3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
18 Copyright (C) 2008-2014 bla <blapost@gmail.com>
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut
[1 << 20];
25 static void __attribute__((constructor
)) fill_lut()
28 for(i
= 0; i
< 1 << 20; ++i
)
29 filterlut
[i
] = filter(i
);
31 #define filter(x) (filterlut[(x) & 0xfffff])
34 /** update_contribution
35 * helper, calculates the partial linear feedback contributions and puts in MSB
37 static inline void update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
)
39 uint32_t p
= *item
>> 25;
41 p
= p
<< 1 | parity(*item
& mask1
);
42 p
= p
<< 1 | parity(*item
& mask2
);
43 *item
= p
<< 24 | (*item
& 0xffffff);
47 * using a bit of the keystream extend the table of possible lfsr states
49 static inline void extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
)
52 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
53 if(filter(*tbl
) ^ filter(*tbl
| 1)) {
54 *tbl
|= filter(*tbl
) ^ bit
;
55 update_contribution(tbl
, m1
, m2
);
57 } else if(filter(*tbl
) == bit
) {
60 update_contribution(tbl
, m1
, m2
);
62 update_contribution(tbl
, m1
, m2
);
67 /** extend_table_simple
68 * using a bit of the keystream extend the table of possible lfsr states
70 static inline void extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
)
72 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1) {
73 if(filter(*tbl
) ^ filter(*tbl
| 1)) { // replace
74 *tbl
|= filter(*tbl
) ^ bit
;
75 } else if(filter(*tbl
) == bit
) { // insert
84 * recursively narrow down the search space, 4 bits of keystream at a time
86 static struct Crypto1State
*
87 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
,
88 uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
,
89 struct Crypto1State
*sl
, uint32_t in
, bucket_array_t bucket
)
92 bucket_info_t bucket_info
;
95 for(e
= e_head
; e
<= e_tail
; ++e
) {
96 *e
= *e
<< 1 ^ parity(*e
& LF_POLY_EVEN
) ^ !!(in
& 4);
97 for(o
= o_head
; o
<= o_tail
; ++o
, ++sl
) {
99 sl
->odd
= *e
^ parity(*o
& LF_POLY_ODD
);
100 sl
[1].odd
= sl
[1].even
= 0;
106 for(uint32_t i
= 0; i
< 4 && rem
--; i
++) {
110 extend_table(o_head
, &o_tail
, oks
& 1, LF_POLY_EVEN
<< 1 | 1, LF_POLY_ODD
<< 1, 0);
114 extend_table(e_head
, &e_tail
, eks
& 1, LF_POLY_ODD
, LF_POLY_EVEN
<< 1 | 1, in
& 3);
119 bucket_sort_intersect(e_head
, e_tail
, o_head
, o_tail
, &bucket_info
, bucket
);
121 for (int i
= bucket_info
.numbuckets
- 1; i
>= 0; i
--) {
122 sl
= recover(bucket_info
.bucket_info
[1][i
].head
, bucket_info
.bucket_info
[1][i
].tail
, oks
,
123 bucket_info
.bucket_info
[0][i
].head
, bucket_info
.bucket_info
[0][i
].tail
, eks
,
124 rem
, sl
, in
, bucket
);
130 * recover the state of the lfsr given 32 bits of the keystream
131 * additionally you can use the in parameter to specify the value
132 * that was fed into the lfsr at the time the keystream was generated
134 struct Crypto1State
* lfsr_recovery32(uint32_t ks2
, uint32_t in
)
136 struct Crypto1State
*statelist
;
137 uint32_t *odd_head
= 0, *odd_tail
= 0, oks
= 0;
138 uint32_t *even_head
= 0, *even_tail
= 0, eks
= 0;
141 // split the keystream into an odd and even part
142 for(i
= 31; i
>= 0; i
-= 2)
143 oks
= oks
<< 1 | BEBIT(ks2
, i
);
144 for(i
= 30; i
>= 0; i
-= 2)
145 eks
= eks
<< 1 | BEBIT(ks2
, i
);
147 odd_head
= odd_tail
= malloc(sizeof(uint32_t) << 21);
148 even_head
= even_tail
= malloc(sizeof(uint32_t) << 21);
149 statelist
= malloc(sizeof(struct Crypto1State
) << 18);
150 if(!odd_tail
-- || !even_tail
-- || !statelist
) {
156 statelist
->odd
= statelist
->even
= 0;
158 // allocate memory for out of place bucket_sort
159 bucket_array_t bucket
;
161 for (uint32_t i
= 0; i
< 2; i
++) {
162 for (uint32_t j
= 0; j
<= 0xff; j
++) {
163 bucket
[i
][j
].head
= malloc(sizeof(uint32_t)<<14);
164 if (!bucket
[i
][j
].head
) {
170 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
171 for(i
= 1 << 20; i
>= 0; --i
) {
172 if(filter(i
) == (oks
& 1))
174 if(filter(i
) == (eks
& 1))
178 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
179 for(i
= 0; i
< 4; i
++) {
180 extend_table_simple(odd_head
, &odd_tail
, (oks
>>= 1) & 1);
181 extend_table_simple(even_head
, &even_tail
, (eks
>>= 1) & 1);
184 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
185 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
186 // parameter into account.
187 in
= (in
>> 16 & 0xff) | (in
<< 16) | (in
& 0xff00); // Byte swapping
188 recover(odd_head
, odd_tail
, oks
, even_head
, even_tail
, eks
, 11, statelist
, in
<< 1, bucket
);
191 for (uint32_t i
= 0; i
< 2; i
++)
192 for (uint32_t j
= 0; j
<= 0xff; j
++)
193 free(bucket
[i
][j
].head
);
199 static const uint32_t S1
[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
200 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
201 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
202 static const uint32_t S2
[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
203 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
204 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
205 0x7EC7EE90, 0x7F63F748, 0x79117020};
206 static const uint32_t T1
[] = {
207 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
208 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
209 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
210 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
211 static const uint32_t T2
[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
212 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
213 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
214 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
215 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
216 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
217 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD};
218 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
219 /** Reverse 64 bits of keystream into possible cipher states
220 * Variation mentioned in the paper. Somewhat optimized version
222 struct Crypto1State
* lfsr_recovery64(uint32_t ks2
, uint32_t ks3
)
224 struct Crypto1State
*statelist
, *sl
;
225 uint8_t oks
[32], eks
[32], hi
[32];
226 uint32_t low
= 0, win
= 0;
227 uint32_t *tail
, table
[1 << 16];
230 sl
= statelist
= malloc(sizeof(struct Crypto1State
) << 4);
233 sl
->odd
= sl
->even
= 0;
235 for(i
= 30; i
>= 0; i
-= 2) {
236 oks
[i
>> 1] = BEBIT(ks2
, i
);
237 oks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
239 for(i
= 31; i
>= 0; i
-= 2) {
240 eks
[i
>> 1] = BEBIT(ks2
, i
);
241 eks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
244 for(i
= 0xfffff; i
>= 0; --i
) {
245 if (filter(i
) != oks
[0])
249 for(j
= 1; tail
>= table
&& j
< 29; ++j
)
250 extend_table_simple(table
, &tail
, oks
[j
]);
255 for(j
= 0; j
< 19; ++j
)
256 low
= low
<< 1 | parity(i
& S1
[j
]);
257 for(j
= 0; j
< 32; ++j
)
258 hi
[j
] = parity(i
& T1
[j
]);
260 for(; tail
>= table
; --tail
) {
261 for(j
= 0; j
< 3; ++j
) {
263 *tail
|= parity((i
& C1
[j
]) ^ (*tail
& C2
[j
]));
264 if(filter(*tail
) != oks
[29 + j
])
268 for(j
= 0; j
< 19; ++j
)
269 win
= win
<< 1 | parity(*tail
& S2
[j
]);
272 for(j
= 0; j
< 32; ++j
) {
273 win
= win
<< 1 ^ hi
[j
] ^ parity(*tail
& T2
[j
]);
274 if(filter(win
) != eks
[j
])
278 *tail
= *tail
<< 1 | parity(LF_POLY_EVEN
& *tail
);
279 sl
->odd
= *tail
^ parity(LF_POLY_ODD
& win
);
282 sl
->odd
= sl
->even
= 0;
289 /** lfsr_rollback_bit
290 * Rollback the shift register in order to get previous states
292 uint8_t lfsr_rollback_bit(struct Crypto1State
*s
, uint32_t in
, int fb
)
299 t
= s
->odd
, s
->odd
= s
->even
, s
->even
= t
;
302 out
^= LF_POLY_EVEN
& (s
->even
>>= 1);
303 out
^= LF_POLY_ODD
& s
->odd
;
305 out
^= (ret
= filter(s
->odd
)) & !!fb
;
307 s
->even
|= parity(out
) << 23;
310 /** lfsr_rollback_byte
311 * Rollback the shift register in order to get previous states
313 uint8_t lfsr_rollback_byte(struct Crypto1State
*s
, uint32_t in
, int fb
)
317 for (i = 7; i >= 0; --i)
318 ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
320 // unfold loop 20160112
322 ret
|= lfsr_rollback_bit(s
, BIT(in
, 7), fb
) << 7;
323 ret
|= lfsr_rollback_bit(s
, BIT(in
, 6), fb
) << 6;
324 ret
|= lfsr_rollback_bit(s
, BIT(in
, 5), fb
) << 5;
325 ret
|= lfsr_rollback_bit(s
, BIT(in
, 4), fb
) << 4;
326 ret
|= lfsr_rollback_bit(s
, BIT(in
, 3), fb
) << 3;
327 ret
|= lfsr_rollback_bit(s
, BIT(in
, 2), fb
) << 2;
328 ret
|= lfsr_rollback_bit(s
, BIT(in
, 1), fb
) << 1;
329 ret
|= lfsr_rollback_bit(s
, BIT(in
, 0), fb
) << 0;
332 /** lfsr_rollback_word
333 * Rollback the shift register in order to get previous states
335 uint32_t lfsr_rollback_word(struct Crypto1State
*s
, uint32_t in
, int fb
)
340 for (i = 31; i >= 0; --i)
341 ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
343 // unfold loop 20160112
345 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 31), fb
) << (31 ^ 24);
346 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 30), fb
) << (30 ^ 24);
347 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 29), fb
) << (29 ^ 24);
348 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 28), fb
) << (28 ^ 24);
349 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 27), fb
) << (27 ^ 24);
350 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 26), fb
) << (26 ^ 24);
351 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 25), fb
) << (25 ^ 24);
352 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 24), fb
) << (24 ^ 24);
354 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 23), fb
) << (23 ^ 24);
355 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 22), fb
) << (22 ^ 24);
356 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 21), fb
) << (21 ^ 24);
357 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 20), fb
) << (20 ^ 24);
358 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 19), fb
) << (19 ^ 24);
359 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 18), fb
) << (18 ^ 24);
360 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 17), fb
) << (17 ^ 24);
361 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 16), fb
) << (16 ^ 24);
363 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 15), fb
) << (15 ^ 24);
364 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 14), fb
) << (14 ^ 24);
365 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 13), fb
) << (13 ^ 24);
366 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 12), fb
) << (12 ^ 24);
367 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 11), fb
) << (11 ^ 24);
368 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 10), fb
) << (10 ^ 24);
369 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 9), fb
) << (9 ^ 24);
370 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 8), fb
) << (8 ^ 24);
372 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 7), fb
) << (7 ^ 24);
373 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 6), fb
) << (6 ^ 24);
374 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 5), fb
) << (5 ^ 24);
375 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 4), fb
) << (4 ^ 24);
376 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 3), fb
) << (3 ^ 24);
377 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 2), fb
) << (2 ^ 24);
378 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 1), fb
) << (1 ^ 24);
379 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 0), fb
) << (0 ^ 24);
384 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
386 static uint16_t *dist
= 0;
387 int nonce_distance(uint32_t from
, uint32_t to
)
391 dist
= malloc(2 << 16);
394 for (x
= i
= 1; i
; ++i
) {
395 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
396 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
399 return (65535 + dist
[to
>> 16] - dist
[from
>> 16]) % 65535;
403 static uint32_t fastfwd
[2][8] = {
404 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
405 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
410 * Is an exported helper function from the common prefix attack
411 * Described in the "dark side" paper. It returns an -1 terminated array
412 * of possible partial(21 bit) secret state.
413 * The required keystream(ks) needs to contain the keystream that was used to
414 * encrypt the NACK which is observed when varying only the 3 last bits of Nr
415 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
417 uint32_t *lfsr_prefix_ks(uint8_t ks
[8], int isodd
)
419 uint32_t *candidates
= malloc(4 << 10);
420 if(!candidates
) return 0;
423 int size
= 0, i
, good
;
425 for(i
= 0; i
< 1 << 21; ++i
) {
426 for(c
= 0, good
= 1; good
&& c
< 8; ++c
) {
427 entry
= i
^ fastfwd
[isodd
][c
];
428 good
&= (BIT(ks
[c
], isodd
) == filter(entry
>> 1));
429 good
&= (BIT(ks
[c
], isodd
+ 2) == filter(entry
));
432 candidates
[size
++] = i
;
435 candidates
[size
] = -1;
441 * helper function which eliminates possible secret states using parity bits
443 static struct Crypto1State
* check_pfx_parity(uint32_t prefix
, uint32_t rresp
, uint8_t parities
[8][8], uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
)
445 uint32_t ks1
, nr
, ks2
, rr
, ks3
, c
, good
= 1;
447 for(c
= 0; good
&& c
< 8; ++c
) {
448 sl
->odd
= odd
^ fastfwd
[1][c
];
449 sl
->even
= even
^ fastfwd
[0][c
];
451 lfsr_rollback_bit(sl
, 0, 0);
452 lfsr_rollback_bit(sl
, 0, 0);
454 ks3
= lfsr_rollback_bit(sl
, 0, 0);
455 ks2
= lfsr_rollback_word(sl
, 0, 0);
456 ks1
= lfsr_rollback_word(sl
, prefix
| c
<< 5, 1);
458 nr
= ks1
^ (prefix
| c
<< 5);
461 good
&= parity(nr
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24);
462 good
&= parity(rr
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16);
463 good
&= parity(rr
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
, 8);
464 good
&= parity(rr
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
, 0);
465 good
&= parity(rr
& 0x000000ff) ^ parities
[c
][7] ^ ks3
;
470 static struct Crypto1State
* check_pfx_parity_ex(uint32_t prefix
, uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
) {
474 sl
->odd
= odd
^ fastfwd
[1][c
];
475 sl
->even
= even
^ fastfwd
[0][c
];
477 lfsr_rollback_bit(sl
, 0, 0);
478 lfsr_rollback_bit(sl
, 0, 0);
479 lfsr_rollback_bit(sl
, 0, 0);
480 lfsr_rollback_word(sl
, 0, 0);
481 lfsr_rollback_word(sl
, prefix
| c
<< 5, 1);
486 /** lfsr_common_prefix
487 * Implentation of the common prefix attack.
488 * Requires the 28 bit constant prefix used as reader nonce (pfx)
489 * The reader response used (rr)
490 * The keystream used to encrypt the observed NACK's (ks)
491 * The parity bits (par)
492 * It returns a zero terminated list of possible cipher states after the
493 * tag nonce was fed in
496 struct Crypto1State
* lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8])
498 struct Crypto1State
*statelist
, *s
;
499 uint32_t *odd
, *even
, *o
, *e
, top
;
501 odd
= lfsr_prefix_ks(ks
, 1);
502 even
= lfsr_prefix_ks(ks
, 0);
504 s
= statelist
= malloc((sizeof *statelist
) << 20);
505 if(!s
|| !odd
|| !even
) {
511 for(o
= odd
; *o
+ 1; ++o
)
512 for(e
= even
; *e
+ 1; ++e
)
513 for(top
= 0; top
< 64; ++top
) {
515 *e
+= (!(top
& 7) + 1) << 21;
516 s
= check_pfx_parity(pfx
, rr
, par
, *o
, *e
, s
);
519 s
->odd
= s
->even
= 0;
526 struct Crypto1State
* lfsr_common_prefix_ex(uint32_t pfx
, uint8_t ks
[8])
528 struct Crypto1State
*statelist
, *s
;
529 uint32_t *odd
, *even
, *o
, *e
, top
;
531 odd
= lfsr_prefix_ks(ks
, 1);
532 even
= lfsr_prefix_ks(ks
, 0);
534 s
= statelist
= malloc((sizeof *statelist
) << 20);
535 if(!s
|| !odd
|| !even
) {
541 for(o
= odd
; *o
+ 1; ++o
)
542 for(e
= even
; *e
+ 1; ++e
)
543 for(top
= 0; top
< 64; ++top
) {
545 *e
+= (!(top
& 7) + 1) << 21;
546 s
= check_pfx_parity_ex(pfx
, *o
, *e
, s
);
549 // in this version, -1 signifies end of states
550 s
->odd
= s
->even
= -1;