]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
prepare to update the LF T55XX commands
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18
19
20 /**
21 * Does the sample acquisition. If threshold is specified, the actual sampling
22 * is not commenced until the threshold has been reached.
23 * @param trigger_threshold - the threshold
24 * @param silent - is true, now outputs are made. If false, dbprints the status
25 */
26 void DoAcquisition125k_internal(int trigger_threshold,bool silent)
27 {
28 uint8_t *dest = BigBuf_get_addr();
29 int n = BigBuf_max_traceLen();
30 int i;
31
32 memset(dest, 0, n);
33 i = 0;
34 for(;;) {
35 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
36 AT91C_BASE_SSC->SSC_THR = 0x43;
37 LED_D_ON();
38 }
39 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
40 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
41 LED_D_OFF();
42 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
43 continue;
44 else
45 trigger_threshold = -1;
46 if (++i >= n) break;
47 }
48 }
49 if(!silent)
50 {
51 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
52 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
53
54 }
55 }
56 /**
57 * Perform sample aquisition.
58 */
59 void DoAcquisition125k(int trigger_threshold)
60 {
61 DoAcquisition125k_internal(trigger_threshold, false);
62 }
63
64 /**
65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
66 * if not already loaded, sets divisor and starts up the antenna.
67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
68 * 0 or 95 ==> 125 KHz
69 *
70 **/
71 void LFSetupFPGAForADC(int divisor, bool lf_field)
72 {
73 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
74 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
76 else if (divisor == 0)
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
78 else
79 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
80
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
82
83 // Connect the A/D to the peak-detected low-frequency path.
84 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
85
86 // Give it a bit of time for the resonant antenna to settle.
87 SpinDelay(150);
88
89 // Now set up the SSC to get the ADC samples that are now streaming at us.
90 FpgaSetupSsc();
91 }
92 /**
93 * Initializes the FPGA, and acquires the samples.
94 **/
95 void AcquireRawAdcSamples125k(int divisor)
96 {
97 LFSetupFPGAForADC(divisor, true);
98 // Now call the acquisition routine
99 DoAcquisition125k_internal(-1,false);
100 }
101 /**
102 * Initializes the FPGA for snoop-mode, and acquires the samples.
103 **/
104
105 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
106 {
107 LFSetupFPGAForADC(divisor, false);
108 DoAcquisition125k(trigger_threshold);
109 }
110
111 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
112 {
113
114 /* Make sure the tag is reset */
115 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
117 SpinDelay(2500);
118
119
120 int divisor_used = 95; // 125 KHz
121 // see if 'h' was specified
122
123 if (command[strlen((char *) command) - 1] == 'h')
124 divisor_used = 88; // 134.8 KHz
125
126
127 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
128 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
129 // Give it a bit of time for the resonant antenna to settle.
130 SpinDelay(50);
131
132 // And a little more time for the tag to fully power up
133 SpinDelay(2000);
134
135 // Now set up the SSC to get the ADC samples that are now streaming at us.
136 FpgaSetupSsc();
137
138 // now modulate the reader field
139 while(*command != '\0' && *command != ' ') {
140 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
141 LED_D_OFF();
142 SpinDelayUs(delay_off);
143 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
144
145 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
146 LED_D_ON();
147 if(*(command++) == '0')
148 SpinDelayUs(period_0);
149 else
150 SpinDelayUs(period_1);
151 }
152 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
153 LED_D_OFF();
154 SpinDelayUs(delay_off);
155 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
156
157 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
158
159 // now do the read
160 DoAcquisition125k(-1);
161 }
162
163 /* blank r/w tag data stream
164 ...0000000000000000 01111111
165 1010101010101010101010101010101010101010101010101010101010101010
166 0011010010100001
167 01111111
168 101010101010101[0]000...
169
170 [5555fe852c5555555555555555fe0000]
171 */
172 void ReadTItag(void)
173 {
174 // some hardcoded initial params
175 // when we read a TI tag we sample the zerocross line at 2Mhz
176 // TI tags modulate a 1 as 16 cycles of 123.2Khz
177 // TI tags modulate a 0 as 16 cycles of 134.2Khz
178 #define FSAMPLE 2000000
179 #define FREQLO 123200
180 #define FREQHI 134200
181
182 signed char *dest = (signed char *)BigBuf_get_addr();
183 uint16_t n = BigBuf_max_traceLen();
184 // 128 bit shift register [shift3:shift2:shift1:shift0]
185 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
186
187 int i, cycles=0, samples=0;
188 // how many sample points fit in 16 cycles of each frequency
189 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
190 // when to tell if we're close enough to one freq or another
191 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
192
193 // TI tags charge at 134.2Khz
194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
195 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
196
197 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
198 // connects to SSP_DIN and the SSP_DOUT logic level controls
199 // whether we're modulating the antenna (high)
200 // or listening to the antenna (low)
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
202
203 // get TI tag data into the buffer
204 AcquireTiType();
205
206 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
207
208 for (i=0; i<n-1; i++) {
209 // count cycles by looking for lo to hi zero crossings
210 if ( (dest[i]<0) && (dest[i+1]>0) ) {
211 cycles++;
212 // after 16 cycles, measure the frequency
213 if (cycles>15) {
214 cycles=0;
215 samples=i-samples; // number of samples in these 16 cycles
216
217 // TI bits are coming to us lsb first so shift them
218 // right through our 128 bit right shift register
219 shift0 = (shift0>>1) | (shift1 << 31);
220 shift1 = (shift1>>1) | (shift2 << 31);
221 shift2 = (shift2>>1) | (shift3 << 31);
222 shift3 >>= 1;
223
224 // check if the cycles fall close to the number
225 // expected for either the low or high frequency
226 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
227 // low frequency represents a 1
228 shift3 |= (1<<31);
229 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
230 // high frequency represents a 0
231 } else {
232 // probably detected a gay waveform or noise
233 // use this as gaydar or discard shift register and start again
234 shift3 = shift2 = shift1 = shift0 = 0;
235 }
236 samples = i;
237
238 // for each bit we receive, test if we've detected a valid tag
239
240 // if we see 17 zeroes followed by 6 ones, we might have a tag
241 // remember the bits are backwards
242 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
243 // if start and end bytes match, we have a tag so break out of the loop
244 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
245 cycles = 0xF0B; //use this as a flag (ugly but whatever)
246 break;
247 }
248 }
249 }
250 }
251 }
252
253 // if flag is set we have a tag
254 if (cycles!=0xF0B) {
255 DbpString("Info: No valid tag detected.");
256 } else {
257 // put 64 bit data into shift1 and shift0
258 shift0 = (shift0>>24) | (shift1 << 8);
259 shift1 = (shift1>>24) | (shift2 << 8);
260
261 // align 16 bit crc into lower half of shift2
262 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
263
264 // if r/w tag, check ident match
265 if (shift3 & (1<<15) ) {
266 DbpString("Info: TI tag is rewriteable");
267 // only 15 bits compare, last bit of ident is not valid
268 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
269 DbpString("Error: Ident mismatch!");
270 } else {
271 DbpString("Info: TI tag ident is valid");
272 }
273 } else {
274 DbpString("Info: TI tag is readonly");
275 }
276
277 // WARNING the order of the bytes in which we calc crc below needs checking
278 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
279 // bytes in reverse or something
280 // calculate CRC
281 uint32_t crc=0;
282
283 crc = update_crc16(crc, (shift0)&0xff);
284 crc = update_crc16(crc, (shift0>>8)&0xff);
285 crc = update_crc16(crc, (shift0>>16)&0xff);
286 crc = update_crc16(crc, (shift0>>24)&0xff);
287 crc = update_crc16(crc, (shift1)&0xff);
288 crc = update_crc16(crc, (shift1>>8)&0xff);
289 crc = update_crc16(crc, (shift1>>16)&0xff);
290 crc = update_crc16(crc, (shift1>>24)&0xff);
291
292 Dbprintf("Info: Tag data: %x%08x, crc=%x",
293 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
294 if (crc != (shift2&0xffff)) {
295 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
296 } else {
297 DbpString("Info: CRC is good");
298 }
299 }
300 }
301
302 void WriteTIbyte(uint8_t b)
303 {
304 int i = 0;
305
306 // modulate 8 bits out to the antenna
307 for (i=0; i<8; i++)
308 {
309 if (b&(1<<i)) {
310 // stop modulating antenna
311 LOW(GPIO_SSC_DOUT);
312 SpinDelayUs(1000);
313 // modulate antenna
314 HIGH(GPIO_SSC_DOUT);
315 SpinDelayUs(1000);
316 } else {
317 // stop modulating antenna
318 LOW(GPIO_SSC_DOUT);
319 SpinDelayUs(300);
320 // modulate antenna
321 HIGH(GPIO_SSC_DOUT);
322 SpinDelayUs(1700);
323 }
324 }
325 }
326
327 void AcquireTiType(void)
328 {
329 int i, j, n;
330 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
331 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
332 #define TIBUFLEN 1250
333
334 // clear buffer
335 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
336 memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
337
338 // Set up the synchronous serial port
339 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
340 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
341
342 // steal this pin from the SSP and use it to control the modulation
343 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
344 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
345
346 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
347 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
348
349 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
350 // 48/2 = 24 MHz clock must be divided by 12
351 AT91C_BASE_SSC->SSC_CMR = 12;
352
353 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
354 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
355 AT91C_BASE_SSC->SSC_TCMR = 0;
356 AT91C_BASE_SSC->SSC_TFMR = 0;
357
358 LED_D_ON();
359
360 // modulate antenna
361 HIGH(GPIO_SSC_DOUT);
362
363 // Charge TI tag for 50ms.
364 SpinDelay(50);
365
366 // stop modulating antenna and listen
367 LOW(GPIO_SSC_DOUT);
368
369 LED_D_OFF();
370
371 i = 0;
372 for(;;) {
373 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
374 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
375 i++; if(i >= TIBUFLEN) break;
376 }
377 WDT_HIT();
378 }
379
380 // return stolen pin to SSP
381 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
382 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
383
384 char *dest = (char *)BigBuf_get_addr();
385 n = TIBUFLEN*32;
386 // unpack buffer
387 for (i=TIBUFLEN-1; i>=0; i--) {
388 for (j=0; j<32; j++) {
389 if(BigBuf[i] & (1 << j)) {
390 dest[--n] = 1;
391 } else {
392 dest[--n] = -1;
393 }
394 }
395 }
396 }
397
398 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
399 // if crc provided, it will be written with the data verbatim (even if bogus)
400 // if not provided a valid crc will be computed from the data and written.
401 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
402 {
403 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
404 if(crc == 0) {
405 crc = update_crc16(crc, (idlo)&0xff);
406 crc = update_crc16(crc, (idlo>>8)&0xff);
407 crc = update_crc16(crc, (idlo>>16)&0xff);
408 crc = update_crc16(crc, (idlo>>24)&0xff);
409 crc = update_crc16(crc, (idhi)&0xff);
410 crc = update_crc16(crc, (idhi>>8)&0xff);
411 crc = update_crc16(crc, (idhi>>16)&0xff);
412 crc = update_crc16(crc, (idhi>>24)&0xff);
413 }
414 Dbprintf("Writing to tag: %x%08x, crc=%x",
415 (unsigned int) idhi, (unsigned int) idlo, crc);
416
417 // TI tags charge at 134.2Khz
418 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
419 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
420 // connects to SSP_DIN and the SSP_DOUT logic level controls
421 // whether we're modulating the antenna (high)
422 // or listening to the antenna (low)
423 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
424 LED_A_ON();
425
426 // steal this pin from the SSP and use it to control the modulation
427 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
428 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
429
430 // writing algorithm:
431 // a high bit consists of a field off for 1ms and field on for 1ms
432 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
433 // initiate a charge time of 50ms (field on) then immediately start writing bits
434 // start by writing 0xBB (keyword) and 0xEB (password)
435 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
436 // finally end with 0x0300 (write frame)
437 // all data is sent lsb firts
438 // finish with 15ms programming time
439
440 // modulate antenna
441 HIGH(GPIO_SSC_DOUT);
442 SpinDelay(50); // charge time
443
444 WriteTIbyte(0xbb); // keyword
445 WriteTIbyte(0xeb); // password
446 WriteTIbyte( (idlo )&0xff );
447 WriteTIbyte( (idlo>>8 )&0xff );
448 WriteTIbyte( (idlo>>16)&0xff );
449 WriteTIbyte( (idlo>>24)&0xff );
450 WriteTIbyte( (idhi )&0xff );
451 WriteTIbyte( (idhi>>8 )&0xff );
452 WriteTIbyte( (idhi>>16)&0xff );
453 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
454 WriteTIbyte( (crc )&0xff ); // crc lo
455 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
456 WriteTIbyte(0x00); // write frame lo
457 WriteTIbyte(0x03); // write frame hi
458 HIGH(GPIO_SSC_DOUT);
459 SpinDelay(50); // programming time
460
461 LED_A_OFF();
462
463 // get TI tag data into the buffer
464 AcquireTiType();
465
466 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
467 DbpString("Now use tiread to check");
468 }
469
470 void SimulateTagLowFrequency(uint16_t period, uint32_t gap, uint8_t ledcontrol)
471 {
472 int i;
473 uint8_t *tab = BigBuf_get_addr();
474
475 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
476 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
477
478 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
479
480 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
481 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
482
483 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
484 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
485
486 i = 0;
487 for(;;) {
488 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
489 if(BUTTON_PRESS()) {
490 DbpString("Stopped");
491 return;
492 }
493 WDT_HIT();
494 }
495
496 if (ledcontrol)
497 LED_D_ON();
498
499 if(tab[i])
500 OPEN_COIL();
501 else
502 SHORT_COIL();
503
504 if (ledcontrol)
505 LED_D_OFF();
506
507 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
508 if(BUTTON_PRESS()) {
509 DbpString("Stopped");
510 return;
511 }
512 WDT_HIT();
513 }
514
515 i++;
516 if(i == period) {
517 i = 0;
518 if (gap) {
519 SHORT_COIL();
520 SpinDelayUs(gap);
521 }
522 }
523 }
524 }
525
526 #define DEBUG_FRAME_CONTENTS 1
527 void SimulateTagLowFrequencyBidir(int divisor, int t0)
528 {
529 }
530
531 // compose fc/8 fc/10 waveform
532 static void fc(int c, int *n) {
533 uint8_t *dest = BigBuf_get_addr();
534 int idx;
535
536 // for when we want an fc8 pattern every 4 logical bits
537 if(c==0) {
538 dest[((*n)++)]=1;
539 dest[((*n)++)]=1;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 dest[((*n)++)]=0;
545 dest[((*n)++)]=0;
546 }
547 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
548 if(c==8) {
549 for (idx=0; idx<6; idx++) {
550 dest[((*n)++)]=1;
551 dest[((*n)++)]=1;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 dest[((*n)++)]=0;
556 dest[((*n)++)]=0;
557 dest[((*n)++)]=0;
558 }
559 }
560
561 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
562 if(c==10) {
563 for (idx=0; idx<5; idx++) {
564 dest[((*n)++)]=1;
565 dest[((*n)++)]=1;
566 dest[((*n)++)]=1;
567 dest[((*n)++)]=0;
568 dest[((*n)++)]=0;
569 dest[((*n)++)]=0;
570 dest[((*n)++)]=0;
571 dest[((*n)++)]=0;
572 dest[((*n)++)]=0;
573 dest[((*n)++)]=0;
574 }
575 }
576 }
577
578 // prepare a waveform pattern in the buffer based on the ID given then
579 // simulate a HID tag until the button is pressed
580 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
581 {
582 int n=0, i=0;
583 /*
584 HID tag bitstream format
585 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
586 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
587 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
588 A fc8 is inserted before every 4 bits
589 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
590 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
591 */
592
593 if (hi>0xFFF) {
594 DbpString("Tags can only have 44 bits.");
595 return;
596 }
597 fc(0,&n);
598 // special start of frame marker containing invalid bit sequences
599 fc(8, &n); fc(8, &n); // invalid
600 fc(8, &n); fc(10, &n); // logical 0
601 fc(10, &n); fc(10, &n); // invalid
602 fc(8, &n); fc(10, &n); // logical 0
603
604 WDT_HIT();
605 // manchester encode bits 43 to 32
606 for (i=11; i>=0; i--) {
607 if ((i%4)==3) fc(0,&n);
608 if ((hi>>i)&1) {
609 fc(10, &n); fc(8, &n); // low-high transition
610 } else {
611 fc(8, &n); fc(10, &n); // high-low transition
612 }
613 }
614
615 WDT_HIT();
616 // manchester encode bits 31 to 0
617 for (i=31; i>=0; i--) {
618 if ((i%4)==3) fc(0,&n);
619 if ((lo>>i)&1) {
620 fc(10, &n); fc(8, &n); // low-high transition
621 } else {
622 fc(8, &n); fc(10, &n); // high-low transition
623 }
624 }
625
626 if (ledcontrol)
627 LED_A_ON();
628 SimulateTagLowFrequency(n, 0, ledcontrol);
629
630 if (ledcontrol)
631 LED_A_OFF();
632 }
633
634 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
635 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
636 {
637 uint8_t *dest = BigBuf_get_addr();
638 const size_t sizeOfBigBuff = BigBuf_max_traceLen();
639 size_t size = 0;
640 uint32_t hi2=0, hi=0, lo=0;
641 int idx=0;
642 // Configure to go in 125Khz listen mode
643 LFSetupFPGAForADC(95, true);
644
645 while(!BUTTON_PRESS()) {
646
647 WDT_HIT();
648 if (ledcontrol) LED_A_ON();
649
650 DoAcquisition125k_internal(-1,true);
651 // FSK demodulator
652 size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
653 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
654
655 if (idx>0 && lo>0){
656 // final loop, go over previously decoded manchester data and decode into usable tag ID
657 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
658 if (hi2 != 0){ //extra large HID tags
659 Dbprintf("TAG ID: %x%08x%08x (%d)",
660 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
661 }else { //standard HID tags <38 bits
662 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
663 uint8_t bitlen = 0;
664 uint32_t fc = 0;
665 uint32_t cardnum = 0;
666 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
667 uint32_t lo2=0;
668 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
669 uint8_t idx3 = 1;
670 while(lo2 > 1){ //find last bit set to 1 (format len bit)
671 lo2=lo2 >> 1;
672 idx3++;
673 }
674 bitlen = idx3+19;
675 fc =0;
676 cardnum=0;
677 if(bitlen == 26){
678 cardnum = (lo>>1)&0xFFFF;
679 fc = (lo>>17)&0xFF;
680 }
681 if(bitlen == 37){
682 cardnum = (lo>>1)&0x7FFFF;
683 fc = ((hi&0xF)<<12)|(lo>>20);
684 }
685 if(bitlen == 34){
686 cardnum = (lo>>1)&0xFFFF;
687 fc= ((hi&1)<<15)|(lo>>17);
688 }
689 if(bitlen == 35){
690 cardnum = (lo>>1)&0xFFFFF;
691 fc = ((hi&1)<<11)|(lo>>21);
692 }
693 }
694 else { //if bit 38 is not set then 37 bit format is used
695 bitlen= 37;
696 fc =0;
697 cardnum=0;
698 if(bitlen==37){
699 cardnum = (lo>>1)&0x7FFFF;
700 fc = ((hi&0xF)<<12)|(lo>>20);
701 }
702 }
703 //Dbprintf("TAG ID: %x%08x (%d)",
704 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
705 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
706 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
707 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
708 }
709 if (findone){
710 if (ledcontrol) LED_A_OFF();
711 *high = hi;
712 *low = lo;
713 return;
714 }
715 // reset
716 hi2 = hi = lo = 0;
717 }
718 WDT_HIT();
719 }
720 DbpString("Stopped");
721 if (ledcontrol) LED_A_OFF();
722 }
723
724 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
725 {
726 uint8_t *dest = BigBuf_get_addr();
727
728 size_t size=0, idx=0;
729 int clk=0, invert=0, errCnt=0;
730 uint64_t lo=0;
731 // Configure to go in 125Khz listen mode
732 LFSetupFPGAForADC(95, true);
733
734 while(!BUTTON_PRESS()) {
735
736 WDT_HIT();
737 if (ledcontrol) LED_A_ON();
738
739 DoAcquisition125k_internal(-1,true);
740 size = BigBuf_max_traceLen();
741 //Dbprintf("DEBUG: Buffer got");
742 //askdemod and manchester decode
743 errCnt = askmandemod(dest, &size, &clk, &invert);
744 //Dbprintf("DEBUG: ASK Got");
745 WDT_HIT();
746
747 if (errCnt>=0){
748 lo = Em410xDecode(dest, &size, &idx);
749 //Dbprintf("DEBUG: EM GOT");
750 if (lo>0){
751 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
752 (uint32_t)(lo>>32),
753 (uint32_t)lo,
754 (uint32_t)(lo&0xFFFF),
755 (uint32_t)((lo>>16LL) & 0xFF),
756 (uint32_t)(lo & 0xFFFFFF));
757 }
758 if (findone){
759 if (ledcontrol) LED_A_OFF();
760 *high=lo>>32;
761 *low=lo & 0xFFFFFFFF;
762 return;
763 }
764 } else{
765 //Dbprintf("DEBUG: No Tag");
766 }
767 WDT_HIT();
768 lo = 0;
769 clk=0;
770 invert=0;
771 errCnt=0;
772 size=0;
773 }
774 DbpString("Stopped");
775 if (ledcontrol) LED_A_OFF();
776 }
777
778 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
779 {
780 uint8_t *dest = BigBuf_get_addr();
781 int idx=0;
782 uint32_t code=0, code2=0;
783 uint8_t version=0;
784 uint8_t facilitycode=0;
785 uint16_t number=0;
786 // Configure to go in 125Khz listen mode
787 LFSetupFPGAForADC(95, true);
788
789 while(!BUTTON_PRESS()) {
790 WDT_HIT();
791 if (ledcontrol) LED_A_ON();
792 DoAcquisition125k_internal(-1,true);
793 //fskdemod and get start index
794 WDT_HIT();
795 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
796 if (idx>0){
797 //valid tag found
798
799 //Index map
800 //0 10 20 30 40 50 60
801 //| | | | | | |
802 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
803 //-----------------------------------------------------------------------------
804 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
805 //
806 //XSF(version)facility:codeone+codetwo
807 //Handle the data
808 if(findone){ //only print binary if we are doing one
809 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
810 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
811 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
812 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
813 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
814 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
815 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
816 }
817 code = bytebits_to_byte(dest+idx,32);
818 code2 = bytebits_to_byte(dest+idx+32,32);
819 version = bytebits_to_byte(dest+idx+27,8); //14,4
820 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
821 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
822
823 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
824 // if we're only looking for one tag
825 if (findone){
826 if (ledcontrol) LED_A_OFF();
827 //LED_A_OFF();
828 *high=code;
829 *low=code2;
830 return;
831 }
832 code=code2=0;
833 version=facilitycode=0;
834 number=0;
835 idx=0;
836 }
837 WDT_HIT();
838 }
839 DbpString("Stopped");
840 if (ledcontrol) LED_A_OFF();
841 }
842
843 /*------------------------------
844 * T5555/T5557/T5567 routines
845 *------------------------------
846 */
847
848 /* T55x7 configuration register definitions */
849 #define T55x7_POR_DELAY 0x00000001
850 #define T55x7_ST_TERMINATOR 0x00000008
851 #define T55x7_PWD 0x00000010
852 #define T55x7_MAXBLOCK_SHIFT 5
853 #define T55x7_AOR 0x00000200
854 #define T55x7_PSKCF_RF_2 0
855 #define T55x7_PSKCF_RF_4 0x00000400
856 #define T55x7_PSKCF_RF_8 0x00000800
857 #define T55x7_MODULATION_DIRECT 0
858 #define T55x7_MODULATION_PSK1 0x00001000
859 #define T55x7_MODULATION_PSK2 0x00002000
860 #define T55x7_MODULATION_PSK3 0x00003000
861 #define T55x7_MODULATION_FSK1 0x00004000
862 #define T55x7_MODULATION_FSK2 0x00005000
863 #define T55x7_MODULATION_FSK1a 0x00006000
864 #define T55x7_MODULATION_FSK2a 0x00007000
865 #define T55x7_MODULATION_MANCHESTER 0x00008000
866 #define T55x7_MODULATION_BIPHASE 0x00010000
867 #define T55x7_BITRATE_RF_8 0
868 #define T55x7_BITRATE_RF_16 0x00040000
869 #define T55x7_BITRATE_RF_32 0x00080000
870 #define T55x7_BITRATE_RF_40 0x000C0000
871 #define T55x7_BITRATE_RF_50 0x00100000
872 #define T55x7_BITRATE_RF_64 0x00140000
873 #define T55x7_BITRATE_RF_100 0x00180000
874 #define T55x7_BITRATE_RF_128 0x001C0000
875
876 /* T5555 (Q5) configuration register definitions */
877 #define T5555_ST_TERMINATOR 0x00000001
878 #define T5555_MAXBLOCK_SHIFT 0x00000001
879 #define T5555_MODULATION_MANCHESTER 0
880 #define T5555_MODULATION_PSK1 0x00000010
881 #define T5555_MODULATION_PSK2 0x00000020
882 #define T5555_MODULATION_PSK3 0x00000030
883 #define T5555_MODULATION_FSK1 0x00000040
884 #define T5555_MODULATION_FSK2 0x00000050
885 #define T5555_MODULATION_BIPHASE 0x00000060
886 #define T5555_MODULATION_DIRECT 0x00000070
887 #define T5555_INVERT_OUTPUT 0x00000080
888 #define T5555_PSK_RF_2 0
889 #define T5555_PSK_RF_4 0x00000100
890 #define T5555_PSK_RF_8 0x00000200
891 #define T5555_USE_PWD 0x00000400
892 #define T5555_USE_AOR 0x00000800
893 #define T5555_BITRATE_SHIFT 12
894 #define T5555_FAST_WRITE 0x00004000
895 #define T5555_PAGE_SELECT 0x00008000
896
897 /*
898 * Relevant times in microsecond
899 * To compensate antenna falling times shorten the write times
900 * and enlarge the gap ones.
901 */
902 #define START_GAP 30*8 // 10 - 50fc 250
903 #define WRITE_GAP 20*8 // 8 - 30fc
904 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
905 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
906
907 // VALUES TAKEN FROM EM4x function: SendForward
908 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
909 // WRITE_GAP = 128; (16*8)
910 // WRITE_1 = 256 32*8; (32*8)
911
912 // These timings work for 4469/4269/4305 (with the 55*8 above)
913 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
914
915 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
916
917 // Write one bit to card
918 void T55xxWriteBit(int bit)
919 {
920 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
921 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
922 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
923 if (!bit)
924 SpinDelayUs(WRITE_0);
925 else
926 SpinDelayUs(WRITE_1);
927 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
928 SpinDelayUs(WRITE_GAP);
929 }
930
931 // Write one card block in page 0, no lock
932 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
933 {
934 uint32_t i = 0;
935
936 // Set up FPGA, 125kHz
937 // Wait for config.. (192+8190xPOW)x8 == 67ms
938 LFSetupFPGAForADC(0, true);
939
940 // Now start writting
941 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
942 SpinDelayUs(START_GAP);
943
944 // Opcode
945 T55xxWriteBit(1);
946 T55xxWriteBit(0); //Page 0
947 if (PwdMode == 1){
948 // Pwd
949 for (i = 0x80000000; i != 0; i >>= 1)
950 T55xxWriteBit(Pwd & i);
951 }
952 // Lock bit
953 T55xxWriteBit(0);
954
955 // Data
956 for (i = 0x80000000; i != 0; i >>= 1)
957 T55xxWriteBit(Data & i);
958
959 // Block
960 for (i = 0x04; i != 0; i >>= 1)
961 T55xxWriteBit(Block & i);
962
963 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
964 // so wait a little more)
965 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
966 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
967 SpinDelay(20);
968 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
969 }
970
971 // Read one card block in page 0
972 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
973 {
974 uint8_t *dest = BigBuf_get_addr();
975 //uint16_t bufferlength = BigBuf_max_traceLen();
976 uint16_t bufferlength = T55xx_SAMPLES_SIZE;
977 uint32_t i = 0;
978 // Clear destination buffer before sending the command 0x80 = average.
979 memset(dest, 0x80, bufferlength);
980
981 // Set up FPGA, 125kHz
982 // Wait for config.. (192+8190xPOW)x8 == 67ms
983 LFSetupFPGAForADC(0, true);
984 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
985 SpinDelayUs(START_GAP);
986
987 // Opcode
988 T55xxWriteBit(1);
989 T55xxWriteBit(0); //Page 0
990 if (PwdMode == 1){
991 // Pwd
992 for (i = 0x80000000; i != 0; i >>= 1)
993 T55xxWriteBit(Pwd & i);
994 }
995 // Lock bit
996 T55xxWriteBit(0);
997 // Block
998 for (i = 0x04; i != 0; i >>= 1)
999 T55xxWriteBit(Block & i);
1000
1001 // Turn field on to read the response
1002 TurnReadLFOn();
1003
1004 // Now do the acquisition
1005 i = 0;
1006 for(;;) {
1007 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1008 AT91C_BASE_SSC->SSC_THR = 0x43;
1009 //AT91C_BASE_SSC->SSC_THR = 0xff;
1010 LED_D_ON();
1011 }
1012 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1013 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1014 ++i;
1015 LED_D_OFF();
1016 if (i >= bufferlength) break;
1017 }
1018 }
1019
1020 cmd_send(CMD_ACK,0,0,0,0,0);
1021 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1022 LED_D_OFF();
1023 }
1024
1025 // Read card traceability data (page 1)
1026 void T55xxReadTrace(void){
1027 uint8_t *dest = BigBuf_get_addr();
1028 //uint16_t bufferlength = BigBuf_max_traceLen();
1029 uint16_t bufferlength = T55xx_SAMPLES_SIZE;
1030 uint32_t i = 0;
1031
1032 // Clear destination buffer before sending the command 0x80 = average
1033 memset(dest, 0x80, bufferlength);
1034
1035 LFSetupFPGAForADC(0, true);
1036 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1037 SpinDelayUs(START_GAP);
1038
1039 // Opcode
1040 T55xxWriteBit(1);
1041 T55xxWriteBit(1); //Page 1
1042
1043 // Turn field on to read the response
1044 TurnReadLFOn();
1045
1046 // Now do the acquisition
1047 for(;;) {
1048 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1049 AT91C_BASE_SSC->SSC_THR = 0x43;
1050 LED_D_ON();
1051 }
1052 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1053 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1054 ++i;
1055 LED_D_OFF();
1056
1057 if (i >= bufferlength) break;
1058 }
1059 }
1060
1061 cmd_send(CMD_ACK,0,0,0,0,0);
1062 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1063 LED_D_OFF();
1064 }
1065
1066 void TurnReadLFOn(){
1067 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1068 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1069 // Give it a bit of time for the resonant antenna to settle.
1070 //SpinDelay(30);
1071 SpinDelayUs(8*150);
1072 }
1073
1074 /*-------------- Cloning routines -----------*/
1075 // Copy HID id to card and setup block 0 config
1076 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1077 {
1078 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1079 int last_block = 0;
1080
1081 if (longFMT){
1082 // Ensure no more than 84 bits supplied
1083 if (hi2>0xFFFFF) {
1084 DbpString("Tags can only have 84 bits.");
1085 return;
1086 }
1087 // Build the 6 data blocks for supplied 84bit ID
1088 last_block = 6;
1089 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1090 for (int i=0;i<4;i++) {
1091 if (hi2 & (1<<(19-i)))
1092 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1093 else
1094 data1 |= (1<<((3-i)*2)); // 0 -> 01
1095 }
1096
1097 data2 = 0;
1098 for (int i=0;i<16;i++) {
1099 if (hi2 & (1<<(15-i)))
1100 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1101 else
1102 data2 |= (1<<((15-i)*2)); // 0 -> 01
1103 }
1104
1105 data3 = 0;
1106 for (int i=0;i<16;i++) {
1107 if (hi & (1<<(31-i)))
1108 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1109 else
1110 data3 |= (1<<((15-i)*2)); // 0 -> 01
1111 }
1112
1113 data4 = 0;
1114 for (int i=0;i<16;i++) {
1115 if (hi & (1<<(15-i)))
1116 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1117 else
1118 data4 |= (1<<((15-i)*2)); // 0 -> 01
1119 }
1120
1121 data5 = 0;
1122 for (int i=0;i<16;i++) {
1123 if (lo & (1<<(31-i)))
1124 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1125 else
1126 data5 |= (1<<((15-i)*2)); // 0 -> 01
1127 }
1128
1129 data6 = 0;
1130 for (int i=0;i<16;i++) {
1131 if (lo & (1<<(15-i)))
1132 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1133 else
1134 data6 |= (1<<((15-i)*2)); // 0 -> 01
1135 }
1136 }
1137 else {
1138 // Ensure no more than 44 bits supplied
1139 if (hi>0xFFF) {
1140 DbpString("Tags can only have 44 bits.");
1141 return;
1142 }
1143
1144 // Build the 3 data blocks for supplied 44bit ID
1145 last_block = 3;
1146
1147 data1 = 0x1D000000; // load preamble
1148
1149 for (int i=0;i<12;i++) {
1150 if (hi & (1<<(11-i)))
1151 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1152 else
1153 data1 |= (1<<((11-i)*2)); // 0 -> 01
1154 }
1155
1156 data2 = 0;
1157 for (int i=0;i<16;i++) {
1158 if (lo & (1<<(31-i)))
1159 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1160 else
1161 data2 |= (1<<((15-i)*2)); // 0 -> 01
1162 }
1163
1164 data3 = 0;
1165 for (int i=0;i<16;i++) {
1166 if (lo & (1<<(15-i)))
1167 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1168 else
1169 data3 |= (1<<((15-i)*2)); // 0 -> 01
1170 }
1171 }
1172
1173 LED_D_ON();
1174 // Program the data blocks for supplied ID
1175 // and the block 0 for HID format
1176 T55xxWriteBlock(data1,1,0,0);
1177 T55xxWriteBlock(data2,2,0,0);
1178 T55xxWriteBlock(data3,3,0,0);
1179
1180 if (longFMT) { // if long format there are 6 blocks
1181 T55xxWriteBlock(data4,4,0,0);
1182 T55xxWriteBlock(data5,5,0,0);
1183 T55xxWriteBlock(data6,6,0,0);
1184 }
1185
1186 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1187 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1188 T55x7_MODULATION_FSK2a |
1189 last_block << T55x7_MAXBLOCK_SHIFT,
1190 0,0,0);
1191
1192 LED_D_OFF();
1193
1194 DbpString("DONE!");
1195 }
1196
1197 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1198 {
1199 int data1=0, data2=0; //up to six blocks for long format
1200
1201 data1 = hi; // load preamble
1202 data2 = lo;
1203
1204 LED_D_ON();
1205 // Program the data blocks for supplied ID
1206 // and the block 0 for HID format
1207 T55xxWriteBlock(data1,1,0,0);
1208 T55xxWriteBlock(data2,2,0,0);
1209
1210 //Config Block
1211 T55xxWriteBlock(0x00147040,0,0,0);
1212 LED_D_OFF();
1213
1214 DbpString("DONE!");
1215 }
1216
1217 // Define 9bit header for EM410x tags
1218 #define EM410X_HEADER 0x1FF
1219 #define EM410X_ID_LENGTH 40
1220
1221 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1222 {
1223 int i, id_bit;
1224 uint64_t id = EM410X_HEADER;
1225 uint64_t rev_id = 0; // reversed ID
1226 int c_parity[4]; // column parity
1227 int r_parity = 0; // row parity
1228 uint32_t clock = 0;
1229
1230 // Reverse ID bits given as parameter (for simpler operations)
1231 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1232 if (i < 32) {
1233 rev_id = (rev_id << 1) | (id_lo & 1);
1234 id_lo >>= 1;
1235 } else {
1236 rev_id = (rev_id << 1) | (id_hi & 1);
1237 id_hi >>= 1;
1238 }
1239 }
1240
1241 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1242 id_bit = rev_id & 1;
1243
1244 if (i % 4 == 0) {
1245 // Don't write row parity bit at start of parsing
1246 if (i)
1247 id = (id << 1) | r_parity;
1248 // Start counting parity for new row
1249 r_parity = id_bit;
1250 } else {
1251 // Count row parity
1252 r_parity ^= id_bit;
1253 }
1254
1255 // First elements in column?
1256 if (i < 4)
1257 // Fill out first elements
1258 c_parity[i] = id_bit;
1259 else
1260 // Count column parity
1261 c_parity[i % 4] ^= id_bit;
1262
1263 // Insert ID bit
1264 id = (id << 1) | id_bit;
1265 rev_id >>= 1;
1266 }
1267
1268 // Insert parity bit of last row
1269 id = (id << 1) | r_parity;
1270
1271 // Fill out column parity at the end of tag
1272 for (i = 0; i < 4; ++i)
1273 id = (id << 1) | c_parity[i];
1274
1275 // Add stop bit
1276 id <<= 1;
1277
1278 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1279 LED_D_ON();
1280
1281 // Write EM410x ID
1282 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1283 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1284
1285 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1286 if (card) {
1287 // Clock rate is stored in bits 8-15 of the card value
1288 clock = (card & 0xFF00) >> 8;
1289 Dbprintf("Clock rate: %d", clock);
1290 switch (clock)
1291 {
1292 case 32:
1293 clock = T55x7_BITRATE_RF_32;
1294 break;
1295 case 16:
1296 clock = T55x7_BITRATE_RF_16;
1297 break;
1298 case 0:
1299 // A value of 0 is assumed to be 64 for backwards-compatibility
1300 // Fall through...
1301 case 64:
1302 clock = T55x7_BITRATE_RF_64;
1303 break;
1304 default:
1305 Dbprintf("Invalid clock rate: %d", clock);
1306 return;
1307 }
1308
1309 // Writing configuration for T55x7 tag
1310 T55xxWriteBlock(clock |
1311 T55x7_MODULATION_MANCHESTER |
1312 2 << T55x7_MAXBLOCK_SHIFT,
1313 0, 0, 0);
1314 }
1315 else
1316 // Writing configuration for T5555(Q5) tag
1317 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1318 T5555_MODULATION_MANCHESTER |
1319 2 << T5555_MAXBLOCK_SHIFT,
1320 0, 0, 0);
1321
1322 LED_D_OFF();
1323 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1324 (uint32_t)(id >> 32), (uint32_t)id);
1325 }
1326
1327 // Clone Indala 64-bit tag by UID to T55x7
1328 void CopyIndala64toT55x7(int hi, int lo)
1329 {
1330
1331 //Program the 2 data blocks for supplied 64bit UID
1332 // and the block 0 for Indala64 format
1333 T55xxWriteBlock(hi,1,0,0);
1334 T55xxWriteBlock(lo,2,0,0);
1335 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1336 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1337 T55x7_MODULATION_PSK1 |
1338 2 << T55x7_MAXBLOCK_SHIFT,
1339 0, 0, 0);
1340 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1341 // T5567WriteBlock(0x603E1042,0);
1342
1343 DbpString("DONE!");
1344
1345 }
1346
1347 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1348 {
1349
1350 //Program the 7 data blocks for supplied 224bit UID
1351 // and the block 0 for Indala224 format
1352 T55xxWriteBlock(uid1,1,0,0);
1353 T55xxWriteBlock(uid2,2,0,0);
1354 T55xxWriteBlock(uid3,3,0,0);
1355 T55xxWriteBlock(uid4,4,0,0);
1356 T55xxWriteBlock(uid5,5,0,0);
1357 T55xxWriteBlock(uid6,6,0,0);
1358 T55xxWriteBlock(uid7,7,0,0);
1359 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1360 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1361 T55x7_MODULATION_PSK1 |
1362 7 << T55x7_MAXBLOCK_SHIFT,
1363 0,0,0);
1364 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1365 // T5567WriteBlock(0x603E10E2,0);
1366
1367 DbpString("DONE!");
1368
1369 }
1370
1371
1372 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1373 #define max(x,y) ( x<y ? y:x)
1374
1375 int DemodPCF7931(uint8_t **outBlocks) {
1376 uint8_t BitStream[256];
1377 uint8_t Blocks[8][16];
1378 uint8_t *GraphBuffer = BigBuf_get_addr();
1379 int GraphTraceLen = BigBuf_max_traceLen();
1380 int i, j, lastval, bitidx, half_switch;
1381 int clock = 64;
1382 int tolerance = clock / 8;
1383 int pmc, block_done;
1384 int lc, warnings = 0;
1385 int num_blocks = 0;
1386 int lmin=128, lmax=128;
1387 uint8_t dir;
1388
1389 AcquireRawAdcSamples125k(0);
1390
1391 lmin = 64;
1392 lmax = 192;
1393
1394 i = 2;
1395
1396 /* Find first local max/min */
1397 if(GraphBuffer[1] > GraphBuffer[0]) {
1398 while(i < GraphTraceLen) {
1399 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1400 break;
1401 i++;
1402 }
1403 dir = 0;
1404 }
1405 else {
1406 while(i < GraphTraceLen) {
1407 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1408 break;
1409 i++;
1410 }
1411 dir = 1;
1412 }
1413
1414 lastval = i++;
1415 half_switch = 0;
1416 pmc = 0;
1417 block_done = 0;
1418
1419 for (bitidx = 0; i < GraphTraceLen; i++)
1420 {
1421 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1422 {
1423 lc = i - lastval;
1424 lastval = i;
1425
1426 // Switch depending on lc length:
1427 // Tolerance is 1/8 of clock rate (arbitrary)
1428 if (abs(lc-clock/4) < tolerance) {
1429 // 16T0
1430 if((i - pmc) == lc) { /* 16T0 was previous one */
1431 /* It's a PMC ! */
1432 i += (128+127+16+32+33+16)-1;
1433 lastval = i;
1434 pmc = 0;
1435 block_done = 1;
1436 }
1437 else {
1438 pmc = i;
1439 }
1440 } else if (abs(lc-clock/2) < tolerance) {
1441 // 32TO
1442 if((i - pmc) == lc) { /* 16T0 was previous one */
1443 /* It's a PMC ! */
1444 i += (128+127+16+32+33)-1;
1445 lastval = i;
1446 pmc = 0;
1447 block_done = 1;
1448 }
1449 else if(half_switch == 1) {
1450 BitStream[bitidx++] = 0;
1451 half_switch = 0;
1452 }
1453 else
1454 half_switch++;
1455 } else if (abs(lc-clock) < tolerance) {
1456 // 64TO
1457 BitStream[bitidx++] = 1;
1458 } else {
1459 // Error
1460 warnings++;
1461 if (warnings > 10)
1462 {
1463 Dbprintf("Error: too many detection errors, aborting.");
1464 return 0;
1465 }
1466 }
1467
1468 if(block_done == 1) {
1469 if(bitidx == 128) {
1470 for(j=0; j<16; j++) {
1471 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1472 64*BitStream[j*8+6]+
1473 32*BitStream[j*8+5]+
1474 16*BitStream[j*8+4]+
1475 8*BitStream[j*8+3]+
1476 4*BitStream[j*8+2]+
1477 2*BitStream[j*8+1]+
1478 BitStream[j*8];
1479 }
1480 num_blocks++;
1481 }
1482 bitidx = 0;
1483 block_done = 0;
1484 half_switch = 0;
1485 }
1486 if(i < GraphTraceLen)
1487 {
1488 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1489 else dir = 1;
1490 }
1491 }
1492 if(bitidx==255)
1493 bitidx=0;
1494 warnings = 0;
1495 if(num_blocks == 4) break;
1496 }
1497 memcpy(outBlocks, Blocks, 16*num_blocks);
1498 return num_blocks;
1499 }
1500
1501 int IsBlock0PCF7931(uint8_t *Block) {
1502 // Assume RFU means 0 :)
1503 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1504 return 1;
1505 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1506 return 1;
1507 return 0;
1508 }
1509
1510 int IsBlock1PCF7931(uint8_t *Block) {
1511 // Assume RFU means 0 :)
1512 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1513 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1514 return 1;
1515
1516 return 0;
1517 }
1518
1519 #define ALLOC 16
1520
1521 void ReadPCF7931() {
1522 uint8_t Blocks[8][17];
1523 uint8_t tmpBlocks[4][16];
1524 int i, j, ind, ind2, n;
1525 int num_blocks = 0;
1526 int max_blocks = 8;
1527 int ident = 0;
1528 int error = 0;
1529 int tries = 0;
1530
1531 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1532
1533 do {
1534 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1535 n = DemodPCF7931((uint8_t**)tmpBlocks);
1536 if(!n)
1537 error++;
1538 if(error==10 && num_blocks == 0) {
1539 Dbprintf("Error, no tag or bad tag");
1540 return;
1541 }
1542 else if (tries==20 || error==10) {
1543 Dbprintf("Error reading the tag");
1544 Dbprintf("Here is the partial content");
1545 goto end;
1546 }
1547
1548 for(i=0; i<n; i++)
1549 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1550 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1551 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1552 if(!ident) {
1553 for(i=0; i<n; i++) {
1554 if(IsBlock0PCF7931(tmpBlocks[i])) {
1555 // Found block 0 ?
1556 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1557 // Found block 1!
1558 // \o/
1559 ident = 1;
1560 memcpy(Blocks[0], tmpBlocks[i], 16);
1561 Blocks[0][ALLOC] = 1;
1562 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1563 Blocks[1][ALLOC] = 1;
1564 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1565 // Debug print
1566 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1567 num_blocks = 2;
1568 // Handle following blocks
1569 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1570 if(j==n) j=0;
1571 if(j==i) break;
1572 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1573 Blocks[ind2][ALLOC] = 1;
1574 }
1575 break;
1576 }
1577 }
1578 }
1579 }
1580 else {
1581 for(i=0; i<n; i++) { // Look for identical block in known blocks
1582 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1583 for(j=0; j<max_blocks; j++) {
1584 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1585 // Found an identical block
1586 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1587 if(ind2 < 0)
1588 ind2 = max_blocks;
1589 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1590 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1591 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1592 Blocks[ind2][ALLOC] = 1;
1593 num_blocks++;
1594 if(num_blocks == max_blocks) goto end;
1595 }
1596 }
1597 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1598 if(ind2 > max_blocks)
1599 ind2 = 0;
1600 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1601 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1602 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1603 Blocks[ind2][ALLOC] = 1;
1604 num_blocks++;
1605 if(num_blocks == max_blocks) goto end;
1606 }
1607 }
1608 }
1609 }
1610 }
1611 }
1612 }
1613 tries++;
1614 if (BUTTON_PRESS()) return;
1615 } while (num_blocks != max_blocks);
1616 end:
1617 Dbprintf("-----------------------------------------");
1618 Dbprintf("Memory content:");
1619 Dbprintf("-----------------------------------------");
1620 for(i=0; i<max_blocks; i++) {
1621 if(Blocks[i][ALLOC]==1)
1622 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1623 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1624 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1625 else
1626 Dbprintf("<missing block %d>", i);
1627 }
1628 Dbprintf("-----------------------------------------");
1629
1630 return ;
1631 }
1632
1633
1634 //-----------------------------------
1635 // EM4469 / EM4305 routines
1636 //-----------------------------------
1637 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1638 #define FWD_CMD_WRITE 0xA
1639 #define FWD_CMD_READ 0x9
1640 #define FWD_CMD_DISABLE 0x5
1641
1642
1643 uint8_t forwardLink_data[64]; //array of forwarded bits
1644 uint8_t * forward_ptr; //ptr for forward message preparation
1645 uint8_t fwd_bit_sz; //forwardlink bit counter
1646 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1647
1648 //====================================================================
1649 // prepares command bits
1650 // see EM4469 spec
1651 //====================================================================
1652 //--------------------------------------------------------------------
1653 uint8_t Prepare_Cmd( uint8_t cmd ) {
1654 //--------------------------------------------------------------------
1655
1656 *forward_ptr++ = 0; //start bit
1657 *forward_ptr++ = 0; //second pause for 4050 code
1658
1659 *forward_ptr++ = cmd;
1660 cmd >>= 1;
1661 *forward_ptr++ = cmd;
1662 cmd >>= 1;
1663 *forward_ptr++ = cmd;
1664 cmd >>= 1;
1665 *forward_ptr++ = cmd;
1666
1667 return 6; //return number of emited bits
1668 }
1669
1670 //====================================================================
1671 // prepares address bits
1672 // see EM4469 spec
1673 //====================================================================
1674
1675 //--------------------------------------------------------------------
1676 uint8_t Prepare_Addr( uint8_t addr ) {
1677 //--------------------------------------------------------------------
1678
1679 register uint8_t line_parity;
1680
1681 uint8_t i;
1682 line_parity = 0;
1683 for(i=0;i<6;i++) {
1684 *forward_ptr++ = addr;
1685 line_parity ^= addr;
1686 addr >>= 1;
1687 }
1688
1689 *forward_ptr++ = (line_parity & 1);
1690
1691 return 7; //return number of emited bits
1692 }
1693
1694 //====================================================================
1695 // prepares data bits intreleaved with parity bits
1696 // see EM4469 spec
1697 //====================================================================
1698
1699 //--------------------------------------------------------------------
1700 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1701 //--------------------------------------------------------------------
1702
1703 register uint8_t line_parity;
1704 register uint8_t column_parity;
1705 register uint8_t i, j;
1706 register uint16_t data;
1707
1708 data = data_low;
1709 column_parity = 0;
1710
1711 for(i=0; i<4; i++) {
1712 line_parity = 0;
1713 for(j=0; j<8; j++) {
1714 line_parity ^= data;
1715 column_parity ^= (data & 1) << j;
1716 *forward_ptr++ = data;
1717 data >>= 1;
1718 }
1719 *forward_ptr++ = line_parity;
1720 if(i == 1)
1721 data = data_hi;
1722 }
1723
1724 for(j=0; j<8; j++) {
1725 *forward_ptr++ = column_parity;
1726 column_parity >>= 1;
1727 }
1728 *forward_ptr = 0;
1729
1730 return 45; //return number of emited bits
1731 }
1732
1733 //====================================================================
1734 // Forward Link send function
1735 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1736 // fwd_bit_count set with number of bits to be sent
1737 //====================================================================
1738 void SendForward(uint8_t fwd_bit_count) {
1739
1740 fwd_write_ptr = forwardLink_data;
1741 fwd_bit_sz = fwd_bit_count;
1742
1743 LED_D_ON();
1744
1745 //Field on
1746 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1747 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1748 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1749
1750 // Give it a bit of time for the resonant antenna to settle.
1751 // And for the tag to fully power up
1752 SpinDelay(150);
1753
1754 // force 1st mod pulse (start gap must be longer for 4305)
1755 fwd_bit_sz--; //prepare next bit modulation
1756 fwd_write_ptr++;
1757 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1758 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1759 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1760 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1761 SpinDelayUs(16*8); //16 cycles on (8us each)
1762
1763 // now start writting
1764 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1765 if(((*fwd_write_ptr++) & 1) == 1)
1766 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1767 else {
1768 //These timings work for 4469/4269/4305 (with the 55*8 above)
1769 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1770 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1771 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1772 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1773 SpinDelayUs(9*8); //16 cycles on (8us each)
1774 }
1775 }
1776 }
1777
1778 void EM4xLogin(uint32_t Password) {
1779
1780 uint8_t fwd_bit_count;
1781
1782 forward_ptr = forwardLink_data;
1783 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1784 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1785
1786 SendForward(fwd_bit_count);
1787
1788 //Wait for command to complete
1789 SpinDelay(20);
1790
1791 }
1792
1793 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1794
1795 uint8_t *dest = BigBuf_get_addr();
1796 uint16_t bufferlength = BigBuf_max_traceLen();
1797 uint32_t i = 0;
1798
1799 // Clear destination buffer before sending the command 0x80 = average.
1800 memset(dest, 0x80, bufferlength);
1801
1802 uint8_t fwd_bit_count;
1803
1804 //If password mode do login
1805 if (PwdMode == 1) EM4xLogin(Pwd);
1806
1807 forward_ptr = forwardLink_data;
1808 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1809 fwd_bit_count += Prepare_Addr( Address );
1810
1811 // Connect the A/D to the peak-detected low-frequency path.
1812 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1813 // Now set up the SSC to get the ADC samples that are now streaming at us.
1814 FpgaSetupSsc();
1815
1816 SendForward(fwd_bit_count);
1817
1818 // Now do the acquisition
1819 i = 0;
1820 for(;;) {
1821 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1822 AT91C_BASE_SSC->SSC_THR = 0x43;
1823 }
1824 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1825 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1826 ++i;
1827 if (i >= bufferlength) break;
1828 }
1829 }
1830
1831 cmd_send(CMD_ACK,0,0,0,0,0);
1832 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1833 LED_D_OFF();
1834 }
1835
1836 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1837
1838 uint8_t fwd_bit_count;
1839
1840 //If password mode do login
1841 if (PwdMode == 1) EM4xLogin(Pwd);
1842
1843 forward_ptr = forwardLink_data;
1844 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1845 fwd_bit_count += Prepare_Addr( Address );
1846 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1847
1848 SendForward(fwd_bit_count);
1849
1850 //Wait for write to complete
1851 SpinDelay(20);
1852 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1853 LED_D_OFF();
1854 }
Impressum, Datenschutz