1 //----------------------------------------------------------------------------- 
   2 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   3 // at your option, any later version. See the LICENSE.txt file for the text of 
   5 //----------------------------------------------------------------------------- 
   6 // Miscellaneous routines for low frequency tag operations. 
   7 // Tags supported here so far are Texas Instruments (TI), HID 
   8 // Also routines for raw mode reading/simulating of LF waveform 
   9 //----------------------------------------------------------------------------- 
  11 #include "proxmark3.h" 
  21 * Does the sample acquisition. If threshold is specified, the actual sampling 
  22 * is not commenced until the threshold has been reached. 
  23 * @param trigger_threshold - the threshold 
  24 * @param silent - is true, now outputs are made. If false, dbprints the status 
  26 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
) 
  28     uint8_t *dest 
= BigBuf_get_addr(); 
  29     int n 
= BigBuf_max_traceLen(); 
  35         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
  36             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
  39         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
  40             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
  42             if (trigger_threshold 
!= -1 && dest
[i
] < trigger_threshold
) 
  45                 trigger_threshold 
= -1; 
  51         Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", 
  52                  dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]); 
  57 * Perform sample aquisition. 
  59 void DoAcquisition125k(int trigger_threshold
) 
  61     DoAcquisition125k_internal(trigger_threshold
, false); 
  65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream 
  66 * if not already loaded, sets divisor and starts up the antenna. 
  67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz 
  71 void LFSetupFPGAForADC(int divisor
, bool lf_field
) 
  73     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
  74     if ( (divisor 
== 1) || (divisor 
< 0) || (divisor 
> 255) ) 
  75         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
  76     else if (divisor 
== 0) 
  77         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
  79         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
); 
  81     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| (lf_field 
? FPGA_LF_ADC_READER_FIELD 
: 0)); 
  83     // Connect the A/D to the peak-detected low-frequency path. 
  84     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
  86     // Give it a bit of time for the resonant antenna to settle. 
  89     // Now set up the SSC to get the ADC samples that are now streaming at us. 
  93 * Initializes the FPGA, and acquires the samples. 
  95 void AcquireRawAdcSamples125k(int divisor
) 
  97     LFSetupFPGAForADC(divisor
, true); 
  98     // Now call the acquisition routine 
  99     DoAcquisition125k_internal(-1,false); 
 102 * Initializes the FPGA for snoop-mode, and acquires the samples. 
 105 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
) 
 107     LFSetupFPGAForADC(divisor
, false); 
 108     DoAcquisition125k(trigger_threshold
); 
 111 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
) 
 114     /* Make sure the tag is reset */ 
 115     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 116     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 120     int divisor_used 
= 95; // 125 KHz 
 121     // see if 'h' was specified 
 123     if (command
[strlen((char *) command
) - 1] == 'h') 
 124         divisor_used 
= 88; // 134.8 KHz 
 127     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
); 
 128     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 129     // Give it a bit of time for the resonant antenna to settle. 
 132     // And a little more time for the tag to fully power up 
 135     // Now set up the SSC to get the ADC samples that are now streaming at us. 
 138     // now modulate the reader field 
 139     while(*command 
!= '\0' && *command 
!= ' ') { 
 140         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 142         SpinDelayUs(delay_off
); 
 143         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
); 
 145         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 147         if(*(command
++) == '0') 
 148             SpinDelayUs(period_0
); 
 150             SpinDelayUs(period_1
); 
 152     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 154     SpinDelayUs(delay_off
); 
 155     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
); 
 157     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 160     DoAcquisition125k(-1); 
 163 /* blank r/w tag data stream 
 164 ...0000000000000000 01111111 
 165 1010101010101010101010101010101010101010101010101010101010101010 
 168 101010101010101[0]000... 
 170 [5555fe852c5555555555555555fe0000] 
 174     // some hardcoded initial params 
 175     // when we read a TI tag we sample the zerocross line at 2Mhz 
 176     // TI tags modulate a 1 as 16 cycles of 123.2Khz 
 177     // TI tags modulate a 0 as 16 cycles of 134.2Khz 
 178  #define FSAMPLE 2000000 
 179  #define FREQLO 123200 
 180  #define FREQHI 134200 
 182     signed char *dest 
= (signed char *)BigBuf_get_addr(); 
 183     uint16_t n 
= BigBuf_max_traceLen(); 
 184     // 128 bit shift register [shift3:shift2:shift1:shift0] 
 185     uint32_t shift3 
= 0, shift2 
= 0, shift1 
= 0, shift0 
= 0; 
 187     int i
, cycles
=0, samples
=0; 
 188     // how many sample points fit in 16 cycles of each frequency 
 189     uint32_t sampleslo 
= (FSAMPLE
<<4)/FREQLO
, sampleshi 
= (FSAMPLE
<<4)/FREQHI
; 
 190     // when to tell if we're close enough to one freq or another 
 191     uint32_t threshold 
= (sampleslo 
- sampleshi 
+ 1)>>1; 
 193     // TI tags charge at 134.2Khz 
 194     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 195     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 197     // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 198     // connects to SSP_DIN and the SSP_DOUT logic level controls 
 199     // whether we're modulating the antenna (high) 
 200     // or listening to the antenna (low) 
 201     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 203     // get TI tag data into the buffer 
 206     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 208     for (i
=0; i
<n
-1; i
++) { 
 209         // count cycles by looking for lo to hi zero crossings 
 210         if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) { 
 212             // after 16 cycles, measure the frequency 
 215                 samples
=i
-samples
; // number of samples in these 16 cycles 
 217                 // TI bits are coming to us lsb first so shift them 
 218                 // right through our 128 bit right shift register 
 219                 shift0 
= (shift0
>>1) | (shift1 
<< 31); 
 220                 shift1 
= (shift1
>>1) | (shift2 
<< 31); 
 221                 shift2 
= (shift2
>>1) | (shift3 
<< 31); 
 224                 // check if the cycles fall close to the number 
 225                 // expected for either the low or high frequency 
 226                 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) { 
 227                     // low frequency represents a 1 
 229                 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) { 
 230                     // high frequency represents a 0 
 232                     // probably detected a gay waveform or noise 
 233                     // use this as gaydar or discard shift register and start again 
 234                     shift3 
= shift2 
= shift1 
= shift0 
= 0; 
 238                 // for each bit we receive, test if we've detected a valid tag 
 240                 // if we see 17 zeroes followed by 6 ones, we might have a tag 
 241                 // remember the bits are backwards 
 242                 if ( ((shift0 
& 0x7fffff) == 0x7e0000) ) { 
 243                     // if start and end bytes match, we have a tag so break out of the loop 
 244                     if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) { 
 245                         cycles 
= 0xF0B; //use this as a flag (ugly but whatever) 
 253     // if flag is set we have a tag 
 255         DbpString("Info: No valid tag detected."); 
 257         // put 64 bit data into shift1 and shift0 
 258         shift0 
= (shift0
>>24) | (shift1 
<< 8); 
 259         shift1 
= (shift1
>>24) | (shift2 
<< 8); 
 261         // align 16 bit crc into lower half of shift2 
 262         shift2 
= ((shift2
>>24) | (shift3 
<< 8)) & 0x0ffff; 
 264         // if r/w tag, check ident match 
 265                 if (shift3 
& (1<<15) ) { 
 266             DbpString("Info: TI tag is rewriteable"); 
 267             // only 15 bits compare, last bit of ident is not valid 
 268                         if (((shift3 
>> 16) ^ shift0
) & 0x7fff ) { 
 269                 DbpString("Error: Ident mismatch!"); 
 271                 DbpString("Info: TI tag ident is valid"); 
 274             DbpString("Info: TI tag is readonly"); 
 277         // WARNING the order of the bytes in which we calc crc below needs checking 
 278         // i'm 99% sure the crc algorithm is correct, but it may need to eat the 
 279         // bytes in reverse or something 
 283         crc 
= update_crc16(crc
, (shift0
)&0xff); 
 284         crc 
= update_crc16(crc
, (shift0
>>8)&0xff); 
 285         crc 
= update_crc16(crc
, (shift0
>>16)&0xff); 
 286         crc 
= update_crc16(crc
, (shift0
>>24)&0xff); 
 287         crc 
= update_crc16(crc
, (shift1
)&0xff); 
 288         crc 
= update_crc16(crc
, (shift1
>>8)&0xff); 
 289         crc 
= update_crc16(crc
, (shift1
>>16)&0xff); 
 290         crc 
= update_crc16(crc
, (shift1
>>24)&0xff); 
 292         Dbprintf("Info: Tag data: %x%08x, crc=%x", 
 293                  (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2 
& 0xFFFF); 
 294         if (crc 
!= (shift2
&0xffff)) { 
 295             Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
); 
 297             DbpString("Info: CRC is good"); 
 302 void WriteTIbyte(uint8_t b
) 
 306     // modulate 8 bits out to the antenna 
 310             // stop modulating antenna 
 317             // stop modulating antenna 
 327 void AcquireTiType(void) 
 330     // tag transmission is <20ms, sampling at 2M gives us 40K samples max 
 331     // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t 
 332  #define TIBUFLEN 1250 
 335         uint32_t *BigBuf 
= (uint32_t *)BigBuf_get_addr(); 
 336     memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t)); 
 338     // Set up the synchronous serial port 
 339     AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DIN
; 
 340     AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN
; 
 342     // steal this pin from the SSP and use it to control the modulation 
 343     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 344     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 346     AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_SWRST
; 
 347     AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_RXEN 
| AT91C_SSC_TXEN
; 
 349     // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long 
 350     // 48/2 = 24 MHz clock must be divided by 12 
 351     AT91C_BASE_SSC
->SSC_CMR 
= 12; 
 353     AT91C_BASE_SSC
->SSC_RCMR 
= SSC_CLOCK_MODE_SELECT(0); 
 354     AT91C_BASE_SSC
->SSC_RFMR 
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
; 
 355     AT91C_BASE_SSC
->SSC_TCMR 
= 0; 
 356     AT91C_BASE_SSC
->SSC_TFMR 
= 0; 
 363     // Charge TI tag for 50ms. 
 366     // stop modulating antenna and listen 
 373         if(AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
 374             BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
;        // store 32 bit values in buffer 
 375             i
++; if(i 
>= TIBUFLEN
) break; 
 380     // return stolen pin to SSP 
 381     AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DOUT
; 
 382     AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN 
| GPIO_SSC_DOUT
; 
 384     char *dest 
= (char *)BigBuf_get_addr(); 
 387     for (i
=TIBUFLEN
-1; i
>=0; i
--) { 
 388         for (j
=0; j
<32; j
++) { 
 389             if(BigBuf
[i
] & (1 << j
)) { 
 398 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc 
 399 // if crc provided, it will be written with the data verbatim (even if bogus) 
 400 // if not provided a valid crc will be computed from the data and written. 
 401 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
) 
 403     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 405         crc 
= update_crc16(crc
, (idlo
)&0xff); 
 406         crc 
= update_crc16(crc
, (idlo
>>8)&0xff); 
 407         crc 
= update_crc16(crc
, (idlo
>>16)&0xff); 
 408         crc 
= update_crc16(crc
, (idlo
>>24)&0xff); 
 409         crc 
= update_crc16(crc
, (idhi
)&0xff); 
 410         crc 
= update_crc16(crc
, (idhi
>>8)&0xff); 
 411         crc 
= update_crc16(crc
, (idhi
>>16)&0xff); 
 412         crc 
= update_crc16(crc
, (idhi
>>24)&0xff); 
 414     Dbprintf("Writing to tag: %x%08x, crc=%x", 
 415              (unsigned int) idhi
, (unsigned int) idlo
, crc
); 
 417     // TI tags charge at 134.2Khz 
 418     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 419     // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 420     // connects to SSP_DIN and the SSP_DOUT logic level controls 
 421     // whether we're modulating the antenna (high) 
 422     // or listening to the antenna (low) 
 423     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 426     // steal this pin from the SSP and use it to control the modulation 
 427     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 428     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 430     // writing algorithm: 
 431     // a high bit consists of a field off for 1ms and field on for 1ms 
 432     // a low bit consists of a field off for 0.3ms and field on for 1.7ms 
 433     // initiate a charge time of 50ms (field on) then immediately start writing bits 
 434     // start by writing 0xBB (keyword) and 0xEB (password) 
 435     // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) 
 436     // finally end with 0x0300 (write frame) 
 437     // all data is sent lsb firts 
 438     // finish with 15ms programming time 
 442     SpinDelay(50);      // charge time 
 444     WriteTIbyte(0xbb); // keyword 
 445     WriteTIbyte(0xeb); // password 
 446     WriteTIbyte( (idlo    
)&0xff ); 
 447     WriteTIbyte( (idlo
>>8 )&0xff ); 
 448     WriteTIbyte( (idlo
>>16)&0xff ); 
 449     WriteTIbyte( (idlo
>>24)&0xff ); 
 450     WriteTIbyte( (idhi    
)&0xff ); 
 451     WriteTIbyte( (idhi
>>8 )&0xff ); 
 452     WriteTIbyte( (idhi
>>16)&0xff ); 
 453     WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo 
 454     WriteTIbyte( (crc     
)&0xff ); // crc lo 
 455     WriteTIbyte( (crc
>>8  )&0xff ); // crc hi 
 456     WriteTIbyte(0x00); // write frame lo 
 457     WriteTIbyte(0x03); // write frame hi 
 459     SpinDelay(50);      // programming time 
 463     // get TI tag data into the buffer 
 466     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 467     DbpString("Now use tiread to check"); 
 470 void SimulateTagLowFrequency(uint16_t period
, uint32_t gap
, uint8_t ledcontrol
) 
 473     uint8_t *tab 
= BigBuf_get_addr(); 
 475     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 476     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
); 
 478     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT 
| GPIO_SSC_CLK
; 
 480     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 481     AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_CLK
; 
 483 #define SHORT_COIL()    LOW(GPIO_SSC_DOUT) 
 484 #define OPEN_COIL()             HIGH(GPIO_SSC_DOUT) 
 488         while(!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
)) { 
 490                 DbpString("Stopped"); 
 507         while(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
) { 
 509                 DbpString("Stopped"); 
 526 #define DEBUG_FRAME_CONTENTS 1 
 527 void SimulateTagLowFrequencyBidir(int divisor
, int t0
) 
 531 // compose fc/8 fc/10 waveform 
 532 static void fc(int c
, int *n
) { 
 533     uint8_t *dest 
= BigBuf_get_addr(); 
 536     // for when we want an fc8 pattern every 4 logical bits 
 547     //  an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples 
 549         for (idx
=0; idx
<6; idx
++) { 
 561     //  an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples 
 563         for (idx
=0; idx
<5; idx
++) { 
 578 // prepare a waveform pattern in the buffer based on the ID given then 
 579 // simulate a HID tag until the button is pressed 
 580 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
) 
 584      HID tag bitstream format 
 585      The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits 
 586      A 1 bit is represented as 6 fc8 and 5 fc10 patterns 
 587      A 0 bit is represented as 5 fc10 and 6 fc8 patterns 
 588      A fc8 is inserted before every 4 bits 
 589      A special start of frame pattern is used consisting a0b0 where a and b are neither 0 
 590      nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) 
 594         DbpString("Tags can only have 44 bits."); 
 598     // special start of frame marker containing invalid bit sequences 
 599     fc(8,  &n
); fc(8,  &n
);     // invalid 
 600     fc(8,  &n
); fc(10, &n
); // logical 0 
 601     fc(10, &n
); fc(10, &n
); // invalid 
 602     fc(8,  &n
); fc(10, &n
); // logical 0 
 605     // manchester encode bits 43 to 32 
 606     for (i
=11; i
>=0; i
--) { 
 607         if ((i%4
)==3) fc(0,&n
); 
 609             fc(10, &n
); fc(8,  &n
);             // low-high transition 
 611             fc(8,  &n
); fc(10, &n
);             // high-low transition 
 616     // manchester encode bits 31 to 0 
 617     for (i
=31; i
>=0; i
--) { 
 618         if ((i%4
)==3) fc(0,&n
); 
 620             fc(10, &n
); fc(8,  &n
);             // low-high transition 
 622             fc(8,  &n
); fc(10, &n
);             // high-low transition 
 628     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 634 // loop to get raw HID waveform then FSK demodulate the TAG ID from it 
 635 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 637     uint8_t *dest 
= BigBuf_get_addr(); 
 638     const size_t sizeOfBigBuff 
= BigBuf_max_traceLen(); 
 640     uint32_t hi2
=0, hi
=0, lo
=0; 
 642     // Configure to go in 125Khz listen mode 
 643     LFSetupFPGAForADC(95, true); 
 645     while(!BUTTON_PRESS()) { 
 648         if (ledcontrol
) LED_A_ON(); 
 650         DoAcquisition125k_internal(-1,true); 
 652         size 
= sizeOfBigBuff
;  //variable size will change after demod so re initialize it before use 
 653                 idx 
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
); 
 656             // final loop, go over previously decoded manchester data and decode into usable tag ID 
 657             // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 
 658             if (hi2 
!= 0){ //extra large HID tags 
 659                 Dbprintf("TAG ID: %x%08x%08x (%d)", 
 660                          (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF); 
 661             }else {  //standard HID tags <38 bits 
 662                 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd 
 665                 uint32_t cardnum 
= 0; 
 666                                 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used 
 668                     lo2
=(((hi 
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit 
 670                                         while(lo2 
> 1){ //find last bit set to 1 (format len bit) 
 678                         cardnum 
= (lo
>>1)&0xFFFF; 
 682                         cardnum 
= (lo
>>1)&0x7FFFF; 
 683                         fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 686                         cardnum 
= (lo
>>1)&0xFFFF; 
 687                         fc
= ((hi
&1)<<15)|(lo
>>17); 
 690                         cardnum 
= (lo
>>1)&0xFFFFF; 
 691                         fc 
= ((hi
&1)<<11)|(lo
>>21); 
 694                 else { //if bit 38 is not set then 37 bit format is used 
 699                         cardnum 
= (lo
>>1)&0x7FFFF; 
 700                         fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 703                 //Dbprintf("TAG ID: %x%08x (%d)", 
 704                 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); 
 705                 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", 
 706                          (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF, 
 707                          (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
); 
 710                 if (ledcontrol
) LED_A_OFF(); 
 720     DbpString("Stopped"); 
 721     if (ledcontrol
) LED_A_OFF(); 
 724 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
) 
 726     uint8_t *dest 
= BigBuf_get_addr(); 
 728         size_t size
=0, idx
=0; 
 729     int clk
=0, invert
=0, errCnt
=0; 
 731     // Configure to go in 125Khz listen mode 
 732     LFSetupFPGAForADC(95, true); 
 734     while(!BUTTON_PRESS()) { 
 737         if (ledcontrol
) LED_A_ON(); 
 739         DoAcquisition125k_internal(-1,true); 
 740         size  
= BigBuf_max_traceLen(); 
 741         //Dbprintf("DEBUG: Buffer got"); 
 742                 //askdemod and manchester decode 
 743                 errCnt 
= askmandemod(dest
, &size
, &clk
, &invert
); 
 744         //Dbprintf("DEBUG: ASK Got"); 
 748                         lo 
= Em410xDecode(dest
, &size
, &idx
); 
 749             //Dbprintf("DEBUG: EM GOT"); 
 751                                 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", 
 754                                     (uint32_t)(lo
&0xFFFF), 
 755                                     (uint32_t)((lo
>>16LL) & 0xFF), 
 756                                     (uint32_t)(lo 
& 0xFFFFFF)); 
 759                 if (ledcontrol
) LED_A_OFF(); 
 761                 *low
=lo 
& 0xFFFFFFFF; 
 765             //Dbprintf("DEBUG: No Tag"); 
 774     DbpString("Stopped"); 
 775     if (ledcontrol
) LED_A_OFF(); 
 778 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 780     uint8_t *dest 
= BigBuf_get_addr(); 
 782     uint32_t code
=0, code2
=0; 
 784     uint8_t facilitycode
=0; 
 786     // Configure to go in 125Khz listen mode 
 787     LFSetupFPGAForADC(95, true); 
 789     while(!BUTTON_PRESS()) { 
 791         if (ledcontrol
) LED_A_ON(); 
 792         DoAcquisition125k_internal(-1,true); 
 793         //fskdemod and get start index 
 795         idx 
= IOdemodFSK(dest
, BigBuf_max_traceLen()); 
 800             //0           10          20          30          40          50          60 
 802             //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 
 803             //----------------------------------------------------------------------------- 
 804             //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 
 806             //XSF(version)facility:codeone+codetwo 
 808             if(findone
){ //only print binary if we are doing one 
 809                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
],   dest
[idx
+1],   dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]); 
 810                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]); 
 811                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]); 
 812                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]); 
 813                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]); 
 814                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]); 
 815                 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]); 
 817             code 
= bytebits_to_byte(dest
+idx
,32); 
 818             code2 
= bytebits_to_byte(dest
+idx
+32,32); 
 819             version 
= bytebits_to_byte(dest
+idx
+27,8); //14,4 
 820             facilitycode 
= bytebits_to_byte(dest
+idx
+18,8) ; 
 821             number 
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9 
 823             Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
); 
 824             // if we're only looking for one tag 
 826                 if (ledcontrol
) LED_A_OFF(); 
 833             version
=facilitycode
=0; 
 839     DbpString("Stopped"); 
 840     if (ledcontrol
) LED_A_OFF(); 
 843 /*------------------------------ 
 844  * T5555/T5557/T5567 routines 
 845  *------------------------------ 
 848 /* T55x7 configuration register definitions */ 
 849 #define T55x7_POR_DELAY                 0x00000001 
 850 #define T55x7_ST_TERMINATOR             0x00000008 
 851 #define T55x7_PWD                       0x00000010 
 852 #define T55x7_MAXBLOCK_SHIFT            5 
 853 #define T55x7_AOR                       0x00000200 
 854 #define T55x7_PSKCF_RF_2                0 
 855 #define T55x7_PSKCF_RF_4                0x00000400 
 856 #define T55x7_PSKCF_RF_8                0x00000800 
 857 #define T55x7_MODULATION_DIRECT         0 
 858 #define T55x7_MODULATION_PSK1           0x00001000 
 859 #define T55x7_MODULATION_PSK2           0x00002000 
 860 #define T55x7_MODULATION_PSK3           0x00003000 
 861 #define T55x7_MODULATION_FSK1           0x00004000 
 862 #define T55x7_MODULATION_FSK2           0x00005000 
 863 #define T55x7_MODULATION_FSK1a          0x00006000 
 864 #define T55x7_MODULATION_FSK2a          0x00007000 
 865 #define T55x7_MODULATION_MANCHESTER     0x00008000 
 866 #define T55x7_MODULATION_BIPHASE        0x00010000 
 867 #define T55x7_BITRATE_RF_8              0 
 868 #define T55x7_BITRATE_RF_16             0x00040000 
 869 #define T55x7_BITRATE_RF_32             0x00080000 
 870 #define T55x7_BITRATE_RF_40             0x000C0000 
 871 #define T55x7_BITRATE_RF_50             0x00100000 
 872 #define T55x7_BITRATE_RF_64             0x00140000 
 873 #define T55x7_BITRATE_RF_100            0x00180000 
 874 #define T55x7_BITRATE_RF_128            0x001C0000 
 876 /* T5555 (Q5) configuration register definitions */ 
 877 #define T5555_ST_TERMINATOR             0x00000001 
 878 #define T5555_MAXBLOCK_SHIFT            0x00000001 
 879 #define T5555_MODULATION_MANCHESTER     0 
 880 #define T5555_MODULATION_PSK1           0x00000010 
 881 #define T5555_MODULATION_PSK2           0x00000020 
 882 #define T5555_MODULATION_PSK3           0x00000030 
 883 #define T5555_MODULATION_FSK1           0x00000040 
 884 #define T5555_MODULATION_FSK2           0x00000050 
 885 #define T5555_MODULATION_BIPHASE        0x00000060 
 886 #define T5555_MODULATION_DIRECT         0x00000070 
 887 #define T5555_INVERT_OUTPUT             0x00000080 
 888 #define T5555_PSK_RF_2                  0 
 889 #define T5555_PSK_RF_4                  0x00000100 
 890 #define T5555_PSK_RF_8                  0x00000200 
 891 #define T5555_USE_PWD                   0x00000400 
 892 #define T5555_USE_AOR                   0x00000800 
 893 #define T5555_BITRATE_SHIFT             12 
 894 #define T5555_FAST_WRITE                0x00004000 
 895 #define T5555_PAGE_SELECT               0x00008000 
 898  * Relevant times in microsecond 
 899  * To compensate antenna falling times shorten the write times 
 900  * and enlarge the gap ones. 
 902 #define START_GAP 30*8 // 10 - 50fc 250 
 903 #define WRITE_GAP 20*8 //  8 - 30fc 
 904 #define WRITE_0   24*8 // 16 - 31fc 24fc 192 
 905 #define WRITE_1   54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550 
 907 //  VALUES TAKEN FROM EM4x function: SendForward 
 908 //  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle) 
 909 //  WRITE_GAP = 128;       (16*8) 
 910 //  WRITE_1   = 256 32*8;  (32*8)  
 912 //  These timings work for 4469/4269/4305 (with the 55*8 above) 
 913 //  WRITE_0 = 23*8 , 9*8  SpinDelayUs(23*8);  
 915 #define T55xx_SAMPLES_SIZE              12000 // 32 x 32 x 10  (32 bit times numofblock (7), times clock skip..) 
 917 // Write one bit to card 
 918 void T55xxWriteBit(int bit
) 
 920     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 921     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 922     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 924         SpinDelayUs(WRITE_0
); 
 926         SpinDelayUs(WRITE_1
); 
 927     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 928     SpinDelayUs(WRITE_GAP
); 
 931 // Write one card block in page 0, no lock 
 932 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
 936         // Set up FPGA, 125kHz 
 937         // Wait for config.. (192+8190xPOW)x8 == 67ms 
 938         LFSetupFPGAForADC(0, true); 
 940     // Now start writting 
 941     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 942     SpinDelayUs(START_GAP
); 
 946     T55xxWriteBit(0); //Page 0 
 949         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
 950             T55xxWriteBit(Pwd 
& i
); 
 956     for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
 957         T55xxWriteBit(Data 
& i
); 
 960     for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
 961         T55xxWriteBit(Block 
& i
); 
 963     // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, 
 964     // so wait a little more) 
 965     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 966     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 968     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 971 // Read one card block in page 0 
 972 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
 974     uint8_t *dest 
= BigBuf_get_addr(); 
 975     //uint16_t bufferlength = BigBuf_max_traceLen(); 
 976         uint16_t bufferlength 
= T55xx_SAMPLES_SIZE
; 
 978         // Clear destination buffer before sending the command  0x80 = average. 
 979         memset(dest
, 0x80, bufferlength
);           
 981         // Set up FPGA, 125kHz 
 982         // Wait for config.. (192+8190xPOW)x8 == 67ms 
 983         LFSetupFPGAForADC(0, true); 
 984     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 985     SpinDelayUs(START_GAP
); 
 989     T55xxWriteBit(0); //Page 0 
 992         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
 993             T55xxWriteBit(Pwd 
& i
); 
 998     for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
 999         T55xxWriteBit(Block 
& i
); 
1001     // Turn field on to read the response 
1004     // Now do the acquisition 
1007         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1008             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1009                         //AT91C_BASE_SSC->SSC_THR = 0xff; 
1012         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1013             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1016                         if (i 
>= bufferlength
) break; 
1020         cmd_send(CMD_ACK
,0,0,0,0,0); 
1021     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1025 // Read card traceability data (page 1) 
1026 void T55xxReadTrace(void){ 
1027     uint8_t *dest 
= BigBuf_get_addr(); 
1028     //uint16_t bufferlength = BigBuf_max_traceLen(); 
1029         uint16_t bufferlength 
= T55xx_SAMPLES_SIZE
; 
1032         // Clear destination buffer before sending the command 0x80 = average 
1033         memset(dest
, 0x80, bufferlength
);   
1035         LFSetupFPGAForADC(0, true); 
1036     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1037     SpinDelayUs(START_GAP
); 
1041     T55xxWriteBit(1); //Page 1 
1043     // Turn field on to read the response 
1046     // Now do the acquisition 
1048         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1049             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1052         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1053             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1057                         if (i 
>= bufferlength
) break; 
1061         cmd_send(CMD_ACK
,0,0,0,0,0); 
1062     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1066 void TurnReadLFOn(){ 
1067         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1068         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1069         // Give it a bit of time for the resonant antenna to settle. 
1074 /*-------------- Cloning routines -----------*/ 
1075 // Copy HID id to card and setup block 0 config 
1076 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1078     int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format 
1082         // Ensure no more than 84 bits supplied 
1084             DbpString("Tags can only have 84 bits."); 
1087         // Build the 6 data blocks for supplied 84bit ID 
1089         data1 
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) 
1090         for (int i
=0;i
<4;i
++) { 
1091             if (hi2 
& (1<<(19-i
))) 
1092                 data1 
|= (1<<(((3-i
)*2)+1)); // 1 -> 10 
1094                 data1 
|= (1<<((3-i
)*2)); // 0 -> 01 
1098         for (int i
=0;i
<16;i
++) { 
1099             if (hi2 
& (1<<(15-i
))) 
1100                 data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1102                 data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1106         for (int i
=0;i
<16;i
++) { 
1107             if (hi 
& (1<<(31-i
))) 
1108                 data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1110                 data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1114         for (int i
=0;i
<16;i
++) { 
1115             if (hi 
& (1<<(15-i
))) 
1116                 data4 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1118                 data4 
|= (1<<((15-i
)*2)); // 0 -> 01 
1122         for (int i
=0;i
<16;i
++) { 
1123             if (lo 
& (1<<(31-i
))) 
1124                 data5 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1126                 data5 
|= (1<<((15-i
)*2)); // 0 -> 01 
1130         for (int i
=0;i
<16;i
++) { 
1131             if (lo 
& (1<<(15-i
))) 
1132                 data6 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1134                 data6 
|= (1<<((15-i
)*2)); // 0 -> 01 
1138         // Ensure no more than 44 bits supplied 
1140             DbpString("Tags can only have 44 bits."); 
1144         // Build the 3 data blocks for supplied 44bit ID 
1147         data1 
= 0x1D000000; // load preamble 
1149         for (int i
=0;i
<12;i
++) { 
1150             if (hi 
& (1<<(11-i
))) 
1151                 data1 
|= (1<<(((11-i
)*2)+1)); // 1 -> 10 
1153                 data1 
|= (1<<((11-i
)*2)); // 0 -> 01 
1157         for (int i
=0;i
<16;i
++) { 
1158             if (lo 
& (1<<(31-i
))) 
1159                 data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1161                 data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1165         for (int i
=0;i
<16;i
++) { 
1166             if (lo 
& (1<<(15-i
))) 
1167                 data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1169                 data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1174     // Program the data blocks for supplied ID 
1175     // and the block 0 for HID format 
1176     T55xxWriteBlock(data1
,1,0,0); 
1177     T55xxWriteBlock(data2
,2,0,0); 
1178     T55xxWriteBlock(data3
,3,0,0); 
1180     if (longFMT
) { // if long format there are 6 blocks 
1181         T55xxWriteBlock(data4
,4,0,0); 
1182         T55xxWriteBlock(data5
,5,0,0); 
1183         T55xxWriteBlock(data6
,6,0,0); 
1186     // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) 
1187     T55xxWriteBlock(T55x7_BITRATE_RF_50    
| 
1188                     T55x7_MODULATION_FSK2a 
| 
1189                     last_block 
<< T55x7_MAXBLOCK_SHIFT
, 
1197 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1199     int data1
=0, data2
=0; //up to six blocks for long format 
1201     data1 
= hi
;  // load preamble 
1205     // Program the data blocks for supplied ID 
1206     // and the block 0 for HID format 
1207     T55xxWriteBlock(data1
,1,0,0); 
1208     T55xxWriteBlock(data2
,2,0,0); 
1211     T55xxWriteBlock(0x00147040,0,0,0); 
1217 // Define 9bit header for EM410x tags 
1218 #define EM410X_HEADER           0x1FF 
1219 #define EM410X_ID_LENGTH        40 
1221 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) 
1224     uint64_t id 
= EM410X_HEADER
; 
1225     uint64_t rev_id 
= 0;        // reversed ID 
1226     int c_parity
[4];    // column parity 
1227     int r_parity 
= 0;   // row parity 
1230     // Reverse ID bits given as parameter (for simpler operations) 
1231     for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1233             rev_id 
= (rev_id 
<< 1) | (id_lo 
& 1); 
1236             rev_id 
= (rev_id 
<< 1) | (id_hi 
& 1); 
1241     for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1242         id_bit 
= rev_id 
& 1; 
1245             // Don't write row parity bit at start of parsing 
1247                 id 
= (id 
<< 1) | r_parity
; 
1248             // Start counting parity for new row 
1255         // First elements in column? 
1257             // Fill out first elements 
1258             c_parity
[i
] = id_bit
; 
1260             // Count column parity 
1261             c_parity
[i 
% 4] ^= id_bit
; 
1264         id 
= (id 
<< 1) | id_bit
; 
1268     // Insert parity bit of last row 
1269     id 
= (id 
<< 1) | r_parity
; 
1271     // Fill out column parity at the end of tag 
1272     for (i 
= 0; i 
< 4; ++i
) 
1273         id 
= (id 
<< 1) | c_parity
[i
]; 
1278     Dbprintf("Started writing %s tag ...", card 
? "T55x7":"T5555"); 
1282     T55xxWriteBlock((uint32_t)(id 
>> 32), 1, 0, 0); 
1283     T55xxWriteBlock((uint32_t)id
, 2, 0, 0); 
1285     // Config for EM410x (RF/64, Manchester, Maxblock=2) 
1287         // Clock rate is stored in bits 8-15 of the card value 
1288         clock 
= (card 
& 0xFF00) >> 8; 
1289         Dbprintf("Clock rate: %d", clock
); 
1293             clock 
= T55x7_BITRATE_RF_32
; 
1296             clock 
= T55x7_BITRATE_RF_16
; 
1299             // A value of 0 is assumed to be 64 for backwards-compatibility 
1302             clock 
= T55x7_BITRATE_RF_64
; 
1305             Dbprintf("Invalid clock rate: %d", clock
); 
1309         // Writing configuration for T55x7 tag 
1310         T55xxWriteBlock(clock       
| 
1311                         T55x7_MODULATION_MANCHESTER 
| 
1312                         2 << T55x7_MAXBLOCK_SHIFT
, 
1316         // Writing configuration for T5555(Q5) tag 
1317         T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT 
| 
1318                         T5555_MODULATION_MANCHESTER   
| 
1319                         2 << T5555_MAXBLOCK_SHIFT
, 
1323     Dbprintf("Tag %s written with 0x%08x%08x\n", card 
? "T55x7":"T5555", 
1324              (uint32_t)(id 
>> 32), (uint32_t)id
); 
1327 // Clone Indala 64-bit tag by UID to T55x7 
1328 void CopyIndala64toT55x7(int hi
, int lo
) 
1331     //Program the 2 data blocks for supplied 64bit UID 
1332     // and the block 0 for Indala64 format 
1333     T55xxWriteBlock(hi
,1,0,0); 
1334     T55xxWriteBlock(lo
,2,0,0); 
1335     //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) 
1336     T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1337                     T55x7_MODULATION_PSK1 
| 
1338                     2 << T55x7_MAXBLOCK_SHIFT
, 
1340     //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) 
1341     //  T5567WriteBlock(0x603E1042,0); 
1347 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
) 
1350     //Program the 7 data blocks for supplied 224bit UID 
1351     // and the block 0 for Indala224 format 
1352     T55xxWriteBlock(uid1
,1,0,0); 
1353     T55xxWriteBlock(uid2
,2,0,0); 
1354     T55xxWriteBlock(uid3
,3,0,0); 
1355     T55xxWriteBlock(uid4
,4,0,0); 
1356     T55xxWriteBlock(uid5
,5,0,0); 
1357     T55xxWriteBlock(uid6
,6,0,0); 
1358     T55xxWriteBlock(uid7
,7,0,0); 
1359     //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) 
1360     T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1361                     T55x7_MODULATION_PSK1 
| 
1362                     7 << T55x7_MAXBLOCK_SHIFT
, 
1364     //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) 
1365     //  T5567WriteBlock(0x603E10E2,0); 
1372 #define abs(x) ( ((x)<0) ? -(x) : (x) ) 
1373 #define max(x,y) ( x<y ? y:x) 
1375 int DemodPCF7931(uint8_t **outBlocks
) { 
1376     uint8_t BitStream
[256]; 
1377     uint8_t Blocks
[8][16]; 
1378     uint8_t *GraphBuffer 
= BigBuf_get_addr(); 
1379     int GraphTraceLen 
= BigBuf_max_traceLen(); 
1380     int i
, j
, lastval
, bitidx
, half_switch
; 
1382     int tolerance 
= clock 
/ 8; 
1383     int pmc
, block_done
; 
1384     int lc
, warnings 
= 0; 
1386     int lmin
=128, lmax
=128; 
1389     AcquireRawAdcSamples125k(0); 
1396     /* Find first local max/min */ 
1397     if(GraphBuffer
[1] > GraphBuffer
[0]) { 
1398         while(i 
< GraphTraceLen
) { 
1399             if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
) 
1406         while(i 
< GraphTraceLen
) { 
1407             if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
) 
1419     for (bitidx 
= 0; i 
< GraphTraceLen
; i
++) 
1421         if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir 
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir 
== 0 && GraphBuffer
[i
] < lmin
)) 
1426             // Switch depending on lc length: 
1427             // Tolerance is 1/8 of clock rate (arbitrary) 
1428             if (abs(lc
-clock
/4) < tolerance
) { 
1430                 if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1432                     i 
+= (128+127+16+32+33+16)-1; 
1440             } else if (abs(lc
-clock
/2) < tolerance
) { 
1442                 if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1444                     i 
+= (128+127+16+32+33)-1; 
1449                 else if(half_switch 
== 1) { 
1450                     BitStream
[bitidx
++] = 0; 
1455             } else if (abs(lc
-clock
) < tolerance
) { 
1457                 BitStream
[bitidx
++] = 1; 
1463                     Dbprintf("Error: too many detection errors, aborting."); 
1468             if(block_done 
== 1) { 
1470                     for(j
=0; j
<16; j
++) { 
1471                         Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+ 
1472                                 64*BitStream
[j
*8+6]+ 
1473                                 32*BitStream
[j
*8+5]+ 
1474                                 16*BitStream
[j
*8+4]+ 
1486             if(i 
< GraphTraceLen
) 
1488                 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0; 
1495         if(num_blocks 
== 4) break; 
1497     memcpy(outBlocks
, Blocks
, 16*num_blocks
); 
1501 int IsBlock0PCF7931(uint8_t *Block
) { 
1502     // Assume RFU means 0 :) 
1503     if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled 
1505     if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ? 
1510 int IsBlock1PCF7931(uint8_t *Block
) { 
1511     // Assume RFU means 0 :) 
1512     if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0) 
1513         if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9) 
1521 void ReadPCF7931() { 
1522     uint8_t Blocks
[8][17]; 
1523     uint8_t tmpBlocks
[4][16]; 
1524     int i
, j
, ind
, ind2
, n
; 
1531     memset(Blocks
, 0, 8*17*sizeof(uint8_t)); 
1534         memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t)); 
1535         n 
= DemodPCF7931((uint8_t**)tmpBlocks
); 
1538         if(error
==10 && num_blocks 
== 0) { 
1539             Dbprintf("Error, no tag or bad tag"); 
1542         else if (tries
==20 || error
==10) { 
1543             Dbprintf("Error reading the tag"); 
1544             Dbprintf("Here is the partial content"); 
1549             Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1550                      tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7], 
1551                     tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]); 
1553             for(i
=0; i
<n
; i
++) { 
1554                 if(IsBlock0PCF7931(tmpBlocks
[i
])) { 
1556                     if(i 
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) { 
1560                         memcpy(Blocks
[0], tmpBlocks
[i
], 16); 
1561                         Blocks
[0][ALLOC
] = 1; 
1562                         memcpy(Blocks
[1], tmpBlocks
[i
+1], 16); 
1563                         Blocks
[1][ALLOC
] = 1; 
1564                         max_blocks 
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1; 
1566                         Dbprintf("(dbg) Max blocks: %d", max_blocks
); 
1568                         // Handle following blocks 
1569                         for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) { 
1572                             memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16); 
1573                             Blocks
[ind2
][ALLOC
] = 1; 
1581             for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks 
1582                 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 
1583                     for(j
=0; j
<max_blocks
; j
++) { 
1584                         if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) { 
1585                             // Found an identical block 
1586                             for(ind
=i
-1,ind2
=j
-1; ind 
>= 0; ind
--,ind2
--) { 
1589                                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1590                                     // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1591                                     memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1592                                     Blocks
[ind2
][ALLOC
] = 1; 
1594                                     if(num_blocks 
== max_blocks
) goto end
; 
1597                             for(ind
=i
+1,ind2
=j
+1; ind 
< n
; ind
++,ind2
++) { 
1598                                 if(ind2 
> max_blocks
) 
1600                                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1601                                     // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1602                                     memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1603                                     Blocks
[ind2
][ALLOC
] = 1; 
1605                                     if(num_blocks 
== max_blocks
) goto end
; 
1614         if (BUTTON_PRESS()) return; 
1615     } while (num_blocks 
!= max_blocks
); 
1617     Dbprintf("-----------------------------------------"); 
1618     Dbprintf("Memory content:"); 
1619     Dbprintf("-----------------------------------------"); 
1620     for(i
=0; i
<max_blocks
; i
++) { 
1621         if(Blocks
[i
][ALLOC
]==1) 
1622             Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1623                      Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7], 
1624                     Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]); 
1626             Dbprintf("<missing block %d>", i
); 
1628     Dbprintf("-----------------------------------------"); 
1634 //----------------------------------- 
1635 // EM4469 / EM4305 routines 
1636 //----------------------------------- 
1637 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored 
1638 #define FWD_CMD_WRITE 0xA 
1639 #define FWD_CMD_READ 0x9 
1640 #define FWD_CMD_DISABLE 0x5 
1643 uint8_t forwardLink_data
[64]; //array of forwarded bits 
1644 uint8_t * forward_ptr
; //ptr for forward message preparation 
1645 uint8_t fwd_bit_sz
; //forwardlink bit counter 
1646 uint8_t * fwd_write_ptr
; //forwardlink bit pointer 
1648 //==================================================================== 
1649 // prepares command bits 
1651 //==================================================================== 
1652 //-------------------------------------------------------------------- 
1653 uint8_t Prepare_Cmd( uint8_t cmd 
) { 
1654     //-------------------------------------------------------------------- 
1656     *forward_ptr
++ = 0; //start bit 
1657     *forward_ptr
++ = 0; //second pause for 4050 code 
1659     *forward_ptr
++ = cmd
; 
1661     *forward_ptr
++ = cmd
; 
1663     *forward_ptr
++ = cmd
; 
1665     *forward_ptr
++ = cmd
; 
1667     return 6; //return number of emited bits 
1670 //==================================================================== 
1671 // prepares address bits 
1673 //==================================================================== 
1675 //-------------------------------------------------------------------- 
1676 uint8_t Prepare_Addr( uint8_t addr 
) { 
1677     //-------------------------------------------------------------------- 
1679     register uint8_t line_parity
; 
1684         *forward_ptr
++ = addr
; 
1685         line_parity 
^= addr
; 
1689     *forward_ptr
++ = (line_parity 
& 1); 
1691     return 7; //return number of emited bits 
1694 //==================================================================== 
1695 // prepares data bits intreleaved with parity bits 
1697 //==================================================================== 
1699 //-------------------------------------------------------------------- 
1700 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) { 
1701     //-------------------------------------------------------------------- 
1703     register uint8_t line_parity
; 
1704     register uint8_t column_parity
; 
1705     register uint8_t i
, j
; 
1706     register uint16_t data
; 
1711     for(i
=0; i
<4; i
++) { 
1713         for(j
=0; j
<8; j
++) { 
1714             line_parity 
^= data
; 
1715             column_parity 
^= (data 
& 1) << j
; 
1716             *forward_ptr
++ = data
; 
1719         *forward_ptr
++ = line_parity
; 
1724     for(j
=0; j
<8; j
++) { 
1725         *forward_ptr
++ = column_parity
; 
1726         column_parity 
>>= 1; 
1730     return 45; //return number of emited bits 
1733 //==================================================================== 
1734 // Forward Link send function 
1735 // Requires: forwarLink_data filled with valid bits (1 bit per byte) 
1736 // fwd_bit_count set with number of bits to be sent 
1737 //==================================================================== 
1738 void SendForward(uint8_t fwd_bit_count
) { 
1740     fwd_write_ptr 
= forwardLink_data
; 
1741     fwd_bit_sz 
= fwd_bit_count
; 
1746     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1747     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1748     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1750     // Give it a bit of time for the resonant antenna to settle. 
1751     // And for the tag to fully power up 
1754     // force 1st mod pulse (start gap must be longer for 4305) 
1755     fwd_bit_sz
--; //prepare next bit modulation 
1757     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1758     SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 
1759     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1760     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1761     SpinDelayUs(16*8); //16 cycles on (8us each) 
1763     // now start writting 
1764     while(fwd_bit_sz
-- > 0) { //prepare next bit modulation 
1765         if(((*fwd_write_ptr
++) & 1) == 1) 
1766             SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) 
1768             //These timings work for 4469/4269/4305 (with the 55*8 above) 
1769             FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1770             SpinDelayUs(23*8); //16-4 cycles off (8us each) 
1771             FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1772             FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1773             SpinDelayUs(9*8); //16 cycles on (8us each) 
1778 void EM4xLogin(uint32_t Password
) { 
1780     uint8_t fwd_bit_count
; 
1782     forward_ptr 
= forwardLink_data
; 
1783     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_LOGIN 
); 
1784     fwd_bit_count 
+= Prepare_Data( Password
&0xFFFF, Password
>>16 ); 
1786     SendForward(fwd_bit_count
); 
1788     //Wait for command to complete 
1793 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1795         uint8_t *dest 
=  BigBuf_get_addr(); 
1796         uint16_t bufferlength 
= BigBuf_max_traceLen(); 
1799         // Clear destination buffer before sending the command  0x80 = average. 
1800         memset(dest
, 0x80, bufferlength
); 
1802     uint8_t fwd_bit_count
; 
1804     //If password mode do login 
1805     if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1807     forward_ptr 
= forwardLink_data
; 
1808     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_READ 
); 
1809     fwd_bit_count 
+= Prepare_Addr( Address 
); 
1811     // Connect the A/D to the peak-detected low-frequency path. 
1812     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1813     // Now set up the SSC to get the ADC samples that are now streaming at us. 
1816     SendForward(fwd_bit_count
); 
1818     // Now do the acquisition 
1821         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1822             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1824         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1825             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1827                         if (i 
>= bufferlength
) break; 
1831         cmd_send(CMD_ACK
,0,0,0,0,0); 
1832     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1836 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1838     uint8_t fwd_bit_count
; 
1840     //If password mode do login 
1841     if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1843     forward_ptr 
= forwardLink_data
; 
1844     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_WRITE 
); 
1845     fwd_bit_count 
+= Prepare_Addr( Address 
); 
1846     fwd_bit_count 
+= Prepare_Data( Data
&0xFFFF, Data
>>16 ); 
1848     SendForward(fwd_bit_count
); 
1850     //Wait for write to complete 
1852     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off