
399 Demod
.syncBit
= 0x02;
402 if(bit
& 0x01 && Demod
.syncBit
) {
403 Demod
.syncBit
= 0x01;
408 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
409 Demod
.sub
= SUB_FIRST_HALF
;
414 //if(trigger) LED_A_OFF(); // Not useful in this case...
415 switch(Demod
.syncBit
) {
416 case 0x08: Demod
.samples
= 3; break;
417 case 0x04: Demod
.samples
= 2; break;
418 case 0x02: Demod
.samples
= 1; break;
419 case 0x01: Demod
.samples
= 0; break;
421 // SOF must be long burst... otherwise stay unsynced!!!
422 if(!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
423 Demod
.state
= DEMOD_UNSYNCD
;
427 // SOF must be long burst... otherwise stay unsynced!!!
428 if(!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
429 Demod
.state
= DEMOD_UNSYNCD
;
439 modulation
= bit
& Demod
.syncBit
;
440 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
444 if(Demod
.posCount
==0) {
447 Demod
.sub
= SUB_FIRST_HALF
;
450 Demod
.sub
= SUB_NONE
;
455 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
456 if(Demod.state!=DEMOD_ERROR_WAIT) {
457 Demod.state = DEMOD_ERROR_WAIT;
458 Demod.output[Demod.len] = 0xaa;
462 //else if(modulation) {
464 if(Demod
.sub
== SUB_FIRST_HALF
) {
465 Demod
.sub
= SUB_BOTH
;
468 Demod
.sub
= SUB_SECOND_HALF
;
471 else if(Demod
.sub
== SUB_NONE
) {
472 if(Demod
.state
== DEMOD_SOF_COMPLETE
) {
473 Demod
.output
[Demod
.len
] = 0x0f;
475 Demod
.state
= DEMOD_UNSYNCD
;
480 Demod
.state
= DEMOD_ERROR_WAIT
;
483 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
484 Demod.state = DEMOD_ERROR_WAIT;
485 Demod.output[Demod.len] = 0xaa;
490 switch(Demod
.state
) {
491 case DEMOD_START_OF_COMMUNICATION
:
492 if(Demod
.sub
== SUB_BOTH
) {
493 //Demod.state = DEMOD_MANCHESTER_D;
494 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
496 Demod
.sub
= SUB_NONE
;
499 Demod
.output
[Demod
.len
] = 0xab;
500 Demod
.state
= DEMOD_ERROR_WAIT
;
504 case DEMOD_START_OF_COMMUNICATION2
:
505 if(Demod
.sub
== SUB_SECOND_HALF
) {
506 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
509 Demod
.output
[Demod
.len
] = 0xab;
510 Demod
.state
= DEMOD_ERROR_WAIT
;
514 case DEMOD_START_OF_COMMUNICATION3
:
515 if(Demod
.sub
== SUB_SECOND_HALF
) {
516 // Demod.state = DEMOD_MANCHESTER_D;
517 Demod
.state
= DEMOD_SOF_COMPLETE
;
518 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
522 Demod
.output
[Demod
.len
] = 0xab;
523 Demod
.state
= DEMOD_ERROR_WAIT
;
527 case DEMOD_SOF_COMPLETE
:
528 case DEMOD_MANCHESTER_D
:
529 case DEMOD_MANCHESTER_E
:
530 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
531 // 00001111 = 1 (0 in 14443)
532 if(Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
534 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
535 Demod
.state
= DEMOD_MANCHESTER_D
;
537 else if(Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
539 Demod
.shiftReg
>>= 1;
540 Demod
.state
= DEMOD_MANCHESTER_E
;
542 else if(Demod
.sub
== SUB_BOTH
) {
543 Demod
.state
= DEMOD_MANCHESTER_F
;
546 Demod
.state
= DEMOD_ERROR_WAIT
;
551 case DEMOD_MANCHESTER_F
:
552 // Tag response does not need to be a complete byte!
553 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
554 if(Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
555 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
556 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
560 Demod
.state
= DEMOD_UNSYNCD
;
564 Demod
.output
[Demod
.len
] = 0xad;
565 Demod
.state
= DEMOD_ERROR_WAIT
;
570 case DEMOD_ERROR_WAIT
:
571 Demod
.state
= DEMOD_UNSYNCD
;
575 Demod
.output
[Demod
.len
] = 0xdd;
576 Demod
.state
= DEMOD_UNSYNCD
;
580 /*if(Demod.bitCount>=9) {
581 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
584 Demod.parityBits <<= 1;
585 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
590 if(Demod
.bitCount
>=8) {
591 Demod
.shiftReg
>>= 1;
592 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
599 Demod
.output
[Demod
.len
] = 0xBB;
601 Demod
.output
[Demod
.len
] = error
& 0xFF;
603 Demod
.output
[Demod
.len
] = 0xBB;
605 Demod
.output
[Demod
.len
] = bit
& 0xFF;
607 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
610 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
612 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
614 Demod
.output
[Demod
.len
] = 0xBB;
621 } // end (state != UNSYNCED)
626 //=============================================================================
627 // Finally, a `sniffer' for iClass communication
628 // Both sides of communication!
629 //=============================================================================
631 //-----------------------------------------------------------------------------
632 // Record the sequence of commands sent by the reader to the tag, with
633 // triggering so that we start recording at the point that the tag is moved
635 //-----------------------------------------------------------------------------
636 void RAMFUNC
SnoopIClass(void)
640 // We won't start recording the frames that we acquire until we trigger;
641 // a good trigger condition to get started is probably when we see a
642 // response from the tag.
643 //int triggered = false; // false to wait first for card
645 // The command (reader -> tag) that we're receiving.
646 // The length of a received command will in most cases be no more than 18 bytes.
647 // So 32 should be enough!
648 #define ICLASS_BUFFER_SIZE 32
649 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
650 // The response (tag -> reader) that we're receiving.
651 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
653 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
655 // free all BigBuf memory
657 // The DMA buffer, used to stream samples from the FPGA
658 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
662 iso14a_set_trigger(false);
669 // Count of samples received so far, so that we can include timing
670 // information in the trace buffer.
674 // Set up the demodulator for tag -> reader responses.
675 Demod
.output
= tagToReaderResponse
;
677 Demod
.state
= DEMOD_UNSYNCD
;
679 // Setup for the DMA.
680 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
682 lastRxCounter
= DMA_BUFFER_SIZE
;
683 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
685 // And the reader -> tag commands
686 memset(&Uart
, 0, sizeof(Uart
));
687 Uart
.output
= readerToTagCmd
;
688 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
689 Uart
.state
= STATE_UNSYNCD
;
691 // And put the FPGA in the appropriate mode
692 // Signal field is off with the appropriate LED
694 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
695 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
697 uint32_t time_0
= GetCountSspClk();
698 uint32_t time_start
= 0;
699 uint32_t time_stop
= 0;
706 // And now we loop, receiving samples.
710 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
712 if(behindBy
> maxBehindBy
) {
713 maxBehindBy
= behindBy
;
714 if(behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
715 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
719 if(behindBy
< 1) continue;
725 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
726 upTo
-= DMA_BUFFER_SIZE
;
727 lastRxCounter
+= DMA_BUFFER_SIZE
;
728 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
729 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
736 decbyte
^= (1 << (3 - div
));
739 // FOR READER SIDE COMMUMICATION...
742 decbyter
^= (smpl
& 0x30);
746 if((div
+ 1) % 2 == 0) {
748 if(OutOfNDecoding((smpl
& 0xF0) >> 4)) {
749 rsamples
= samples
- Uart
.samples
;
750 time_stop
= (GetCountSspClk()-time_0
) << 4;
753 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
754 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
755 uint8_t parity
[MAX_PARITY_SIZE
];
756 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
757 LogTrace(Uart
.output
,Uart
.byteCnt
, time_start
, time_stop
, parity
, true);
759 /* And ready to receive another command. */
760 Uart
.state
= STATE_UNSYNCD
;
761 /* And also reset the demod code, which might have been */
762 /* false-triggered by the commands from the reader. */
763 Demod
.state
= DEMOD_UNSYNCD
;
767 time_start
= (GetCountSspClk()-time_0
) << 4;
774 if(ManchesterDecoding(smpl
& 0x0F)) {
775 time_stop
= (GetCountSspClk()-time_0
) << 4;
777 rsamples
= samples
- Demod
.samples
;
780 uint8_t parity
[MAX_PARITY_SIZE
];
781 GetParity(Demod
.output
, Demod
.len
, parity
);
782 LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, parity
, false);
784 // And ready to receive another response.
785 memset(&Demod
, 0, sizeof(Demod
));
786 Demod
.output
= tagToReaderResponse
;
787 Demod
.state
= DEMOD_UNSYNCD
;
790 time_start
= (GetCountSspClk()-time_0
) << 4;
799 DbpString("cancelled_a");
804 DbpString("COMMAND FINISHED");
806 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
807 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
810 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
811 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
812 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
816 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
818 for(i
= 0; i
< 8; i
++) {
819 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
823 //-----------------------------------------------------------------------------
824 // Wait for commands from reader
825 // Stop when button is pressed
826 // Or return true when command is captured
827 //-----------------------------------------------------------------------------
828 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
830 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
831 // only, since we are receiving, not transmitting).
832 // Signal field is off with the appropriate LED
834 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
836 // Now run a `software UART' on the stream of incoming samples.
837 Uart
.output
= received
;
838 Uart
.byteCntMax
= maxLen
;
839 Uart
.state
= STATE_UNSYNCD
;
844 if(BUTTON_PRESS()) return false;
846 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
847 AT91C_BASE_SSC
->SSC_THR
= 0x00;
849 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
850 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
852 if(OutOfNDecoding(b
& 0x0f)) {
860 static uint8_t encode4Bits(const uint8_t b
)
863 // OTA, the least significant bits first
865 // 1 - Bit value to send
866 // 2 - Reversed (big-endian)
872 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
873 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
874 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
875 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
876 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
877 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
878 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
879 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
880 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
881 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
882 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
883 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
884 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
885 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
886 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
887 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
892 //-----------------------------------------------------------------------------
893 // Prepare tag messages
894 //-----------------------------------------------------------------------------
895 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
)
899 * SOF comprises 3 parts;
900 * * An unmodulated time of 56.64 us
901 * * 24 pulses of 423.75 KHz (fc/32)
902 * * A logic 1, which starts with an unmodulated time of 18.88us
903 * followed by 8 pulses of 423.75kHz (fc/32)
906 * EOF comprises 3 parts:
907 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
909 * - 24 pulses of fc/32
910 * - An unmodulated time of 56.64 us
913 * A logic 0 starts with 8 pulses of fc/32
914 * followed by an unmodulated time of 256/fc (~18,88us).
916 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
917 * 8 pulses of fc/32 (also 18.88us)
919 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
921 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
922 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
924 * In this mode the SOF can be written as 00011101 = 0x1D
925 * The EOF can be written as 10111000 = 0xb8
936 ToSend
[++ToSendMax
] = 0x1D;
938 for(i
= 0; i
< len
; i
++) {
940 ToSend
[++ToSendMax
] = encode4Bits(b
& 0xF); //Least significant half
941 ToSend
[++ToSendMax
] = encode4Bits((b
>>4) & 0xF);//Most significant half
945 ToSend
[++ToSendMax
] = 0xB8;
946 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
947 // Convert from last byte pos to length
952 static void CodeIClassTagSOF()
954 //So far a dummy implementation, not used
955 //int lastProxToAirDuration =0;
959 ToSend
[++ToSendMax
] = 0x1D;
960 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
962 // Convert from last byte pos to length
965 #define MODE_SIM_CSN 0
966 #define MODE_EXIT_AFTER_MAC 1
967 #define MODE_FULLSIM 2
969 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
);
971 * @brief SimulateIClass simulates an iClass card.
972 * @param arg0 type of simulation
973 * - 0 uses the first 8 bytes in usb data as CSN
974 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
975 * in the usb data. This mode collects MAC from the reader, in order to do an offline
976 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
977 * - Other : Uses the default CSN (031fec8af7ff12e0)
978 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
982 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
)
984 uint32_t simType
= arg0
;
985 uint32_t numberOfCSNS
= arg1
;
986 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
988 // Enable and clear the trace
991 //Use the emulator memory for SIM
992 uint8_t *emulator
= BigBuf_get_EM_addr();
995 // Use the CSN from commandline
996 memcpy(emulator
, datain
, 8);
997 doIClassSimulation(MODE_SIM_CSN
,NULL
);
998 }else if(simType
== 1)
1001 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1002 // Use the CSN from commandline
1003 memcpy(emulator
, csn_crc
, 8);
1004 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1006 else if(simType
== 2)
1009 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1010 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1011 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1012 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1013 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1015 for( ; i
< numberOfCSNS
&& i
*8+8 < USB_CMD_DATA_SIZE
; i
++)
1017 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1019 memcpy(emulator
, datain
+(i
*8), 8);
1020 if(doIClassSimulation(MODE_EXIT_AFTER_MAC
,mac_responses
+i
*8))
1022 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1023 return; // Button pressed
1026 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1028 }else if(simType
== 3){
1029 //This is 'full sim' mode, where we use the emulator storage for data.
1030 doIClassSimulation(MODE_FULLSIM
, NULL
);
1033 // We may want a mode here where we hardcode the csns to use (from proxclone).
1034 // That will speed things up a little, but not required just yet.
1035 Dbprintf("The mode is not implemented, reserved for future use");
1037 Dbprintf("Done...");
1040 void AppendCrc(uint8_t* data
, int len
)
1042 ComputeCrc14443(CRC_ICLASS
,data
,len
,data
+len
,data
+len
+1);
1046 * @brief Does the actual simulation
1047 * @param csn - csn to use
1048 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1050 int doIClassSimulation( int simulationMode
, uint8_t *reader_mac_buf
)
1052 // free eventually allocated BigBuf memory
1053 BigBuf_free_keep_EM();
1056 // State cipher_state_reserve;
1057 uint8_t *csn
= BigBuf_get_EM_addr();
1058 uint8_t *emulator
= csn
;
1059 uint8_t sof_data
[] = { 0x0F} ;
1060 // CSN followed by two CRC bytes
1061 uint8_t anticoll_data
[10] = { 0 };
1062 uint8_t csn_data
[10] = { 0 };
1063 memcpy(csn_data
,csn
,sizeof(csn_data
));
1064 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1066 // Construct anticollision-CSN
1067 rotateCSN(csn_data
,anticoll_data
);
1069 // Compute CRC on both CSNs
1070 ComputeCrc14443(CRC_ICLASS
, anticoll_data
, 8, &anticoll_data
[8], &anticoll_data
[9]);
1071 ComputeCrc14443(CRC_ICLASS
, csn_data
, 8, &csn_data
[8], &csn_data
[9]);
1073 uint8_t diversified_key
[8] = { 0 };
1075 uint8_t card_challenge_data
[8] = { 0x00 };
1076 if(simulationMode
== MODE_FULLSIM
)
1078 //The diversified key should be stored on block 3
1079 //Get the diversified key from emulator memory
1080 memcpy(diversified_key
, emulator
+(8*3),8);
1082 //Card challenge, a.k.a e-purse is on block 2
1083 memcpy(card_challenge_data
,emulator
+ (8 * 2) , 8);
1084 //Precalculate the cipher state, feeding it the CC
1085 cipher_state
= opt_doTagMAC_1(card_challenge_data
,diversified_key
);
1093 // Tag anticoll. CSN
1094 // Reader 81 anticoll. CSN
1097 uint8_t *modulated_response
;
1098 int modulated_response_size
= 0;
1099 uint8_t* trace_data
= NULL
;
1100 int trace_data_size
= 0;
1103 // Respond SOF -- takes 1 bytes
1104 uint8_t *resp_sof
= BigBuf_malloc(2);
1107 // Anticollision CSN (rotated CSN)
1108 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1109 uint8_t *resp_anticoll
= BigBuf_malloc(28);
1110 int resp_anticoll_len
;
1113 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1114 uint8_t *resp_csn
= BigBuf_malloc(30);
1118 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1119 uint8_t *resp_cc
= BigBuf_malloc(20);
1122 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1125 // Prepare card messages
1128 // First card answer: SOF
1130 memcpy(resp_sof
, ToSend
, ToSendMax
); resp_sof_Len
= ToSendMax
;
1132 // Anticollision CSN
1133 CodeIClassTagAnswer(anticoll_data
, sizeof(anticoll_data
));
1134 memcpy(resp_anticoll
, ToSend
, ToSendMax
); resp_anticoll_len
= ToSendMax
;
1137 CodeIClassTagAnswer(csn_data
, sizeof(csn_data
));
1138 memcpy(resp_csn
, ToSend
, ToSendMax
); resp_csn_len
= ToSendMax
;
1141 CodeIClassTagAnswer(card_challenge_data
, sizeof(card_challenge_data
));
1142 memcpy(resp_cc
, ToSend
, ToSendMax
); resp_cc_len
= ToSendMax
;
1144 //This is used for responding to READ-block commands or other data which is dynamically generated
1145 //First the 'trace'-data, not encoded for FPGA
1146 uint8_t *data_generic_trace
= BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
1147 //Then storage for the modulated data
1148 //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
1149 uint8_t *data_response
= BigBuf_malloc( (8+2) * 2 + 2);
1151 // Start from off (no field generated)
1152 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1154 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1157 // We need to listen to the high-frequency, peak-detected path.
1158 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1159 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1161 // To control where we are in the protocol
1163 uint32_t time_0
= GetCountSspClk();
1164 uint32_t t2r_time
=0;
1165 uint32_t r2t_time
=0;
1168 bool buttonPressed
= false;
1169 uint8_t response_delay
= 1;
1174 // Can be used to get a trigger for an oscilloscope..
1177 if(!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) {
1178 buttonPressed
= true;
1181 r2t_time
= GetCountSspClk();
1185 // Okay, look at the command now.
1186 if(receivedCmd
[0] == ICLASS_CMD_ACTALL
) {
1187 // Reader in anticollission phase
1188 modulated_response
= resp_sof
; modulated_response_size
= resp_sof_Len
; //order = 1;
1189 trace_data
= sof_data
;
1190 trace_data_size
= sizeof(sof_data
);
1191 } else if(receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 1) {
1192 // Reader asks for anticollission CSN
1193 modulated_response
= resp_anticoll
; modulated_response_size
= resp_anticoll_len
; //order = 2;
1194 trace_data
= anticoll_data
;
1195 trace_data_size
= sizeof(anticoll_data
);
1196 //DbpString("Reader requests anticollission CSN:");
1197 } else if(receivedCmd
[0] == ICLASS_CMD_SELECT
) {
1198 // Reader selects anticollission CSN.
1199 // Tag sends the corresponding real CSN
1200 modulated_response
= resp_csn
; modulated_response_size
= resp_csn_len
; //order = 3;
1201 trace_data
= csn_data
;
1202 trace_data_size
= sizeof(csn_data
);
1203 //DbpString("Reader selects anticollission CSN:");
1204 } else if(receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
) {
1205 // Read e-purse (88 02)
1206 modulated_response
= resp_cc
; modulated_response_size
= resp_cc_len
; //order = 4;
1207 trace_data
= card_challenge_data
;
1208 trace_data_size
= sizeof(card_challenge_data
);
1210 } else if(receivedCmd
[0] == ICLASS_CMD_CHECK
) {
1211 // Reader random and reader MAC!!!
1212 if(simulationMode
== MODE_FULLSIM
)
1214 //NR, from reader, is in receivedCmd +1
1215 opt_doTagMAC_2(cipher_state
,receivedCmd
+1,data_generic_trace
,diversified_key
);
1217 trace_data
= data_generic_trace
;
1218 trace_data_size
= 4;
1219 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1220 memcpy(data_response
, ToSend
, ToSendMax
);
1221 modulated_response
= data_response
;
1222 modulated_response_size
= ToSendMax
;
1223 response_delay
= 0;//We need to hurry here...
1226 { //Not fullsim, we don't respond
1227 // We do not know what to answer, so lets keep quiet
1228 modulated_response
= resp_sof
; modulated_response_size
= 0;
1230 trace_data_size
= 0;
1231 if (simulationMode
== MODE_EXIT_AFTER_MAC
){
1233 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1234 ,csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1235 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len
,
1236 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1237 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1238 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1239 if (reader_mac_buf
!= NULL
)
1241 memcpy(reader_mac_buf
,receivedCmd
+1,8);
1247 } else if(receivedCmd
[0] == ICLASS_CMD_HALT
&& len
== 1) {
1248 // Reader ends the session
1249 modulated_response
= resp_sof
; modulated_response_size
= 0; //order = 0;
1251 trace_data_size
= 0;
1252 } else if(simulationMode
== MODE_FULLSIM
&& receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 4){
1254 uint16_t blk
= receivedCmd
[1];
1256 memcpy(data_generic_trace
, emulator
+(blk
<< 3),8);
1258 AppendCrc(data_generic_trace
, 8);
1259 trace_data
= data_generic_trace
;
1260 trace_data_size
= 10;
1261 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1262 memcpy(data_response
, ToSend
, ToSendMax
);
1263 modulated_response
= data_response
;
1264 modulated_response_size
= ToSendMax
;
1265 }else if(receivedCmd
[0] == ICLASS_CMD_UPDATE
&& simulationMode
== MODE_FULLSIM
)
1266 {//Probably the reader wants to update the nonce. Let's just ignore that for now.
1267 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1268 //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
1269 //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
1272 memcpy(data_generic_trace
, receivedCmd
+2,8);
1274 AppendCrc(data_generic_trace
, 8);
1275 trace_data
= data_generic_trace
;
1276 trace_data_size
= 10;
1277 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1278 memcpy(data_response
, ToSend
, ToSendMax
);
1279 modulated_response
= data_response
;
1280 modulated_response_size
= ToSendMax
;
1282 else if(receivedCmd
[0] == ICLASS_CMD_PAGESEL
)
1284 //Pagesel enables to select a page in the selected chip memory and return its configuration block
1285 //Chips with a single page will not answer to this command
1286 // It appears we're fine ignoring this.
1287 //Otherwise, we should answer 8bytes (block) + 2bytes CRC
1290 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1291 // Never seen this command before
1292 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1294 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1295 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1296 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1298 modulated_response
= resp_sof
; modulated_response_size
= 0; //order = 0;
1300 trace_data_size
= 0;
1303 if(cmdsRecvd
> 100) {
1304 //DbpString("100 commands later...");
1311 A legit tag has about 380us delay between reader EOT and tag SOF.
1313 if(modulated_response_size
> 0) {
1314 SendIClassAnswer(modulated_response
, modulated_response_size
, response_delay
);
1315 t2r_time
= GetCountSspClk();
1318 uint8_t parity
[MAX_PARITY_SIZE
];
1319 GetParity(receivedCmd
, len
, parity
);
1320 LogTrace(receivedCmd
,len
, (r2t_time
-time_0
)<< 4, (r2t_time
-time_0
) << 4, parity
, true);
1322 if (trace_data
!= NULL
) {
1323 GetParity(trace_data
, trace_data_size
, parity
);
1324 LogTrace(trace_data
, trace_data_size
, (t2r_time
-time_0
) << 4, (t2r_time
-time_0
) << 4, parity
, false);
1326 if(!get_tracing()) {
1327 DbpString("Trace full");
1332 //Dbprintf("%x", cmdsRecvd);
1339 DbpString("Button pressed");
1341 return buttonPressed
;
1344 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
)
1346 int i
= 0, d
=0;//, u = 0, d = 0;
1349 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1350 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT
);
1352 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1353 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1354 while(!BUTTON_PRESS()) {
1355 if((AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)){
1356 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1358 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)){
1371 AT91C_BASE_SSC
->SSC_THR
= b
;
1374 // if (i > respLen +4) break;
1375 if (i
> respLen
+1) break;
1383 //-----------------------------------------------------------------------------
1384 // Transmit the command (to the tag) that was placed in ToSend[].
1385 //-----------------------------------------------------------------------------
1386 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1389 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1390 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1391 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1395 if(*wait
< 10) *wait
= 10;
1397 for(c
= 0; c
< *wait
;) {
1398 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1399 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1402 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1403 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1413 bool firstpart
= true;
1416 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1418 // DOUBLE THE SAMPLES!
1420 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1423 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1426 if(sendbyte
== 0xff) {
1429 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1430 firstpart
= !firstpart
;
1436 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1437 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1442 if (samples
&& wait
) *samples
= (c
+ *wait
) << 3;
1446 //-----------------------------------------------------------------------------
1447 // Prepare iClass reader command to send to FPGA
1448 //-----------------------------------------------------------------------------
1449 void CodeIClassCommand(const uint8_t * cmd
, int len
)
1456 // Start of Communication: 1 out of 4
1457 ToSend
[++ToSendMax
] = 0xf0;
1458 ToSend
[++ToSendMax
] = 0x00;
1459 ToSend
[++ToSendMax
] = 0x0f;
1460 ToSend
[++ToSendMax
] = 0x00;
1462 // Modulate the bytes
1463 for (i
= 0; i
< len
; i
++) {
1465 for(j
= 0; j
< 4; j
++) {
1466 for(k
= 0; k
< 4; k
++) {
1468 ToSend
[++ToSendMax
] = 0xf0;
1471 ToSend
[++ToSendMax
] = 0x00;
1478 // End of Communication
1479 ToSend
[++ToSendMax
] = 0x00;
1480 ToSend
[++ToSendMax
] = 0x00;
1481 ToSend
[++ToSendMax
] = 0xf0;
1482 ToSend
[++ToSendMax
] = 0x00;
1484 // Convert from last character reference to length
1488 void ReaderTransmitIClass(uint8_t* frame
, int len
)
1493 // This is tied to other size changes
1494 CodeIClassCommand(frame
,len
);
1497 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1501 // Store reader command in buffer
1502 uint8_t par
[MAX_PARITY_SIZE
];
1503 GetParity(frame
, len
, par
);
1504 LogTrace(frame
, len
, rsamples
, rsamples
, par
, true);
1507 //-----------------------------------------------------------------------------
1508 // Wait a certain time for tag response
1509 // If a response is captured return true
1510 // If it takes too long return false
1511 //-----------------------------------------------------------------------------
1512 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1514 // buffer needs to be 512 bytes
1517 // Set FPGA mode to "reader listen mode", no modulation (listen
1518 // only, since we are receiving, not transmitting).
1519 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1521 // Now get the answer from the card
1522 Demod
.output
= receivedResponse
;
1524 Demod
.state
= DEMOD_UNSYNCD
;
1527 if (elapsed
) *elapsed
= 0;
1535 if(BUTTON_PRESS()) return false;
1537 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1538 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1539 if (elapsed
) (*elapsed
)++;
1541 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1542 if(c
< timeout
) { c
++; } else { return false; }
1543 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1547 if(ManchesterDecoding(b
& 0x0f)) {
1555 int ReaderReceiveIClass(uint8_t* receivedAnswer
)
1558 if (!GetIClassAnswer(receivedAnswer
,160,&samples
,0)) return false;
1559 rsamples
+= samples
;
1560 uint8_t parity
[MAX_PARITY_SIZE
];
1561 GetParity(receivedAnswer
, Demod
.len
, parity
);
1562 LogTrace(receivedAnswer
,Demod
.len
,rsamples
,rsamples
,parity
,false);
1563 if(samples
== 0) return false;
1567 void setupIclassReader()
1569 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1570 // Reset trace buffer
1575 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1576 // Start from off (no field generated)
1577 // Signal field is off with the appropriate LED
1579 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1582 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1584 // Now give it time to spin up.
1585 // Signal field is on with the appropriate LED
1586 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1592 bool sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, uint8_t expected_size
, uint8_t retries
)
1594 while(retries
-- > 0)
1596 ReaderTransmitIClass(command
, cmdsize
);
1597 if(expected_size
== ReaderReceiveIClass(resp
)){
1601 return false;//Error
1605 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1606 * @param card_data where the CSN and CC are stored for return
1609 * 2 = Got CSN and CC
1611 uint8_t handshakeIclassTag_ext(uint8_t *card_data
, bool use_credit_key
)
1613 static uint8_t act_all
[] = { 0x0a };
1614 //static uint8_t identify[] = { 0x0c };
1615 static uint8_t identify
[] = { 0x0c, 0x00, 0x73, 0x33 };
1616 static uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1617 static uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1619 readcheck_cc
[0] = 0x18;
1621 readcheck_cc
[0] = 0x88;
1623 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1625 uint8_t read_status
= 0;
1628 ReaderTransmitIClass(act_all
, 1);
1630 if(!ReaderReceiveIClass(resp
)) return read_status
;//Fail
1632 ReaderTransmitIClass(identify
, 1);
1633 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1634 uint8_t len
= ReaderReceiveIClass(resp
);
1635 if(len
!= 10) return read_status
;//Fail
1637 //Copy the Anti-collision CSN to our select-packet
1638 memcpy(&select
[1],resp
,8);
1640 ReaderTransmitIClass(select
, sizeof(select
));
1641 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1642 len
= ReaderReceiveIClass(resp
);
1643 if(len
!= 10) return read_status
;//Fail
1645 //Success - level 1, we got CSN
1646 //Save CSN in response data
1647 memcpy(card_data
,resp
,8);
1649 //Flag that we got to at least stage 1, read CSN
1652 // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
1653 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1654 if(ReaderReceiveIClass(resp
) == 8) {
1655 //Save CC (e-purse) in response data
1656 memcpy(card_data
+8,resp
,8);
1662 uint8_t handshakeIclassTag(uint8_t *card_data
) {
1663 return handshakeIclassTag_ext(card_data
, false);
1667 // Reader iClass Anticollission
1668 void ReaderIClass(uint8_t arg0
) {
1670 uint8_t card_data
[6 * 8]={0};
1671 memset(card_data
, 0xFF, sizeof(card_data
));
1672 uint8_t last_csn
[8]={0,0,0,0,0,0,0,0};
1673 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1674 memset(resp
, 0xFF, sizeof(resp
));
1675 //Read conf block CRC(0x01) => 0xfa 0x22
1676 uint8_t readConf
[] = { ICLASS_CMD_READ_OR_IDENTIFY
,0x01, 0xfa, 0x22};
1677 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
1678 uint8_t readAA
[] = { ICLASS_CMD_READ_OR_IDENTIFY
,0x05, 0xde, 0x64};
1681 uint8_t result_status
= 0;
1682 // flag to read until one tag is found successfully
1683 bool abort_after_read
= arg0
& FLAG_ICLASS_READER_ONLY_ONCE
;
1684 // flag to only try 5 times to find one tag then return
1685 bool try_once
= arg0
& FLAG_ICLASS_READER_ONE_TRY
;
1686 // if neither abort_after_read nor try_once then continue reading until button pressed.
1688 bool use_credit_key
= arg0
& FLAG_ICLASS_READER_CEDITKEY
;
1689 // test flags for what blocks to be sure to read
1690 uint8_t flagReadConfig
= arg0
& FLAG_ICLASS_READER_CONF
;
1691 uint8_t flagReadCC
= arg0
& FLAG_ICLASS_READER_CC
;
1692 uint8_t flagReadAA
= arg0
& FLAG_ICLASS_READER_AA
;
1695 setupIclassReader();
1698 bool userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1699 while(!userCancelled
)
1701 // if only looking for one card try 2 times if we missed it the first time
1702 if (try_once
&& tryCnt
> 2) break;
1704 if(!get_tracing()) {
1705 DbpString("Trace full");
1710 read_status
= handshakeIclassTag_ext(card_data
, use_credit_key
);
1712 if(read_status
== 0) continue;
1713 if(read_status
== 1) result_status
= FLAG_ICLASS_READER_CSN
;
1714 if(read_status
== 2) result_status
= FLAG_ICLASS_READER_CSN
|FLAG_ICLASS_READER_CC
;
1716 // handshakeIclass returns CSN|CC, but the actual block
1717 // layout is CSN|CONFIG|CC, so here we reorder the data,
1718 // moving CC forward 8 bytes
1719 memcpy(card_data
+16,card_data
+8, 8);
1720 //Read block 1, config
1721 if(flagReadConfig
) {
1722 if(sendCmdGetResponseWithRetries(readConf
, sizeof(readConf
), resp
, 10, 10))
1724 result_status
|= FLAG_ICLASS_READER_CONF
;
1725 memcpy(card_data
+8, resp
, 8);
1727 Dbprintf("Failed to dump config block");
1733 if(sendCmdGetResponseWithRetries(readAA
, sizeof(readAA
), resp
, 10, 10))
1735 result_status
|= FLAG_ICLASS_READER_AA
;
1736 memcpy(card_data
+(8*5), resp
, 8);
1738 //Dbprintf("Failed to dump AA block");
1743 // 1 : Configuration
1745 // (3,4 write-only, kc and kd)
1746 // 5 Application issuer area
1748 //Then we can 'ship' back the 8 * 6 bytes of data,
1749 // with 0xFF:s in block 3 and 4.
1752 //Send back to client, but don't bother if we already sent this -
1753 // only useful if looping in arm (not try_once && not abort_after_read)
1754 if(memcmp(last_csn
, card_data
, 8) != 0)
1756 // If caller requires that we get Conf, CC, AA, continue until we got it
1757 if( (result_status
^ FLAG_ICLASS_READER_CSN
^ flagReadConfig
^ flagReadCC
^ flagReadAA
) == 0) {
1758 cmd_send(CMD_ACK
,result_status
,0,0,card_data
,sizeof(card_data
));
1759 if(abort_after_read
) {
1764 //Save that we already sent this....
1765 memcpy(last_csn
, card_data
, 8);
1770 userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1772 if (userCancelled
) {
1773 cmd_send(CMD_ACK
,0xFF,0,0,card_data
, 0);
1775 cmd_send(CMD_ACK
,0,0,0,card_data
, 0);
1780 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1782 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1783 uint16_t block_crc_LUT
[255] = {0};
1785 {//Generate a lookup table for block crc
1786 for(int block
= 0; block
< 255; block
++){
1788 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1791 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1793 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1794 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1800 static struct memory_t
{
1808 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1810 setupIclassReader();
1813 while(!BUTTON_PRESS()) {
1817 if(!get_tracing()) {
1818 DbpString("Trace full");
1822 uint8_t read_status
= handshakeIclassTag(card_data
);
1823 if(read_status
< 2) continue;
1825 //for now replay captured auth (as cc not updated)
1826 memcpy(check
+5,MAC
,4);
1828 if(!sendCmdGetResponseWithRetries(check
, sizeof(check
),resp
, 4, 5))
1830 Dbprintf("Error: Authentication Fail!");
1834 //first get configuration block (block 1)
1835 crc
= block_crc_LUT
[1];
1838 read
[3] = crc
& 0xff;
1840 if(!sendCmdGetResponseWithRetries(read
, sizeof(read
),resp
, 10, 10))
1842 Dbprintf("Dump config (block 1) failed");
1847 memory
.k16
= (mem
& 0x80);
1848 memory
.book
= (mem
& 0x20);
1849 memory
.k2
= (mem
& 0x8);
1850 memory
.lockauth
= (mem
& 0x2);
1851 memory
.keyaccess
= (mem
& 0x1);
1853 cardsize
= memory
.k16
? 255 : 32;
1855 //Set card_data to all zeroes, we'll fill it with data
1856 memset(card_data
,0x0,USB_CMD_DATA_SIZE
);
1857 uint8_t failedRead
=0;
1858 uint32_t stored_data_length
=0;
1859 //then loop around remaining blocks
1860 for(int block
=0; block
< cardsize
; block
++){
1863 crc
= block_crc_LUT
[block
];
1865 read
[3] = crc
& 0xff;
1867 if(sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, 10, 10))
1869 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1870 block
, resp
[0], resp
[1], resp
[2],
1871 resp
[3], resp
[4], resp
[5],
1874 //Fill up the buffer
1875 memcpy(card_data
+stored_data_length
,resp
,8);
1876 stored_data_length
+= 8;
1877 if(stored_data_length
+8 > USB_CMD_DATA_SIZE
)
1878 {//Time to send this off and start afresh
1880 stored_data_length
,//data length
1881 failedRead
,//Failed blocks?
1883 card_data
, stored_data_length
);
1885 stored_data_length
= 0;
1891 stored_data_length
+=8;//Otherwise, data becomes misaligned
1892 Dbprintf("Failed to dump block %d", block
);
1896 //Send off any remaining data
1897 if(stored_data_length
> 0)
1900 stored_data_length
,//data length
1901 failedRead
,//Failed blocks?
1903 card_data
, stored_data_length
);
1905 //If we got here, let's break
1908 //Signal end of transmission
1918 void iClass_ReadCheck(uint8_t blockNo
, uint8_t keyType
) {
1919 uint8_t readcheck
[] = { keyType
, blockNo
};
1920 uint8_t resp
[] = {0,0,0,0,0,0,0,0};
1922 isOK
= sendCmdGetResponseWithRetries(readcheck
, sizeof(readcheck
), resp
, sizeof(resp
), 6);
1923 cmd_send(CMD_ACK
,isOK
,0,0,0,0);
1926 void iClass_Authentication(uint8_t *MAC
) {
1927 uint8_t check
[] = { ICLASS_CMD_CHECK
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1928 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1929 memcpy(check
+5,MAC
,4);
1931 isOK
= sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 6);
1932 cmd_send(CMD_ACK
,isOK
,0,0,0,0);
1934 bool iClass_ReadBlock(uint8_t blockNo
, uint8_t *readdata
) {
1935 uint8_t readcmd
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, blockNo
, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1937 uint16_t rdCrc
= iclass_crc16(&bl
, 1);
1938 readcmd
[2] = rdCrc
>> 8;
1939 readcmd
[3] = rdCrc
& 0xff;
1940 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
1943 //readcmd[1] = blockNo;
1944 isOK
= sendCmdGetResponseWithRetries(readcmd
, sizeof(readcmd
), resp
, 10, 10);
1945 memcpy(readdata
, resp
, sizeof(resp
));
1950 void iClass_ReadBlk(uint8_t blockno
) {
1951 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1953 isOK
= iClass_ReadBlock(blockno
, readblockdata
);
1954 cmd_send(CMD_ACK
, isOK
, 0, 0, readblockdata
, 8);
1957 void iClass_Dump(uint8_t blockno
, uint8_t numblks
) {
1958 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1963 uint8_t *dataout
= BigBuf_malloc(255*8);
1964 if (dataout
== NULL
){
1965 Dbprintf("out of memory");
1966 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1968 cmd_send(CMD_ACK
,0,1,0,0,0);
1972 memset(dataout
,0xFF,255*8);
1974 for (;blkCnt
< numblks
; blkCnt
++) {
1975 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1976 if (!isOK
|| (readblockdata
[0] == 0xBB || readblockdata
[7] == 0xBB || readblockdata
[2] == 0xBB)) { //try again
1977 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1979 Dbprintf("Block %02X failed to read", blkCnt
+blockno
);
1983 memcpy(dataout
+(blkCnt
*8),readblockdata
,8);
1985 //return pointer to dump memory in arg3
1986 cmd_send(CMD_ACK
,isOK
,blkCnt
,BigBuf_max_traceLen(),0,0);
1987 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1992 bool iClass_WriteBlock_ext(uint8_t blockNo
, uint8_t *data
) {
1993 uint8_t write
[] = { ICLASS_CMD_UPDATE
, blockNo
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1994 //uint8_t readblockdata[10];
1995 //write[1] = blockNo;
1996 memcpy(write
+2, data
, 12); // data + mac
1997 char *wrCmd
= (char *)(write
+1);
1998 uint16_t wrCrc
= iclass_crc16(wrCmd
, 13);
1999 write
[14] = wrCrc
>> 8;
2000 write
[15] = wrCrc
& 0xff;
2001 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
2004 isOK
= sendCmdGetResponseWithRetries(write
,sizeof(write
),resp
,sizeof(resp
),10);
2005 if (isOK
) { //if reader responded correctly
2006 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
2007 if (memcmp(write
+2,resp
,8)) { //if response is not equal to write values
2008 if (blockNo
!= 3 && blockNo
!= 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
2010 isOK
= sendCmdGetResponseWithRetries(write
,sizeof(write
),resp
,sizeof(resp
),10);
2018 void iClass_WriteBlock(uint8_t blockNo
, uint8_t *data
) {
2019 bool isOK
= iClass_WriteBlock_ext(blockNo
, data
);
2021 Dbprintf("Write block [%02x] successful",blockNo
);
2023 Dbprintf("Write block [%02x] failed",blockNo
);
2025 cmd_send(CMD_ACK
,isOK
,0,0,0,0);
2028 void iClass_Clone(uint8_t startblock
, uint8_t endblock
, uint8_t *data
) {
2031 int total_block
= (endblock
- startblock
) + 1;
2032 for (i
= 0; i
< total_block
;i
++){
2034 if (iClass_WriteBlock_ext(i
+startblock
, data
+(i
*12))){
2035 Dbprintf("Write block [%02x] successful",i
+ startblock
);
2038 if (iClass_WriteBlock_ext(i
+startblock
, data
+(i
*12))){
2039 Dbprintf("Write block [%02x] successful",i
+ startblock
);
2042 Dbprintf("Write block [%02x] failed",i
+ startblock
);
2046 if (written
== total_block
)
2047 Dbprintf("Clone complete");
2049 Dbprintf("Clone incomplete");
2051 cmd_send(CMD_ACK
,1,0,0,0,0);
2052 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);