1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
24 #include "legicrfsim.h"
28 #include "lfsampling.h"
30 #include "mifareutil.h"
34 #include "fpgaloader.h"
39 static uint32_t hw_capabilities
;
41 // Craig Young - 14a stand-alone code
43 #include "iso14443a.h"
46 //=============================================================================
47 // A buffer where we can queue things up to be sent through the FPGA, for
48 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
49 // is the order in which they go out on the wire.
50 //=============================================================================
52 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
53 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
56 struct common_area common_area
__attribute__((section(".commonarea")));
58 void ToSendReset(void)
64 void ToSendStuffBit(int b
)
68 ToSend
[ToSendMax
] = 0;
73 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
78 if(ToSendMax
>= sizeof(ToSend
)) {
80 DbpString("ToSendStuffBit overflowed!");
84 //=============================================================================
85 // Debug print functions, to go out over USB, to the usual PC-side client.
86 //=============================================================================
88 void DbpString(char *str
)
90 byte_t len
= strlen(str
);
91 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
95 void DbpIntegers(int x1
, int x2
, int x3
)
97 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
101 void Dbprintf(const char *fmt
, ...) {
102 // should probably limit size here; oh well, let's just use a big buffer
103 char output_string
[128];
107 kvsprintf(fmt
, output_string
, 10, ap
);
110 DbpString(output_string
);
113 // prints HEX & ASCII
114 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
127 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
130 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
132 Dbprintf("%*D",l
,d
," ");
140 //-----------------------------------------------------------------------------
141 // Read an ADC channel and block till it completes, then return the result
142 // in ADC units (0 to 1023). Also a routine to average 32 samples and
144 //-----------------------------------------------------------------------------
145 static int ReadAdc(int ch
)
147 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
148 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
149 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
152 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
154 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
156 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
157 AT91C_BASE_ADC
->ADC_MR
=
158 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
159 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
160 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
162 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
163 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
165 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
167 return AT91C_BASE_ADC
->ADC_CDR
[ch
] & 0x3ff;
170 int AvgAdc(int ch
) // was static - merlok
175 for(i
= 0; i
< 32; i
++) {
179 return (a
+ 15) >> 5;
182 static int AvgAdc_Voltage_HF(void)
184 int AvgAdc_Voltage_Low
, AvgAdc_Voltage_High
;
186 AvgAdc_Voltage_Low
= (MAX_ADC_HF_VOLTAGE_LOW
* AvgAdc(ADC_CHAN_HF_LOW
)) >> 10;
187 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
188 if (AvgAdc_Voltage_Low
> MAX_ADC_HF_VOLTAGE_LOW
- 300) {
189 AvgAdc_Voltage_High
= (MAX_ADC_HF_VOLTAGE_HIGH
* AvgAdc(ADC_CHAN_HF_HIGH
)) >> 10;
190 if (AvgAdc_Voltage_High
>= AvgAdc_Voltage_Low
) {
191 return AvgAdc_Voltage_High
;
194 return AvgAdc_Voltage_Low
;
197 static int AvgAdc_Voltage_LF(void)
199 return (MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10;
202 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
204 int i
, adcval
= 0, peak
= 0;
207 * Sweeps the useful LF range of the proxmark from
208 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
209 * read the voltage in the antenna, the result left
210 * in the buffer is a graph which should clearly show
211 * the resonating frequency of your LF antenna
212 * ( hopefully around 95 if it is tuned to 125kHz!)
215 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
216 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
219 for (i
=255; i
>=19; i
--) {
221 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
223 adcval
= AvgAdc_Voltage_LF();
224 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
225 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
227 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
228 if(LF_Results
[i
] > peak
) {
230 peak
= LF_Results
[i
];
236 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
241 void MeasureAntennaTuningHfOnly(int *vHf
)
243 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
245 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
246 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
248 *vHf
= AvgAdc_Voltage_HF();
253 void MeasureAntennaTuning(int mode
)
255 uint8_t LF_Results
[256] = {0};
256 int peakv
= 0, peakf
= 0;
257 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
261 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
262 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
263 MeasureAntennaTuningHfOnly(&vHf
);
264 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
266 if (mode
& FLAG_TUNE_LF
) {
267 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
269 if (mode
& FLAG_TUNE_HF
) {
270 MeasureAntennaTuningHfOnly(&vHf
);
274 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
275 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
280 void MeasureAntennaTuningHf(void)
282 int vHf
= 0; // in mV
284 DbpString("Measuring HF antenna, press button to exit");
286 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
287 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
288 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
292 vHf
= AvgAdc_Voltage_HF();
294 Dbprintf("%d mV",vHf
);
295 if (BUTTON_PRESS()) break;
297 DbpString("cancelled");
299 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
304 void ReadMem(int addr
)
306 const uint8_t *data
= ((uint8_t *)addr
);
308 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
309 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
312 /* osimage version information is linked in */
313 extern struct version_information version_information
;
314 /* bootrom version information is pointed to from _bootphase1_version_pointer */
315 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
318 void set_hw_capabilities(void)
320 if (I2C_is_available()) {
321 hw_capabilities
|= HAS_SMARTCARD_SLOT
;
324 if (false) { // TODO: implement a test
325 hw_capabilities
|= HAS_EXTRA_FLASH_MEM
;
330 void SendVersion(void)
332 set_hw_capabilities();
334 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
335 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
337 /* Try to find the bootrom version information. Expect to find a pointer at
338 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
339 * pointer, then use it.
341 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
342 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
343 strcat(VersionString
, "bootrom version information appears invalid\n");
345 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
346 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
349 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
350 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
352 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
353 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
354 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
357 // test availability of SmartCard slot
358 if (I2C_is_available()) {
359 strncat(VersionString
, "SmartCard Slot: available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
361 strncat(VersionString
, "SmartCard Slot: not available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
364 // Send Chip ID and used flash memory
365 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
366 uint32_t compressed_data_section_size
= common_area
.arg1
;
367 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, hw_capabilities
, VersionString
, strlen(VersionString
));
370 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
371 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
372 void printUSBSpeed(void)
374 Dbprintf("USB Speed:");
375 Dbprintf(" Sending USB packets to client...");
377 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
378 uint8_t *test_data
= BigBuf_get_addr();
381 uint32_t start_time
= end_time
= GetTickCount();
382 uint32_t bytes_transferred
= 0;
385 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
386 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
387 end_time
= GetTickCount();
388 bytes_transferred
+= USB_CMD_DATA_SIZE
;
392 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
393 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
394 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
395 1000 * bytes_transferred
/ (end_time
- start_time
));
400 * Prints runtime information about the PM3.
402 void SendStatus(void)
404 BigBuf_print_status();
406 #ifdef WITH_SMARTCARD
409 printConfig(); //LF Sampling config
412 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
413 Dbprintf(" ToSendMax..........%d", ToSendMax
);
414 Dbprintf(" ToSendBit..........%d", ToSendBit
);
416 cmd_send(CMD_ACK
,1,0,0,0,0);
419 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
423 void StandAloneMode()
425 DbpString("Stand-alone mode! No PC necessary.");
426 // Oooh pretty -- notify user we're in elite samy mode now
428 LED(LED_ORANGE
, 200);
430 LED(LED_ORANGE
, 200);
432 LED(LED_ORANGE
, 200);
434 LED(LED_ORANGE
, 200);
443 #ifdef WITH_ISO14443a_StandAlone
444 void StandAloneMode14a()
447 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
450 bool playing
= false, GotoRecord
= false, GotoClone
= false;
451 bool cardRead
[OPTS
] = {false};
452 uint8_t readUID
[10] = {0};
453 uint32_t uid_1st
[OPTS
]={0};
454 uint32_t uid_2nd
[OPTS
]={0};
455 uint32_t uid_tmp1
= 0;
456 uint32_t uid_tmp2
= 0;
457 iso14a_card_select_t hi14a_card
[OPTS
];
459 LED(selected
+ 1, 0);
467 if (GotoRecord
|| !cardRead
[selected
])
471 LED(selected
+ 1, 0);
475 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
476 /* need this delay to prevent catching some weird data */
478 /* Code for reading from 14a tag */
479 uint8_t uid
[10] ={0};
481 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
486 if (BUTTON_PRESS()) {
487 if (cardRead
[selected
]) {
488 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
491 else if (cardRead
[(selected
+1)%OPTS
]) {
492 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
493 selected
= (selected
+1)%OPTS
;
497 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
501 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
505 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
506 memcpy(readUID
,uid
,10*sizeof(uint8_t));
507 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
508 // Set UID byte order
509 for (int i
=0; i
<4; i
++)
511 dst
= (uint8_t *)&uid_tmp2
;
512 for (int i
=0; i
<4; i
++)
514 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
515 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
519 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
520 uid_1st
[selected
] = (uid_tmp1
)>>8;
521 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
524 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
525 uid_1st
[selected
] = uid_tmp1
;
526 uid_2nd
[selected
] = uid_tmp2
;
532 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
533 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
536 LED(LED_ORANGE
, 200);
538 LED(LED_ORANGE
, 200);
541 LED(selected
+ 1, 0);
543 // Next state is replay:
546 cardRead
[selected
] = true;
548 /* MF Classic UID clone */
553 LED(selected
+ 1, 0);
554 LED(LED_ORANGE
, 250);
558 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
560 // wait for button to be released
561 while(BUTTON_PRESS())
563 // Delay cloning until card is in place
566 Dbprintf("Starting clone. [Bank: %u]", selected
);
567 // need this delay to prevent catching some weird data
569 // Begin clone function here:
570 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
571 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
572 memcpy(c.d.asBytes, data, 16);
575 Block read is similar:
576 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
577 We need to imitate that call with blockNo 0 to set a uid.
579 The get and set commands are handled in this file:
580 // Work with "magic Chinese" card
581 case CMD_MIFARE_CSETBLOCK:
582 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
584 case CMD_MIFARE_CGETBLOCK:
585 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
588 mfCSetUID provides example logic for UID set workflow:
589 -Read block0 from card in field with MifareCGetBlock()
590 -Configure new values without replacing reserved bytes
591 memcpy(block0, uid, 4); // Copy UID bytes from byte array
593 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
594 Bytes 5-7 are reserved SAK and ATQA for mifare classic
595 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
597 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
598 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
599 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
600 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
601 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
605 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
606 memcpy(newBlock0
,oldBlock0
,16);
607 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
609 newBlock0
[0] = uid_1st
[selected
]>>24;
610 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
611 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
612 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
613 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
614 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
615 MifareCSetBlock(0, 0xFF,0, newBlock0
);
616 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
617 if (memcmp(testBlock0
,newBlock0
,16)==0)
619 DbpString("Cloned successfull!");
620 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
623 selected
= (selected
+1) % OPTS
;
626 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
631 LED(selected
+ 1, 0);
634 // Change where to record (or begin playing)
635 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
638 LED(selected
+ 1, 0);
640 // Begin transmitting
642 DbpString("Playing");
645 int button_action
= BUTTON_HELD(1000);
646 if (button_action
== 0) { // No button action, proceed with sim
647 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
648 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
649 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
650 DbpString("Mifare Classic");
651 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
653 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
654 DbpString("Mifare Ultralight");
655 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
657 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
658 DbpString("Mifare DESFire");
659 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
662 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
663 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
666 else if (button_action
== BUTTON_SINGLE_CLICK
) {
667 selected
= (selected
+ 1) % OPTS
;
668 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
672 else if (button_action
== BUTTON_HOLD
) {
673 Dbprintf("Playtime over. Begin cloning...");
680 /* We pressed a button so ignore it here with a delay */
683 LED(selected
+ 1, 0);
687 #elif WITH_LF_StandAlone
688 // samy's sniff and repeat routine
692 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
694 int tops
[OPTS
], high
[OPTS
], low
[OPTS
];
699 // Turn on selected LED
700 LED(selected
+ 1, 0);
707 // Was our button held down or pressed?
708 int button_pressed
= BUTTON_HELD(1000);
711 // Button was held for a second, begin recording
712 if (button_pressed
> 0 && cardRead
== 0)
715 LED(selected
+ 1, 0);
719 DbpString("Starting recording");
721 // wait for button to be released
722 while(BUTTON_PRESS())
725 /* need this delay to prevent catching some weird data */
728 CmdHIDdemodFSK(1, &tops
[selected
], &high
[selected
], &low
[selected
], 0);
729 if (tops
[selected
] > 0)
730 Dbprintf("Recorded %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
732 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
735 LED(selected
+ 1, 0);
736 // Finished recording
738 // If we were previously playing, set playing off
739 // so next button push begins playing what we recorded
746 else if (button_pressed
> 0 && cardRead
== 1)
749 LED(selected
+ 1, 0);
753 if (tops
[selected
] > 0)
754 Dbprintf("Cloning %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
756 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
758 // wait for button to be released
759 while(BUTTON_PRESS())
762 /* need this delay to prevent catching some weird data */
765 CopyHIDtoT55x7(tops
[selected
] & 0x000FFFFF, high
[selected
], low
[selected
], (tops
[selected
] != 0 && ((high
[selected
]& 0xFFFFFFC0) != 0)), 0x1D);
766 if (tops
[selected
] > 0)
767 Dbprintf("Cloned %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
769 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
772 LED(selected
+ 1, 0);
773 // Finished recording
775 // If we were previously playing, set playing off
776 // so next button push begins playing what we recorded
783 // Change where to record (or begin playing)
784 else if (button_pressed
)
786 // Next option if we were previously playing
788 selected
= (selected
+ 1) % OPTS
;
792 LED(selected
+ 1, 0);
794 // Begin transmitting
798 DbpString("Playing");
799 // wait for button to be released
800 while(BUTTON_PRESS())
802 if (tops
[selected
] > 0)
803 Dbprintf("%x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
805 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
807 CmdHIDsimTAG(tops
[selected
], high
[selected
], low
[selected
], 0);
808 DbpString("Done playing");
809 if (BUTTON_HELD(1000) > 0)
811 DbpString("Exiting");
816 /* We pressed a button so ignore it here with a delay */
819 // when done, we're done playing, move to next option
820 selected
= (selected
+ 1) % OPTS
;
823 LED(selected
+ 1, 0);
826 while(BUTTON_PRESS())
835 Listen and detect an external reader. Determine the best location
839 Inside the ListenReaderField() function, there is two mode.
840 By default, when you call the function, you will enter mode 1.
841 If you press the PM3 button one time, you will enter mode 2.
842 If you press the PM3 button a second time, you will exit the function.
844 DESCRIPTION OF MODE 1:
845 This mode just listens for an external reader field and lights up green
846 for HF and/or red for LF. This is the original mode of the detectreader
849 DESCRIPTION OF MODE 2:
850 This mode will visually represent, using the LEDs, the actual strength of the
851 current compared to the maximum current detected. Basically, once you know
852 what kind of external reader is present, it will help you spot the best location to place
853 your antenna. You will probably not get some good results if there is a LF and a HF reader
854 at the same place! :-)
858 static const char LIGHT_SCHEME
[] = {
859 0x0, /* ---- | No field detected */
860 0x1, /* X--- | 14% of maximum current detected */
861 0x2, /* -X-- | 29% of maximum current detected */
862 0x4, /* --X- | 43% of maximum current detected */
863 0x8, /* ---X | 57% of maximum current detected */
864 0xC, /* --XX | 71% of maximum current detected */
865 0xE, /* -XXX | 86% of maximum current detected */
866 0xF, /* XXXX | 100% of maximum current detected */
868 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
870 void ListenReaderField(int limit
)
872 int lf_av
, lf_av_new
=0, lf_baseline
= 0, lf_max
;
873 int hf_av
, hf_av_new
=0, hf_baseline
= 0, hf_max
;
874 int mode
=1, display_val
, display_max
, i
;
878 #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
879 #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
880 #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
883 // switch off FPGA - we don't want to measure our own signal
884 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
885 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
889 lf_av
= lf_max
= AvgAdc_Voltage_LF();
891 if(limit
!= HF_ONLY
) {
892 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av
);
896 hf_av
= hf_max
= AvgAdc_Voltage_HF();
898 if (limit
!= LF_ONLY
) {
899 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av
);
905 if (BUTTON_PRESS()) {
909 DbpString("Signal Strength Mode");
913 DbpString("Stopped");
918 while (BUTTON_PRESS());
922 if (limit
!= HF_ONLY
) {
924 if (lf_av
- lf_baseline
> MIN_LF_FIELD
)
930 lf_av_new
= AvgAdc_Voltage_LF();
931 // see if there's a significant change
932 if (ABS((lf_av
- lf_av_new
)*100/(lf_av
?lf_av
:1)) > REPORT_CHANGE_PERCENT
) {
933 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new
);
940 if (limit
!= LF_ONLY
) {
942 if (hf_av
- hf_baseline
> MIN_HF_FIELD
)
948 hf_av_new
= AvgAdc_Voltage_HF();
950 // see if there's a significant change
951 if (ABS((hf_av
- hf_av_new
)*100/(hf_av
?hf_av
:1)) > REPORT_CHANGE_PERCENT
) {
952 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new
);
960 if (limit
== LF_ONLY
) {
962 display_max
= lf_max
;
963 } else if (limit
== HF_ONLY
) {
965 display_max
= hf_max
;
966 } else { /* Pick one at random */
967 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
969 display_max
= hf_max
;
972 display_max
= lf_max
;
975 for (i
=0; i
<LIGHT_LEN
; i
++) {
976 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
977 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
978 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
979 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
980 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
988 void UsbPacketReceived(uint8_t *packet
, int len
)
990 UsbCommand
*c
= (UsbCommand
*)packet
;
992 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
996 case CMD_SET_LF_SAMPLING_CONFIG
:
997 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
999 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
1000 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
1002 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
1003 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1005 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
1006 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
1008 case CMD_HID_DEMOD_FSK
:
1009 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 0, 1);
1011 case CMD_HID_SIM_TAG
:
1012 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], 1);
1014 case CMD_FSK_SIM_TAG
:
1015 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1017 case CMD_ASK_SIM_TAG
:
1018 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1020 case CMD_PSK_SIM_TAG
:
1021 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1023 case CMD_HID_CLONE_TAG
:
1024 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x1D);
1026 case CMD_PARADOX_CLONE_TAG
:
1027 // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
1028 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x0F);
1030 case CMD_IO_DEMOD_FSK
:
1031 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
1033 case CMD_IO_CLONE_TAG
:
1034 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
1036 case CMD_EM410X_DEMOD
:
1037 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
1039 case CMD_EM410X_WRITE_TAG
:
1040 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1042 case CMD_READ_TI_TYPE
:
1045 case CMD_WRITE_TI_TYPE
:
1046 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
1048 case CMD_SIMULATE_TAG_125K
:
1050 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
1053 case CMD_LF_SIMULATE_BIDIR
:
1054 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
1056 case CMD_INDALA_CLONE_TAG
:
1057 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
1059 case CMD_INDALA_CLONE_TAG_L
:
1060 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
1062 case CMD_T55XX_READ_BLOCK
:
1063 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1065 case CMD_T55XX_WRITE_BLOCK
:
1066 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1068 case CMD_T55XX_WAKEUP
:
1069 T55xxWakeUp(c
->arg
[0]);
1071 case CMD_T55XX_RESET_READ
:
1074 case CMD_PCF7931_READ
:
1077 case CMD_PCF7931_WRITE
:
1078 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1080 case CMD_PCF7931_BRUTEFORCE
:
1081 BruteForcePCF7931(c
->arg
[0], (c
->arg
[1] & 0xFF), c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128);
1083 case CMD_EM4X_READ_WORD
:
1084 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1086 case CMD_EM4X_WRITE_WORD
:
1087 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1089 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1090 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1092 case CMD_VIKING_CLONE_TAG
:
1093 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1101 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1102 SnoopHitag(c
->arg
[0]);
1104 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1105 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1107 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1108 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1110 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1111 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1113 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1114 check_challenges_cmd((bool)c
->arg
[0], (byte_t
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1]);
1116 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1117 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], false);
1119 case CMD_READ_HITAG_S_BLK
:
1120 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], true);
1122 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1123 if ((hitag_function
)c
->arg
[0] < 10) {
1124 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1126 else if ((hitag_function
)c
->arg
[0] >= 10) {
1127 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1132 #ifdef WITH_ISO15693
1133 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1134 AcquireRawAdcSamplesIso15693();
1137 case CMD_SNOOP_ISO_15693
:
1141 case CMD_ISO_15693_COMMAND
:
1142 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1145 case CMD_ISO_15693_FIND_AFI
:
1146 BruteforceIso15693Afi(c
->arg
[0]);
1149 case CMD_ISO_15693_DEBUG
:
1150 SetDebugIso15693(c
->arg
[0]);
1153 case CMD_READER_ISO_15693
:
1154 ReaderIso15693(c
->arg
[0]);
1156 case CMD_SIMTAG_ISO_15693
:
1157 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1162 case CMD_SIMULATE_TAG_LEGIC_RF
:
1163 LegicRfSimulate(c
->arg
[0]);
1166 case CMD_WRITER_LEGIC_RF
:
1167 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1170 case CMD_READER_LEGIC_RF
:
1171 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1175 #ifdef WITH_ISO14443b
1176 case CMD_READ_SRI512_TAG
:
1177 ReadSTMemoryIso14443b(0x0F);
1179 case CMD_READ_SRIX4K_TAG
:
1180 ReadSTMemoryIso14443b(0x7F);
1182 case CMD_SNOOP_ISO_14443B
:
1185 case CMD_SIMULATE_TAG_ISO_14443B
:
1186 SimulateIso14443bTag();
1188 case CMD_ISO_14443B_COMMAND
:
1189 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1193 #ifdef WITH_ISO14443a
1194 case CMD_SNOOP_ISO_14443a
:
1195 SnoopIso14443a(c
->arg
[0]);
1197 case CMD_READER_ISO_14443a
:
1200 case CMD_SIMULATE_TAG_ISO_14443a
:
1201 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1204 case CMD_EPA_PACE_COLLECT_NONCE
:
1205 EPA_PACE_Collect_Nonce(c
);
1207 case CMD_EPA_PACE_REPLAY
:
1211 case CMD_READER_MIFARE
:
1212 ReaderMifare(c
->arg
[0]);
1214 case CMD_MIFARE_READBL
:
1215 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1217 case CMD_MIFAREU_READBL
:
1218 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1220 case CMD_MIFAREUC_AUTH
:
1221 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1223 case CMD_MIFAREU_READCARD
:
1224 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1226 case CMD_MIFAREUC_SETPWD
:
1227 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1229 case CMD_MIFARE_READSC
:
1230 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1232 case CMD_MIFARE_WRITEBL
:
1233 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1235 //case CMD_MIFAREU_WRITEBL_COMPAT:
1236 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1238 case CMD_MIFAREU_WRITEBL
:
1239 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1241 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1242 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1244 case CMD_MIFARE_NESTED
:
1245 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1247 case CMD_MIFARE_CHKKEYS
:
1248 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1250 case CMD_SIMULATE_MIFARE_CARD
:
1251 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1255 case CMD_MIFARE_SET_DBGMODE
:
1256 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1258 case CMD_MIFARE_EML_MEMCLR
:
1259 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1261 case CMD_MIFARE_EML_MEMSET
:
1262 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1264 case CMD_MIFARE_EML_MEMGET
:
1265 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1267 case CMD_MIFARE_EML_CARDLOAD
:
1268 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1271 // Work with "magic Chinese" card
1272 case CMD_MIFARE_CWIPE
:
1273 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1275 case CMD_MIFARE_CSETBLOCK
:
1276 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1278 case CMD_MIFARE_CGETBLOCK
:
1279 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1281 case CMD_MIFARE_CIDENT
:
1286 case CMD_MIFARE_SNIFFER
:
1287 SniffMifare(c
->arg
[0]);
1293 // Makes use of ISO14443a FPGA Firmware
1294 case CMD_SNOOP_ICLASS
:
1297 case CMD_SIMULATE_TAG_ICLASS
:
1298 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1300 case CMD_READER_ICLASS
:
1301 ReaderIClass(c
->arg
[0]);
1303 case CMD_READER_ICLASS_REPLAY
:
1304 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1306 case CMD_ICLASS_EML_MEMSET
:
1307 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1309 case CMD_ICLASS_WRITEBLOCK
:
1310 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1312 case CMD_ICLASS_READCHECK
: // auth step 1
1313 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1315 case CMD_ICLASS_READBLOCK
:
1316 iClass_ReadBlk(c
->arg
[0]);
1318 case CMD_ICLASS_AUTHENTICATION
: //check
1319 iClass_Authentication(c
->d
.asBytes
);
1321 case CMD_ICLASS_DUMP
:
1322 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1324 case CMD_ICLASS_CLONE
:
1325 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1330 case CMD_HF_SNIFFER
:
1331 HfSnoop(c
->arg
[0], c
->arg
[1]);
1338 #ifdef WITH_SMARTCARD
1339 case CMD_SMART_ATR
: {
1343 case CMD_SMART_SETCLOCK
:{
1344 SmartCardSetClock(c
->arg
[0]);
1347 case CMD_SMART_RAW
: {
1348 SmartCardRaw(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1351 case CMD_SMART_UPLOAD
: {
1352 // upload file from client
1353 uint8_t *mem
= BigBuf_get_addr();
1354 memcpy( mem
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1355 cmd_send(CMD_ACK
,1,0,0,0,0);
1358 case CMD_SMART_UPGRADE
: {
1359 SmartCardUpgrade(c
->arg
[0]);
1364 case CMD_BUFF_CLEAR
:
1368 case CMD_MEASURE_ANTENNA_TUNING
:
1369 MeasureAntennaTuning(c
->arg
[0]);
1372 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1373 MeasureAntennaTuningHf();
1376 case CMD_LISTEN_READER_FIELD
:
1377 ListenReaderField(c
->arg
[0]);
1380 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1383 LED_D_OFF(); // LED D indicates field ON or OFF
1386 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1388 uint8_t *BigBuf
= BigBuf_get_addr();
1389 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1390 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1391 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1393 // Trigger a finish downloading signal with an ACK frame
1394 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1398 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1399 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1400 // to be able to use this one for uploading data to device
1401 // arg1 = 0 upload for LF usage
1402 // 1 upload for HF usage
1404 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1406 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1408 uint8_t *b
= BigBuf_get_addr();
1409 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1410 cmd_send(CMD_ACK
,0,0,0,0,0);
1417 case CMD_SET_LF_DIVISOR
:
1418 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1419 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1422 case CMD_SET_ADC_MUX
:
1424 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1425 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1426 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1427 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1438 cmd_send(CMD_ACK
,0,0,0,0,0);
1448 case CMD_SETUP_WRITE
:
1449 case CMD_FINISH_WRITE
:
1450 case CMD_HARDWARE_RESET
:
1454 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1456 // We're going to reset, and the bootrom will take control.
1460 case CMD_START_FLASH
:
1461 if(common_area
.flags
.bootrom_present
) {
1462 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1465 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1469 case CMD_DEVICE_INFO
: {
1470 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1471 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1472 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1476 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1481 void __attribute__((noreturn
)) AppMain(void)
1485 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1486 /* Initialize common area */
1487 memset(&common_area
, 0, sizeof(common_area
));
1488 common_area
.magic
= COMMON_AREA_MAGIC
;
1489 common_area
.version
= 1;
1491 common_area
.flags
.osimage_present
= 1;
1498 // The FPGA gets its clock from us from PCK0 output, so set that up.
1499 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1500 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1501 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1502 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1503 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1504 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1505 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1508 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1510 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1512 // Load the FPGA image, which we have stored in our flash.
1513 // (the HF version by default)
1514 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1522 byte_t rx
[sizeof(UsbCommand
)];
1527 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1529 UsbPacketReceived(rx
,rx_len
);
1534 #ifdef WITH_LF_StandAlone
1535 #ifndef WITH_ISO14443a_StandAlone
1536 if (BUTTON_HELD(1000) > 0)
1540 #ifdef WITH_ISO14443a
1541 #ifdef WITH_ISO14443a_StandAlone
1542 if (BUTTON_HELD(1000) > 0)
1543 StandAloneMode14a();