1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
38 // Craig Young - 14a stand-alone code
40 #include "iso14443a.h"
43 //=============================================================================
44 // A buffer where we can queue things up to be sent through the FPGA, for
45 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
46 // is the order in which they go out on the wire.
47 //=============================================================================
49 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
50 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
53 struct common_area common_area
__attribute__((section(".commonarea")));
55 void ToSendReset(void)
61 void ToSendStuffBit(int b
)
65 ToSend
[ToSendMax
] = 0;
70 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
75 if(ToSendMax
>= sizeof(ToSend
)) {
77 DbpString("ToSendStuffBit overflowed!");
81 //=============================================================================
82 // Debug print functions, to go out over USB, to the usual PC-side client.
83 //=============================================================================
85 void DbpString(char *str
)
87 byte_t len
= strlen(str
);
88 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
92 void DbpIntegers(int x1
, int x2
, int x3
)
94 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
98 void Dbprintf(const char *fmt
, ...) {
99 // should probably limit size here; oh well, let's just use a big buffer
100 char output_string
[128];
104 kvsprintf(fmt
, output_string
, 10, ap
);
107 DbpString(output_string
);
110 // prints HEX & ASCII
111 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
124 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
127 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
129 Dbprintf("%*D",l
,d
," ");
137 //-----------------------------------------------------------------------------
138 // Read an ADC channel and block till it completes, then return the result
139 // in ADC units (0 to 1023). Also a routine to average 32 samples and
141 //-----------------------------------------------------------------------------
142 static int ReadAdc(int ch
)
144 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
145 // AMPL_HI is are high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
146 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
149 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
151 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
153 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
154 AT91C_BASE_ADC
->ADC_MR
=
155 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
156 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
157 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
159 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
160 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
162 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
164 return AT91C_BASE_ADC
->ADC_CDR
[ch
];
167 int AvgAdc(int ch
) // was static - merlok
172 for(i
= 0; i
< 32; i
++) {
176 return (a
+ 15) >> 5;
179 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
181 int i
, adcval
= 0, peak
= 0;
184 * Sweeps the useful LF range of the proxmark from
185 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
186 * read the voltage in the antenna, the result left
187 * in the buffer is a graph which should clearly show
188 * the resonating frequency of your LF antenna
189 * ( hopefully around 95 if it is tuned to 125kHz!)
192 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
193 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
196 for (i
=255; i
>=19; i
--) {
198 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
200 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
201 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
202 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
204 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
205 if(LF_Results
[i
] > peak
) {
207 peak
= LF_Results
[i
];
213 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
218 void MeasureAntennaTuningHfOnly(int *vHf
)
220 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
222 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
223 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
225 *vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
231 void MeasureAntennaTuning(int mode
)
233 uint8_t LF_Results
[256] = {0};
234 int peakv
= 0, peakf
= 0;
235 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
239 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
240 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
241 MeasureAntennaTuningHfOnly(&vHf
);
242 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
244 if (mode
& FLAG_TUNE_LF
) {
245 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
247 if (mode
& FLAG_TUNE_HF
) {
248 MeasureAntennaTuningHfOnly(&vHf
);
252 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
253 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
258 void MeasureAntennaTuningHf(void)
260 int vHf
= 0; // in mV
262 DbpString("Measuring HF antenna, press button to exit");
264 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
265 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
270 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
272 Dbprintf("%d mV",vHf
);
273 if (BUTTON_PRESS()) break;
275 DbpString("cancelled");
277 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
282 void ReadMem(int addr
)
284 const uint8_t *data
= ((uint8_t *)addr
);
286 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
287 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
290 /* osimage version information is linked in */
291 extern struct version_information version_information
;
292 /* bootrom version information is pointed to from _bootphase1_version_pointer */
293 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
295 void SendVersion(void)
297 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
298 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
300 /* Try to find the bootrom version information. Expect to find a pointer at
301 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
302 * pointer, then use it.
304 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
305 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
306 strcat(VersionString
, "bootrom version information appears invalid\n");
308 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
309 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
312 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
313 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
315 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
316 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
317 if (i
< fpga_bitstream_num
- 1) {
318 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
322 // Send Chip ID and used flash memory
323 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
324 uint32_t compressed_data_section_size
= common_area
.arg1
;
325 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
328 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
329 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
330 void printUSBSpeed(void)
332 Dbprintf("USB Speed:");
333 Dbprintf(" Sending USB packets to client...");
335 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
336 uint8_t *test_data
= BigBuf_get_addr();
339 uint32_t start_time
= end_time
= GetTickCount();
340 uint32_t bytes_transferred
= 0;
343 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
344 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
345 end_time
= GetTickCount();
346 bytes_transferred
+= USB_CMD_DATA_SIZE
;
350 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
351 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
352 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
353 1000 * bytes_transferred
/ (end_time
- start_time
));
358 * Prints runtime information about the PM3.
360 void SendStatus(void)
362 BigBuf_print_status();
364 #ifdef WITH_SMARTCARD
367 printConfig(); //LF Sampling config
370 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
371 Dbprintf(" ToSendMax..........%d", ToSendMax
);
372 Dbprintf(" ToSendBit..........%d", ToSendBit
);
374 cmd_send(CMD_ACK
,1,0,0,0,0);
377 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
381 void StandAloneMode()
383 DbpString("Stand-alone mode! No PC necessary.");
384 // Oooh pretty -- notify user we're in elite samy mode now
386 LED(LED_ORANGE
, 200);
388 LED(LED_ORANGE
, 200);
390 LED(LED_ORANGE
, 200);
392 LED(LED_ORANGE
, 200);
401 #ifdef WITH_ISO14443a_StandAlone
402 void StandAloneMode14a()
405 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
408 bool playing
= false, GotoRecord
= false, GotoClone
= false;
409 bool cardRead
[OPTS
] = {false};
410 uint8_t readUID
[10] = {0};
411 uint32_t uid_1st
[OPTS
]={0};
412 uint32_t uid_2nd
[OPTS
]={0};
413 uint32_t uid_tmp1
= 0;
414 uint32_t uid_tmp2
= 0;
415 iso14a_card_select_t hi14a_card
[OPTS
];
417 LED(selected
+ 1, 0);
425 if (GotoRecord
|| !cardRead
[selected
])
429 LED(selected
+ 1, 0);
433 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
434 /* need this delay to prevent catching some weird data */
436 /* Code for reading from 14a tag */
437 uint8_t uid
[10] ={0};
439 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
444 if (BUTTON_PRESS()) {
445 if (cardRead
[selected
]) {
446 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
449 else if (cardRead
[(selected
+1)%OPTS
]) {
450 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
451 selected
= (selected
+1)%OPTS
;
455 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
459 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
463 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
464 memcpy(readUID
,uid
,10*sizeof(uint8_t));
465 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
466 // Set UID byte order
467 for (int i
=0; i
<4; i
++)
469 dst
= (uint8_t *)&uid_tmp2
;
470 for (int i
=0; i
<4; i
++)
472 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
473 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
477 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
478 uid_1st
[selected
] = (uid_tmp1
)>>8;
479 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
482 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
483 uid_1st
[selected
] = uid_tmp1
;
484 uid_2nd
[selected
] = uid_tmp2
;
490 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
491 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
494 LED(LED_ORANGE
, 200);
496 LED(LED_ORANGE
, 200);
499 LED(selected
+ 1, 0);
501 // Next state is replay:
504 cardRead
[selected
] = true;
506 /* MF Classic UID clone */
511 LED(selected
+ 1, 0);
512 LED(LED_ORANGE
, 250);
516 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
518 // wait for button to be released
519 while(BUTTON_PRESS())
521 // Delay cloning until card is in place
524 Dbprintf("Starting clone. [Bank: %u]", selected
);
525 // need this delay to prevent catching some weird data
527 // Begin clone function here:
528 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
529 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
530 memcpy(c.d.asBytes, data, 16);
533 Block read is similar:
534 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
535 We need to imitate that call with blockNo 0 to set a uid.
537 The get and set commands are handled in this file:
538 // Work with "magic Chinese" card
539 case CMD_MIFARE_CSETBLOCK:
540 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
542 case CMD_MIFARE_CGETBLOCK:
543 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
546 mfCSetUID provides example logic for UID set workflow:
547 -Read block0 from card in field with MifareCGetBlock()
548 -Configure new values without replacing reserved bytes
549 memcpy(block0, uid, 4); // Copy UID bytes from byte array
551 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
552 Bytes 5-7 are reserved SAK and ATQA for mifare classic
553 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
555 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
556 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
557 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
558 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
559 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
563 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
564 memcpy(newBlock0
,oldBlock0
,16);
565 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
567 newBlock0
[0] = uid_1st
[selected
]>>24;
568 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
569 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
570 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
571 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
572 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
573 MifareCSetBlock(0, 0xFF,0, newBlock0
);
574 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
575 if (memcmp(testBlock0
,newBlock0
,16)==0)
577 DbpString("Cloned successfull!");
578 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
581 selected
= (selected
+1) % OPTS
;
584 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
589 LED(selected
+ 1, 0);
592 // Change where to record (or begin playing)
593 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
596 LED(selected
+ 1, 0);
598 // Begin transmitting
600 DbpString("Playing");
603 int button_action
= BUTTON_HELD(1000);
604 if (button_action
== 0) { // No button action, proceed with sim
605 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
606 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
607 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
608 DbpString("Mifare Classic");
609 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
611 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
612 DbpString("Mifare Ultralight");
613 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
615 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
616 DbpString("Mifare DESFire");
617 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
620 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
621 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
624 else if (button_action
== BUTTON_SINGLE_CLICK
) {
625 selected
= (selected
+ 1) % OPTS
;
626 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
630 else if (button_action
== BUTTON_HOLD
) {
631 Dbprintf("Playtime over. Begin cloning...");
638 /* We pressed a button so ignore it here with a delay */
641 LED(selected
+ 1, 0);
645 #elif WITH_LF_StandAlone
646 // samy's sniff and repeat routine
650 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
652 int high
[OPTS
], low
[OPTS
];
657 // Turn on selected LED
658 LED(selected
+ 1, 0);
665 // Was our button held down or pressed?
666 int button_pressed
= BUTTON_HELD(1000);
669 // Button was held for a second, begin recording
670 if (button_pressed
> 0 && cardRead
== 0)
673 LED(selected
+ 1, 0);
677 DbpString("Starting recording");
679 // wait for button to be released
680 while(BUTTON_PRESS())
683 /* need this delay to prevent catching some weird data */
686 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
687 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
690 LED(selected
+ 1, 0);
691 // Finished recording
693 // If we were previously playing, set playing off
694 // so next button push begins playing what we recorded
701 else if (button_pressed
> 0 && cardRead
== 1)
704 LED(selected
+ 1, 0);
708 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
710 // wait for button to be released
711 while(BUTTON_PRESS())
714 /* need this delay to prevent catching some weird data */
717 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
718 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
721 LED(selected
+ 1, 0);
722 // Finished recording
724 // If we were previously playing, set playing off
725 // so next button push begins playing what we recorded
732 // Change where to record (or begin playing)
733 else if (button_pressed
)
735 // Next option if we were previously playing
737 selected
= (selected
+ 1) % OPTS
;
741 LED(selected
+ 1, 0);
743 // Begin transmitting
747 DbpString("Playing");
748 // wait for button to be released
749 while(BUTTON_PRESS())
751 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
752 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
753 DbpString("Done playing");
754 if (BUTTON_HELD(1000) > 0)
756 DbpString("Exiting");
761 /* We pressed a button so ignore it here with a delay */
764 // when done, we're done playing, move to next option
765 selected
= (selected
+ 1) % OPTS
;
768 LED(selected
+ 1, 0);
771 while(BUTTON_PRESS())
780 Listen and detect an external reader. Determine the best location
784 Inside the ListenReaderField() function, there is two mode.
785 By default, when you call the function, you will enter mode 1.
786 If you press the PM3 button one time, you will enter mode 2.
787 If you press the PM3 button a second time, you will exit the function.
789 DESCRIPTION OF MODE 1:
790 This mode just listens for an external reader field and lights up green
791 for HF and/or red for LF. This is the original mode of the detectreader
794 DESCRIPTION OF MODE 2:
795 This mode will visually represent, using the LEDs, the actual strength of the
796 current compared to the maximum current detected. Basically, once you know
797 what kind of external reader is present, it will help you spot the best location to place
798 your antenna. You will probably not get some good results if there is a LF and a HF reader
799 at the same place! :-)
803 static const char LIGHT_SCHEME
[] = {
804 0x0, /* ---- | No field detected */
805 0x1, /* X--- | 14% of maximum current detected */
806 0x2, /* -X-- | 29% of maximum current detected */
807 0x4, /* --X- | 43% of maximum current detected */
808 0x8, /* ---X | 57% of maximum current detected */
809 0xC, /* --XX | 71% of maximum current detected */
810 0xE, /* -XXX | 86% of maximum current detected */
811 0xF, /* XXXX | 100% of maximum current detected */
813 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
815 void ListenReaderField(int limit
)
817 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
818 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
819 int mode
=1, display_val
, display_max
, i
;
823 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
826 // switch off FPGA - we don't want to measure our own signal
827 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
828 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
832 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
834 if(limit
!= HF_ONLY
) {
835 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
839 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
841 if (limit
!= LF_ONLY
) {
842 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
847 if (BUTTON_PRESS()) {
852 DbpString("Signal Strength Mode");
856 DbpString("Stopped");
864 if (limit
!= HF_ONLY
) {
866 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
872 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
873 // see if there's a significant change
874 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
875 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
882 if (limit
!= LF_ONLY
) {
884 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
890 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
891 // see if there's a significant change
892 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
893 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
901 if (limit
== LF_ONLY
) {
903 display_max
= lf_max
;
904 } else if (limit
== HF_ONLY
) {
906 display_max
= hf_max
;
907 } else { /* Pick one at random */
908 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
910 display_max
= hf_max
;
913 display_max
= lf_max
;
916 for (i
=0; i
<LIGHT_LEN
; i
++) {
917 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
918 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
919 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
920 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
921 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
929 void UsbPacketReceived(uint8_t *packet
, int len
)
931 UsbCommand
*c
= (UsbCommand
*)packet
;
933 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
937 case CMD_SET_LF_SAMPLING_CONFIG
:
938 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
940 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
941 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
943 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
944 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
946 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
947 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
949 case CMD_HID_DEMOD_FSK
:
950 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
952 case CMD_HID_SIM_TAG
:
953 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
955 case CMD_FSK_SIM_TAG
:
956 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
958 case CMD_ASK_SIM_TAG
:
959 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
961 case CMD_PSK_SIM_TAG
:
962 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
964 case CMD_HID_CLONE_TAG
:
965 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
967 case CMD_IO_DEMOD_FSK
:
968 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
970 case CMD_IO_CLONE_TAG
:
971 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
973 case CMD_EM410X_DEMOD
:
974 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
976 case CMD_EM410X_WRITE_TAG
:
977 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
979 case CMD_READ_TI_TYPE
:
982 case CMD_WRITE_TI_TYPE
:
983 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
985 case CMD_SIMULATE_TAG_125K
:
987 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
990 case CMD_LF_SIMULATE_BIDIR
:
991 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
993 case CMD_INDALA_CLONE_TAG
:
994 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
996 case CMD_INDALA_CLONE_TAG_L
:
997 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
999 case CMD_T55XX_READ_BLOCK
:
1000 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1002 case CMD_T55XX_WRITE_BLOCK
:
1003 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1005 case CMD_T55XX_WAKEUP
:
1006 T55xxWakeUp(c
->arg
[0]);
1008 case CMD_T55XX_RESET_READ
:
1011 case CMD_PCF7931_READ
:
1014 case CMD_PCF7931_WRITE
:
1015 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1017 case CMD_EM4X_READ_WORD
:
1018 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1020 case CMD_EM4X_WRITE_WORD
:
1021 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1023 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1024 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1026 case CMD_VIKING_CLONE_TAG
:
1027 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1035 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1036 SnoopHitag(c
->arg
[0]);
1038 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1039 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1041 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1042 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1044 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1045 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1047 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1048 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1050 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1051 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1053 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1054 if ((hitag_function
)c
->arg
[0] < 10) {
1055 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1057 else if ((hitag_function
)c
->arg
[0] >= 10) {
1058 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1063 #ifdef WITH_ISO15693
1064 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1065 AcquireRawAdcSamplesIso15693();
1067 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1068 RecordRawAdcSamplesIso15693();
1071 case CMD_ISO_15693_COMMAND
:
1072 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1075 case CMD_ISO_15693_FIND_AFI
:
1076 BruteforceIso15693Afi(c
->arg
[0]);
1079 case CMD_ISO_15693_DEBUG
:
1080 SetDebugIso15693(c
->arg
[0]);
1083 case CMD_READER_ISO_15693
:
1084 ReaderIso15693(c
->arg
[0]);
1086 case CMD_SIMTAG_ISO_15693
:
1087 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1092 case CMD_SIMULATE_TAG_LEGIC_RF
:
1093 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1096 case CMD_WRITER_LEGIC_RF
:
1097 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1100 case CMD_READER_LEGIC_RF
:
1101 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1105 #ifdef WITH_ISO14443b
1106 case CMD_READ_SRI512_TAG
:
1107 ReadSTMemoryIso14443b(0x0F);
1109 case CMD_READ_SRIX4K_TAG
:
1110 ReadSTMemoryIso14443b(0x7F);
1112 case CMD_SNOOP_ISO_14443B
:
1115 case CMD_SIMULATE_TAG_ISO_14443B
:
1116 SimulateIso14443bTag();
1118 case CMD_ISO_14443B_COMMAND
:
1119 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1123 #ifdef WITH_ISO14443a
1124 case CMD_SNOOP_ISO_14443a
:
1125 SnoopIso14443a(c
->arg
[0]);
1127 case CMD_READER_ISO_14443a
:
1130 case CMD_SIMULATE_TAG_ISO_14443a
:
1131 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1134 case CMD_EPA_PACE_COLLECT_NONCE
:
1135 EPA_PACE_Collect_Nonce(c
);
1137 case CMD_EPA_PACE_REPLAY
:
1141 case CMD_READER_MIFARE
:
1142 ReaderMifare(c
->arg
[0]);
1144 case CMD_MIFARE_READBL
:
1145 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1147 case CMD_MIFAREU_READBL
:
1148 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1150 case CMD_MIFAREUC_AUTH
:
1151 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1153 case CMD_MIFAREU_READCARD
:
1154 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1156 case CMD_MIFAREUC_SETPWD
:
1157 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1159 case CMD_MIFARE_READSC
:
1160 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1162 case CMD_MIFARE_WRITEBL
:
1163 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1165 //case CMD_MIFAREU_WRITEBL_COMPAT:
1166 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1168 case CMD_MIFAREU_WRITEBL
:
1169 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1171 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1172 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1174 case CMD_MIFARE_NESTED
:
1175 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1177 case CMD_MIFARE_CHKKEYS
:
1178 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1180 case CMD_SIMULATE_MIFARE_CARD
:
1181 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1185 case CMD_MIFARE_SET_DBGMODE
:
1186 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1188 case CMD_MIFARE_EML_MEMCLR
:
1189 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1191 case CMD_MIFARE_EML_MEMSET
:
1192 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1194 case CMD_MIFARE_EML_MEMGET
:
1195 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1197 case CMD_MIFARE_EML_CARDLOAD
:
1198 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1201 // Work with "magic Chinese" card
1202 case CMD_MIFARE_CWIPE
:
1203 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1205 case CMD_MIFARE_CSETBLOCK
:
1206 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1208 case CMD_MIFARE_CGETBLOCK
:
1209 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1211 case CMD_MIFARE_CIDENT
:
1216 case CMD_MIFARE_SNIFFER
:
1217 SniffMifare(c
->arg
[0]);
1223 // Makes use of ISO14443a FPGA Firmware
1224 case CMD_SNOOP_ICLASS
:
1227 case CMD_SIMULATE_TAG_ICLASS
:
1228 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1230 case CMD_READER_ICLASS
:
1231 ReaderIClass(c
->arg
[0]);
1233 case CMD_READER_ICLASS_REPLAY
:
1234 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1236 case CMD_ICLASS_EML_MEMSET
:
1237 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1239 case CMD_ICLASS_WRITEBLOCK
:
1240 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1242 case CMD_ICLASS_READCHECK
: // auth step 1
1243 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1245 case CMD_ICLASS_READBLOCK
:
1246 iClass_ReadBlk(c
->arg
[0]);
1248 case CMD_ICLASS_AUTHENTICATION
: //check
1249 iClass_Authentication(c
->d
.asBytes
);
1251 case CMD_ICLASS_DUMP
:
1252 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1254 case CMD_ICLASS_CLONE
:
1255 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1259 case CMD_HF_SNIFFER
:
1260 HfSnoop(c
->arg
[0], c
->arg
[1]);
1263 #ifdef WITH_SMARTCARD
1264 case CMD_SMART_ATR
: {
1268 case CMD_SMART_SETCLOCK
:{
1269 SmartCardSetClock(c
->arg
[0]);
1272 case CMD_SMART_RAW
: {
1273 SmartCardRaw(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1276 case CMD_SMART_UPLOAD
: {
1277 // upload file from client
1278 uint8_t *mem
= BigBuf_get_addr();
1279 memcpy( mem
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1280 cmd_send(CMD_ACK
,1,0,0,0,0);
1283 case CMD_SMART_UPGRADE
: {
1284 SmartCardUpgrade(c
->arg
[0]);
1289 case CMD_BUFF_CLEAR
:
1293 case CMD_MEASURE_ANTENNA_TUNING
:
1294 MeasureAntennaTuning(c
->arg
[0]);
1297 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1298 MeasureAntennaTuningHf();
1301 case CMD_LISTEN_READER_FIELD
:
1302 ListenReaderField(c
->arg
[0]);
1305 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1306 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1308 LED_D_OFF(); // LED D indicates field ON or OFF
1311 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1314 uint8_t *BigBuf
= BigBuf_get_addr();
1315 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1316 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1317 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1319 // Trigger a finish downloading signal with an ACK frame
1320 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1324 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1325 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1326 // to be able to use this one for uploading data to device
1327 // arg1 = 0 upload for LF usage
1328 // 1 upload for HF usage
1330 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1332 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1334 uint8_t *b
= BigBuf_get_addr();
1335 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1336 cmd_send(CMD_ACK
,0,0,0,0,0);
1343 case CMD_SET_LF_DIVISOR
:
1344 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1345 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1348 case CMD_SET_ADC_MUX
:
1350 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1351 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1352 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1353 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1364 cmd_send(CMD_ACK
,0,0,0,0,0);
1374 case CMD_SETUP_WRITE
:
1375 case CMD_FINISH_WRITE
:
1376 case CMD_HARDWARE_RESET
:
1380 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1382 // We're going to reset, and the bootrom will take control.
1386 case CMD_START_FLASH
:
1387 if(common_area
.flags
.bootrom_present
) {
1388 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1391 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1395 case CMD_DEVICE_INFO
: {
1396 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1397 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1398 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1402 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1407 void __attribute__((noreturn
)) AppMain(void)
1411 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1412 /* Initialize common area */
1413 memset(&common_area
, 0, sizeof(common_area
));
1414 common_area
.magic
= COMMON_AREA_MAGIC
;
1415 common_area
.version
= 1;
1417 common_area
.flags
.osimage_present
= 1;
1427 // The FPGA gets its clock from us from PCK0 output, so set that up.
1428 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1429 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1430 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1431 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1432 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1433 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1434 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1437 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1439 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1441 // Load the FPGA image, which we have stored in our flash.
1442 // (the HF version by default)
1443 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1451 byte_t rx
[sizeof(UsbCommand
)];
1456 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1458 UsbPacketReceived(rx
,rx_len
);
1463 #ifdef WITH_LF_StandAlone
1464 #ifndef WITH_ISO14443a_StandAlone
1465 if (BUTTON_HELD(1000) > 0)
1469 #ifdef WITH_ISO14443a
1470 #ifdef WITH_ISO14443a_StandAlone
1471 if (BUTTON_HELD(1000) > 0)
1472 StandAloneMode14a();