]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iclass.c
Merge pull request #34 from marshmellow42/master
[proxmark3-svn] / armsrc / iclass.c
1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
15 //
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
18 //
19 // FIX:
20 // ====
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
23 //
24 // + 22279: : 0c 03 e8 01
25 //
26 // ...with an incorrect answer...
27 //
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
29 //
30 // We still left the error signalling bytes in the traces like 0xbb
31 //
32 // A correct trace should look like this:
33 //
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
36 //
37 //-----------------------------------------------------------------------------
38
39 #include "proxmark3.h"
40 #include "apps.h"
41 #include "util.h"
42 #include "string.h"
43 #include "common.h"
44 #include "cmd.h"
45 // Needed for CRC in emulation mode;
46 // same construction as in ISO 14443;
47 // different initial value (CRC_ICLASS)
48 #include "iso14443crc.h"
49 #include "iso15693tools.h"
50
51 static int timeout = 4096;
52
53
54 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
55
56 //-----------------------------------------------------------------------------
57 // The software UART that receives commands from the reader, and its state
58 // variables.
59 //-----------------------------------------------------------------------------
60 static struct {
61 enum {
62 STATE_UNSYNCD,
63 STATE_START_OF_COMMUNICATION,
64 STATE_RECEIVING
65 } state;
66 uint16_t shiftReg;
67 int bitCnt;
68 int byteCnt;
69 int byteCntMax;
70 int posCnt;
71 int nOutOfCnt;
72 int OutOfCnt;
73 int syncBit;
74 int samples;
75 int highCnt;
76 int swapper;
77 int counter;
78 int bitBuffer;
79 int dropPosition;
80 uint8_t *output;
81 } Uart;
82
83 static RAMFUNC int OutOfNDecoding(int bit)
84 {
85 //int error = 0;
86 int bitright;
87
88 if(!Uart.bitBuffer) {
89 Uart.bitBuffer = bit ^ 0xFF0;
90 return FALSE;
91 }
92 else {
93 Uart.bitBuffer <<= 4;
94 Uart.bitBuffer ^= bit;
95 }
96
97 /*if(Uart.swapper) {
98 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
99 Uart.byteCnt++;
100 Uart.swapper = 0;
101 if(Uart.byteCnt > 15) { return TRUE; }
102 }
103 else {
104 Uart.swapper = 1;
105 }*/
106
107 if(Uart.state != STATE_UNSYNCD) {
108 Uart.posCnt++;
109
110 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
111 bit = 0x00;
112 }
113 else {
114 bit = 0x01;
115 }
116 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
117 bitright = 0x00;
118 }
119 else {
120 bitright = 0x01;
121 }
122 if(bit != bitright) { bit = bitright; }
123
124
125 // So, now we only have to deal with *bit*, lets see...
126 if(Uart.posCnt == 1) {
127 // measurement first half bitperiod
128 if(!bit) {
129 // Drop in first half means that we are either seeing
130 // an SOF or an EOF.
131
132 if(Uart.nOutOfCnt == 1) {
133 // End of Communication
134 Uart.state = STATE_UNSYNCD;
135 Uart.highCnt = 0;
136 if(Uart.byteCnt == 0) {
137 // Its not straightforward to show single EOFs
138 // So just leave it and do not return TRUE
139 Uart.output[0] = 0xf0;
140 Uart.byteCnt++;
141 }
142 else {
143 return TRUE;
144 }
145 }
146 else if(Uart.state != STATE_START_OF_COMMUNICATION) {
147 // When not part of SOF or EOF, it is an error
148 Uart.state = STATE_UNSYNCD;
149 Uart.highCnt = 0;
150 //error = 4;
151 }
152 }
153 }
154 else {
155 // measurement second half bitperiod
156 // Count the bitslot we are in... (ISO 15693)
157 Uart.nOutOfCnt++;
158
159 if(!bit) {
160 if(Uart.dropPosition) {
161 if(Uart.state == STATE_START_OF_COMMUNICATION) {
162 //error = 1;
163 }
164 else {
165 //error = 7;
166 }
167 // It is an error if we already have seen a drop in current frame
168 Uart.state = STATE_UNSYNCD;
169 Uart.highCnt = 0;
170 }
171 else {
172 Uart.dropPosition = Uart.nOutOfCnt;
173 }
174 }
175
176 Uart.posCnt = 0;
177
178
179 if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
180 Uart.nOutOfCnt = 0;
181
182 if(Uart.state == STATE_START_OF_COMMUNICATION) {
183 if(Uart.dropPosition == 4) {
184 Uart.state = STATE_RECEIVING;
185 Uart.OutOfCnt = 256;
186 }
187 else if(Uart.dropPosition == 3) {
188 Uart.state = STATE_RECEIVING;
189 Uart.OutOfCnt = 4;
190 //Uart.output[Uart.byteCnt] = 0xdd;
191 //Uart.byteCnt++;
192 }
193 else {
194 Uart.state = STATE_UNSYNCD;
195 Uart.highCnt = 0;
196 }
197 Uart.dropPosition = 0;
198 }
199 else {
200 // RECEIVING DATA
201 // 1 out of 4
202 if(!Uart.dropPosition) {
203 Uart.state = STATE_UNSYNCD;
204 Uart.highCnt = 0;
205 //error = 9;
206 }
207 else {
208 Uart.shiftReg >>= 2;
209
210 // Swap bit order
211 Uart.dropPosition--;
212 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
213 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
214
215 Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
216 Uart.bitCnt += 2;
217 Uart.dropPosition = 0;
218
219 if(Uart.bitCnt == 8) {
220 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
221 Uart.byteCnt++;
222 Uart.bitCnt = 0;
223 Uart.shiftReg = 0;
224 }
225 }
226 }
227 }
228 else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
229 // RECEIVING DATA
230 // 1 out of 256
231 if(!Uart.dropPosition) {
232 Uart.state = STATE_UNSYNCD;
233 Uart.highCnt = 0;
234 //error = 3;
235 }
236 else {
237 Uart.dropPosition--;
238 Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
239 Uart.byteCnt++;
240 Uart.bitCnt = 0;
241 Uart.shiftReg = 0;
242 Uart.nOutOfCnt = 0;
243 Uart.dropPosition = 0;
244 }
245 }
246
247 /*if(error) {
248 Uart.output[Uart.byteCnt] = 0xAA;
249 Uart.byteCnt++;
250 Uart.output[Uart.byteCnt] = error & 0xFF;
251 Uart.byteCnt++;
252 Uart.output[Uart.byteCnt] = 0xAA;
253 Uart.byteCnt++;
254 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
255 Uart.byteCnt++;
256 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
257 Uart.byteCnt++;
258 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
259 Uart.byteCnt++;
260 Uart.output[Uart.byteCnt] = 0xAA;
261 Uart.byteCnt++;
262 return TRUE;
263 }*/
264 }
265
266 }
267 else {
268 bit = Uart.bitBuffer & 0xf0;
269 bit >>= 4;
270 bit ^= 0x0F; // drops become 1s ;-)
271 if(bit) {
272 // should have been high or at least (4 * 128) / fc
273 // according to ISO this should be at least (9 * 128 + 20) / fc
274 if(Uart.highCnt == 8) {
275 // we went low, so this could be start of communication
276 // it turns out to be safer to choose a less significant
277 // syncbit... so we check whether the neighbour also represents the drop
278 Uart.posCnt = 1; // apparently we are busy with our first half bit period
279 Uart.syncBit = bit & 8;
280 Uart.samples = 3;
281 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
282 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
283 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
284 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
285 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
286 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
287 Uart.syncBit = 8;
288
289 // the first half bit period is expected in next sample
290 Uart.posCnt = 0;
291 Uart.samples = 3;
292 }
293 }
294 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
295
296 Uart.syncBit <<= 4;
297 Uart.state = STATE_START_OF_COMMUNICATION;
298 Uart.bitCnt = 0;
299 Uart.byteCnt = 0;
300 Uart.nOutOfCnt = 0;
301 Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
302 Uart.dropPosition = 0;
303 Uart.shiftReg = 0;
304 //error = 0;
305 }
306 else {
307 Uart.highCnt = 0;
308 }
309 }
310 else {
311 if(Uart.highCnt < 8) {
312 Uart.highCnt++;
313 }
314 }
315 }
316
317 return FALSE;
318 }
319
320 //=============================================================================
321 // Manchester
322 //=============================================================================
323
324 static struct {
325 enum {
326 DEMOD_UNSYNCD,
327 DEMOD_START_OF_COMMUNICATION,
328 DEMOD_START_OF_COMMUNICATION2,
329 DEMOD_START_OF_COMMUNICATION3,
330 DEMOD_SOF_COMPLETE,
331 DEMOD_MANCHESTER_D,
332 DEMOD_MANCHESTER_E,
333 DEMOD_END_OF_COMMUNICATION,
334 DEMOD_END_OF_COMMUNICATION2,
335 DEMOD_MANCHESTER_F,
336 DEMOD_ERROR_WAIT
337 } state;
338 int bitCount;
339 int posCount;
340 int syncBit;
341 uint16_t shiftReg;
342 int buffer;
343 int buffer2;
344 int buffer3;
345 int buff;
346 int samples;
347 int len;
348 enum {
349 SUB_NONE,
350 SUB_FIRST_HALF,
351 SUB_SECOND_HALF,
352 SUB_BOTH
353 } sub;
354 uint8_t *output;
355 } Demod;
356
357 static RAMFUNC int ManchesterDecoding(int v)
358 {
359 int bit;
360 int modulation;
361 int error = 0;
362
363 bit = Demod.buffer;
364 Demod.buffer = Demod.buffer2;
365 Demod.buffer2 = Demod.buffer3;
366 Demod.buffer3 = v;
367
368 if(Demod.buff < 3) {
369 Demod.buff++;
370 return FALSE;
371 }
372
373 if(Demod.state==DEMOD_UNSYNCD) {
374 Demod.output[Demod.len] = 0xfa;
375 Demod.syncBit = 0;
376 //Demod.samples = 0;
377 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
378
379 if(bit & 0x08) {
380 Demod.syncBit = 0x08;
381 }
382
383 if(bit & 0x04) {
384 if(Demod.syncBit) {
385 bit <<= 4;
386 }
387 Demod.syncBit = 0x04;
388 }
389
390 if(bit & 0x02) {
391 if(Demod.syncBit) {
392 bit <<= 2;
393 }
394 Demod.syncBit = 0x02;
395 }
396
397 if(bit & 0x01 && Demod.syncBit) {
398 Demod.syncBit = 0x01;
399 }
400
401 if(Demod.syncBit) {
402 Demod.len = 0;
403 Demod.state = DEMOD_START_OF_COMMUNICATION;
404 Demod.sub = SUB_FIRST_HALF;
405 Demod.bitCount = 0;
406 Demod.shiftReg = 0;
407 Demod.samples = 0;
408 if(Demod.posCount) {
409 //if(trigger) LED_A_OFF(); // Not useful in this case...
410 switch(Demod.syncBit) {
411 case 0x08: Demod.samples = 3; break;
412 case 0x04: Demod.samples = 2; break;
413 case 0x02: Demod.samples = 1; break;
414 case 0x01: Demod.samples = 0; break;
415 }
416 // SOF must be long burst... otherwise stay unsynced!!!
417 if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
418 Demod.state = DEMOD_UNSYNCD;
419 }
420 }
421 else {
422 // SOF must be long burst... otherwise stay unsynced!!!
423 if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
424 Demod.state = DEMOD_UNSYNCD;
425 error = 0x88;
426 }
427
428 }
429 error = 0;
430
431 }
432 }
433 else {
434 modulation = bit & Demod.syncBit;
435 modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
436 //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
437
438 Demod.samples += 4;
439
440 if(Demod.posCount==0) {
441 Demod.posCount = 1;
442 if(modulation) {
443 Demod.sub = SUB_FIRST_HALF;
444 }
445 else {
446 Demod.sub = SUB_NONE;
447 }
448 }
449 else {
450 Demod.posCount = 0;
451 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
452 if(Demod.state!=DEMOD_ERROR_WAIT) {
453 Demod.state = DEMOD_ERROR_WAIT;
454 Demod.output[Demod.len] = 0xaa;
455 error = 0x01;
456 }
457 }*/
458 //else if(modulation) {
459 if(modulation) {
460 if(Demod.sub == SUB_FIRST_HALF) {
461 Demod.sub = SUB_BOTH;
462 }
463 else {
464 Demod.sub = SUB_SECOND_HALF;
465 }
466 }
467 else if(Demod.sub == SUB_NONE) {
468 if(Demod.state == DEMOD_SOF_COMPLETE) {
469 Demod.output[Demod.len] = 0x0f;
470 Demod.len++;
471 Demod.state = DEMOD_UNSYNCD;
472 // error = 0x0f;
473 return TRUE;
474 }
475 else {
476 Demod.state = DEMOD_ERROR_WAIT;
477 error = 0x33;
478 }
479 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
480 Demod.state = DEMOD_ERROR_WAIT;
481 Demod.output[Demod.len] = 0xaa;
482 error = 0x01;
483 }*/
484 }
485
486 switch(Demod.state) {
487 case DEMOD_START_OF_COMMUNICATION:
488 if(Demod.sub == SUB_BOTH) {
489 //Demod.state = DEMOD_MANCHESTER_D;
490 Demod.state = DEMOD_START_OF_COMMUNICATION2;
491 Demod.posCount = 1;
492 Demod.sub = SUB_NONE;
493 }
494 else {
495 Demod.output[Demod.len] = 0xab;
496 Demod.state = DEMOD_ERROR_WAIT;
497 error = 0xd2;
498 }
499 break;
500 case DEMOD_START_OF_COMMUNICATION2:
501 if(Demod.sub == SUB_SECOND_HALF) {
502 Demod.state = DEMOD_START_OF_COMMUNICATION3;
503 }
504 else {
505 Demod.output[Demod.len] = 0xab;
506 Demod.state = DEMOD_ERROR_WAIT;
507 error = 0xd3;
508 }
509 break;
510 case DEMOD_START_OF_COMMUNICATION3:
511 if(Demod.sub == SUB_SECOND_HALF) {
512 // Demod.state = DEMOD_MANCHESTER_D;
513 Demod.state = DEMOD_SOF_COMPLETE;
514 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
515 //Demod.len++;
516 }
517 else {
518 Demod.output[Demod.len] = 0xab;
519 Demod.state = DEMOD_ERROR_WAIT;
520 error = 0xd4;
521 }
522 break;
523 case DEMOD_SOF_COMPLETE:
524 case DEMOD_MANCHESTER_D:
525 case DEMOD_MANCHESTER_E:
526 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
527 // 00001111 = 1 (0 in 14443)
528 if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
529 Demod.bitCount++;
530 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
531 Demod.state = DEMOD_MANCHESTER_D;
532 }
533 else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
534 Demod.bitCount++;
535 Demod.shiftReg >>= 1;
536 Demod.state = DEMOD_MANCHESTER_E;
537 }
538 else if(Demod.sub == SUB_BOTH) {
539 Demod.state = DEMOD_MANCHESTER_F;
540 }
541 else {
542 Demod.state = DEMOD_ERROR_WAIT;
543 error = 0x55;
544 }
545 break;
546
547 case DEMOD_MANCHESTER_F:
548 // Tag response does not need to be a complete byte!
549 if(Demod.len > 0 || Demod.bitCount > 0) {
550 if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
551 Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
552 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
553 Demod.len++;
554 }
555
556 Demod.state = DEMOD_UNSYNCD;
557 return TRUE;
558 }
559 else {
560 Demod.output[Demod.len] = 0xad;
561 Demod.state = DEMOD_ERROR_WAIT;
562 error = 0x03;
563 }
564 break;
565
566 case DEMOD_ERROR_WAIT:
567 Demod.state = DEMOD_UNSYNCD;
568 break;
569
570 default:
571 Demod.output[Demod.len] = 0xdd;
572 Demod.state = DEMOD_UNSYNCD;
573 break;
574 }
575
576 /*if(Demod.bitCount>=9) {
577 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
578 Demod.len++;
579
580 Demod.parityBits <<= 1;
581 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
582
583 Demod.bitCount = 0;
584 Demod.shiftReg = 0;
585 }*/
586 if(Demod.bitCount>=8) {
587 Demod.shiftReg >>= 1;
588 Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
589 Demod.len++;
590 Demod.bitCount = 0;
591 Demod.shiftReg = 0;
592 }
593
594 if(error) {
595 Demod.output[Demod.len] = 0xBB;
596 Demod.len++;
597 Demod.output[Demod.len] = error & 0xFF;
598 Demod.len++;
599 Demod.output[Demod.len] = 0xBB;
600 Demod.len++;
601 Demod.output[Demod.len] = bit & 0xFF;
602 Demod.len++;
603 Demod.output[Demod.len] = Demod.buffer & 0xFF;
604 Demod.len++;
605 // Look harder ;-)
606 Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
607 Demod.len++;
608 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
609 Demod.len++;
610 Demod.output[Demod.len] = 0xBB;
611 Demod.len++;
612 return TRUE;
613 }
614
615 }
616
617 } // end (state != UNSYNCED)
618
619 return FALSE;
620 }
621
622 //=============================================================================
623 // Finally, a `sniffer' for iClass communication
624 // Both sides of communication!
625 //=============================================================================
626
627 //-----------------------------------------------------------------------------
628 // Record the sequence of commands sent by the reader to the tag, with
629 // triggering so that we start recording at the point that the tag is moved
630 // near the reader.
631 //-----------------------------------------------------------------------------
632 void RAMFUNC SnoopIClass(void)
633 {
634
635
636 // We won't start recording the frames that we acquire until we trigger;
637 // a good trigger condition to get started is probably when we see a
638 // response from the tag.
639 //int triggered = FALSE; // FALSE to wait first for card
640
641 // The command (reader -> tag) that we're receiving.
642 // The length of a received command will in most cases be no more than 18 bytes.
643 // So 32 should be enough!
644 uint8_t *readerToTagCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
645 // The response (tag -> reader) that we're receiving.
646 uint8_t *tagToReaderResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
647
648 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
649
650 // reset traceLen to 0
651 iso14a_set_tracing(TRUE);
652 iso14a_clear_trace();
653 iso14a_set_trigger(FALSE);
654
655 // The DMA buffer, used to stream samples from the FPGA
656 int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
657 int lastRxCounter;
658 int8_t *upTo;
659 int smpl;
660 int maxBehindBy = 0;
661
662 // Count of samples received so far, so that we can include timing
663 // information in the trace buffer.
664 int samples = 0;
665 rsamples = 0;
666
667 // Set up the demodulator for tag -> reader responses.
668 Demod.output = tagToReaderResponse;
669 Demod.len = 0;
670 Demod.state = DEMOD_UNSYNCD;
671
672 // Setup for the DMA.
673 FpgaSetupSsc();
674 upTo = dmaBuf;
675 lastRxCounter = DMA_BUFFER_SIZE;
676 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
677
678 // And the reader -> tag commands
679 memset(&Uart, 0, sizeof(Uart));
680 Uart.output = readerToTagCmd;
681 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
682 Uart.state = STATE_UNSYNCD;
683
684 // And put the FPGA in the appropriate mode
685 // Signal field is off with the appropriate LED
686 LED_D_OFF();
687 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
688 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
689
690 uint32_t time_0 = GetCountSspClk();
691
692
693 int div = 0;
694 //int div2 = 0;
695 int decbyte = 0;
696 int decbyter = 0;
697
698 // And now we loop, receiving samples.
699 for(;;) {
700 LED_A_ON();
701 WDT_HIT();
702 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
703 (DMA_BUFFER_SIZE-1);
704 if(behindBy > maxBehindBy) {
705 maxBehindBy = behindBy;
706 if(behindBy > 400) {
707 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
708 goto done;
709 }
710 }
711 if(behindBy < 1) continue;
712
713 LED_A_OFF();
714 smpl = upTo[0];
715 upTo++;
716 lastRxCounter -= 1;
717 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
718 upTo -= DMA_BUFFER_SIZE;
719 lastRxCounter += DMA_BUFFER_SIZE;
720 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
721 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
722 }
723
724 //samples += 4;
725 samples += 1;
726
727 if(smpl & 0xF) {
728 decbyte ^= (1 << (3 - div));
729 }
730
731 // FOR READER SIDE COMMUMICATION...
732
733 decbyter <<= 2;
734 decbyter ^= (smpl & 0x30);
735
736 div++;
737
738 if((div + 1) % 2 == 0) {
739 smpl = decbyter;
740 if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
741 rsamples = samples - Uart.samples;
742 LED_C_ON();
743
744 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
745 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
746 if(tracing) {
747 uint8_t parity[MAX_PARITY_SIZE];
748 GetParity(Uart.output, Uart.byteCnt, parity);
749 LogTrace(Uart.output,Uart.byteCnt, (GetCountSspClk()-time_0) << 4, (GetCountSspClk()-time_0) << 4, parity, TRUE);
750 }
751
752
753 /* And ready to receive another command. */
754 Uart.state = STATE_UNSYNCD;
755 /* And also reset the demod code, which might have been */
756 /* false-triggered by the commands from the reader. */
757 Demod.state = DEMOD_UNSYNCD;
758 LED_B_OFF();
759 Uart.byteCnt = 0;
760 }
761 decbyter = 0;
762 }
763
764 if(div > 3) {
765 smpl = decbyte;
766 if(ManchesterDecoding(smpl & 0x0F)) {
767 rsamples = samples - Demod.samples;
768 LED_B_ON();
769
770 if(tracing) {
771 uint8_t parity[MAX_PARITY_SIZE];
772 GetParity(Demod.output, Demod.len, parity);
773 LogTrace(Demod.output, Demod.len, (GetCountSspClk()-time_0) << 4, (GetCountSspClk()-time_0) << 4, parity, FALSE);
774 }
775
776
777 // And ready to receive another response.
778 memset(&Demod, 0, sizeof(Demod));
779 Demod.output = tagToReaderResponse;
780 Demod.state = DEMOD_UNSYNCD;
781 LED_C_OFF();
782 }
783
784 div = 0;
785 decbyte = 0x00;
786 }
787 //}
788
789 if(BUTTON_PRESS()) {
790 DbpString("cancelled_a");
791 goto done;
792 }
793 }
794
795 DbpString("COMMAND FINISHED");
796
797 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
798 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
799
800 done:
801 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
802 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
803 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
804 LED_A_OFF();
805 LED_B_OFF();
806 LED_C_OFF();
807 LED_D_OFF();
808 }
809
810 void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
811 int i;
812 for(i = 0; i < 8; i++) {
813 rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
814 }
815 }
816
817 //-----------------------------------------------------------------------------
818 // Wait for commands from reader
819 // Stop when button is pressed
820 // Or return TRUE when command is captured
821 //-----------------------------------------------------------------------------
822 static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
823 {
824 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
825 // only, since we are receiving, not transmitting).
826 // Signal field is off with the appropriate LED
827 LED_D_OFF();
828 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
829
830 // Now run a `software UART' on the stream of incoming samples.
831 Uart.output = received;
832 Uart.byteCntMax = maxLen;
833 Uart.state = STATE_UNSYNCD;
834
835 for(;;) {
836 WDT_HIT();
837
838 if(BUTTON_PRESS()) return FALSE;
839
840 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
841 AT91C_BASE_SSC->SSC_THR = 0x00;
842 }
843 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
844 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
845 /*if(OutOfNDecoding((b & 0xf0) >> 4)) {
846 *len = Uart.byteCnt;
847 return TRUE;
848 }*/
849 if(OutOfNDecoding(b & 0x0f)) {
850 *len = Uart.byteCnt;
851 return TRUE;
852 }
853 }
854 }
855 }
856
857
858 //-----------------------------------------------------------------------------
859 // Prepare tag messages
860 //-----------------------------------------------------------------------------
861 static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
862 {
863 //So far a dummy implementation, not used
864 //int lastProxToAirDuration =0;
865 int i;
866
867 ToSendReset();
868
869 // Send SOF
870 ToSend[++ToSendMax] = 0x00;
871 ToSend[++ToSendMax] = 0x00;
872 ToSend[++ToSendMax] = 0x00;
873 ToSend[++ToSendMax] = 0xff;//Proxtoair duration starts here
874 ToSend[++ToSendMax] = 0xff;
875 ToSend[++ToSendMax] = 0xff;
876 ToSend[++ToSendMax] = 0x00;
877 ToSend[++ToSendMax] = 0xff;
878
879 for(i = 0; i < len; i++) {
880 int j;
881 uint8_t b = cmd[i];
882
883 // Data bits
884 for(j = 0; j < 8; j++) {
885 if(b & 1) {
886 ToSend[++ToSendMax] = 0x00;
887 ToSend[++ToSendMax] = 0xff;
888 } else {
889 ToSend[++ToSendMax] = 0xff;
890 ToSend[++ToSendMax] = 0x00;
891 }
892 b >>= 1;
893 }
894 }
895
896 // Send EOF
897 ToSend[++ToSendMax] = 0xff;
898 ToSend[++ToSendMax] = 0x00;
899 ToSend[++ToSendMax] = 0xff;
900 ToSend[++ToSendMax] = 0xff;
901 ToSend[++ToSendMax] = 0xff;
902 ToSend[++ToSendMax] = 0x00;
903 ToSend[++ToSendMax] = 0x00;
904 ToSend[++ToSendMax] = 0x00;
905
906 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
907
908 // Convert from last byte pos to length
909 ToSendMax++;
910 }
911
912 // Only SOF
913 static void CodeIClassTagSOF()
914 {
915 //So far a dummy implementation, not used
916 //int lastProxToAirDuration =0;
917
918 ToSendReset();
919 // Send SOF
920 ToSend[++ToSendMax] = 0x00;
921 ToSend[++ToSendMax] = 0x00;
922 ToSend[++ToSendMax] = 0x00;
923 ToSend[++ToSendMax] = 0xff;
924 ToSend[++ToSendMax] = 0xff;
925 ToSend[++ToSendMax] = 0xff;
926 ToSend[++ToSendMax] = 0x00;
927 ToSend[++ToSendMax] = 0xff;
928
929 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
930
931
932 // Convert from last byte pos to length
933 ToSendMax++;
934 }
935 int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf);
936 /**
937 * @brief SimulateIClass simulates an iClass card.
938 * @param arg0 type of simulation
939 * - 0 uses the first 8 bytes in usb data as CSN
940 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
941 * in the usb data. This mode collects MAC from the reader, in order to do an offline
942 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
943 * - Other : Uses the default CSN (031fec8af7ff12e0)
944 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
945 * @param arg2
946 * @param datain
947 */
948 void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
949 {
950 uint32_t simType = arg0;
951 uint32_t numberOfCSNS = arg1;
952 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
953
954 // Enable and clear the trace
955 iso14a_set_tracing(TRUE);
956 iso14a_clear_trace();
957
958 uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
959 if(simType == 0) {
960 // Use the CSN from commandline
961 memcpy(csn_crc, datain, 8);
962 doIClassSimulation(csn_crc,0,NULL);
963 }else if(simType == 1)
964 {
965 doIClassSimulation(csn_crc,0,NULL);
966 }
967 else if(simType == 2)
968 {
969
970 uint8_t mac_responses[64] = { 0 };
971 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
972 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
973 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
974 // in order to obtain the keys, as in the "dismantling iclass"-paper.
975 int i = 0;
976 for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
977 {
978 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
979
980 memcpy(csn_crc, datain+(i*8), 8);
981 if(doIClassSimulation(csn_crc,1,mac_responses+i*8))
982 {
983 return; // Button pressed
984 }
985 }
986 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
987
988 }
989 else{
990 // We may want a mode here where we hardcode the csns to use (from proxclone).
991 // That will speed things up a little, but not required just yet.
992 Dbprintf("The mode is not implemented, reserved for future use");
993 }
994 Dbprintf("Done...");
995
996 }
997 /**
998 * @brief Does the actual simulation
999 * @param csn - csn to use
1000 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1001 */
1002 int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf)
1003 {
1004
1005
1006 // CSN followed by two CRC bytes
1007 uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1008 uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0};
1009 memcpy(response3,csn,sizeof(response3));
1010 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1011 // e-Purse
1012 uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1013
1014 // Construct anticollision-CSN
1015 rotateCSN(response3,response2);
1016
1017 // Compute CRC on both CSNs
1018 ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]);
1019 ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]);
1020
1021 int exitLoop = 0;
1022 // Reader 0a
1023 // Tag 0f
1024 // Reader 0c
1025 // Tag anticoll. CSN
1026 // Reader 81 anticoll. CSN
1027 // Tag CSN
1028
1029 uint8_t *resp;
1030 int respLen;
1031 uint8_t* respdata = NULL;
1032 int respsize = 0;
1033 uint8_t sof = 0x0f;
1034
1035 // Respond SOF -- takes 8 bytes
1036 uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
1037 int resp1Len;
1038
1039 // Anticollision CSN (rotated CSN)
1040 // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
1041 uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10);
1042 int resp2Len;
1043
1044 // CSN
1045 // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
1046 uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190);
1047 int resp3Len;
1048
1049 // e-Purse
1050 // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit)
1051 uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370);
1052 int resp4Len;
1053
1054 // + 1720..
1055 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
1056 memset(receivedCmd, 0x44, MAX_FRAME_SIZE);
1057 int len;
1058
1059 // Prepare card messages
1060 ToSendMax = 0;
1061
1062 // First card answer: SOF
1063 CodeIClassTagSOF();
1064 memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
1065
1066 // Anticollision CSN
1067 CodeIClassTagAnswer(response2, sizeof(response2));
1068 memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
1069
1070 // CSN
1071 CodeIClassTagAnswer(response3, sizeof(response3));
1072 memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
1073
1074 // e-Purse
1075 CodeIClassTagAnswer(response4, sizeof(response4));
1076 memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
1077
1078
1079 // Start from off (no field generated)
1080 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1081 //SpinDelay(200);
1082 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1083 SpinDelay(100);
1084 StartCountSspClk();
1085 // We need to listen to the high-frequency, peak-detected path.
1086 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1087 FpgaSetupSsc();
1088
1089 // To control where we are in the protocol
1090 int cmdsRecvd = 0;
1091 uint32_t time_0 = GetCountSspClk();
1092 uint32_t t2r_time =0;
1093 uint32_t r2t_time =0;
1094
1095 LED_A_ON();
1096 bool buttonPressed = false;
1097
1098 /** Hack for testing
1099 memcpy(reader_mac_buf,csn,8);
1100 exitLoop = true;
1101 end hack **/
1102
1103 while(!exitLoop) {
1104
1105 LED_B_OFF();
1106 //Signal tracer
1107 // Can be used to get a trigger for an oscilloscope..
1108 LED_C_OFF();
1109 if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
1110 buttonPressed = true;
1111 break;
1112 }
1113 r2t_time = GetCountSspClk();
1114 //Signal tracer
1115 LED_C_ON();
1116
1117 // Okay, look at the command now.
1118 if(receivedCmd[0] == 0x0a ) {
1119 // Reader in anticollission phase
1120 resp = resp1; respLen = resp1Len; //order = 1;
1121 respdata = &sof;
1122 respsize = sizeof(sof);
1123 } else if(receivedCmd[0] == 0x0c) {
1124 // Reader asks for anticollission CSN
1125 resp = resp2; respLen = resp2Len; //order = 2;
1126 respdata = response2;
1127 respsize = sizeof(response2);
1128 //DbpString("Reader requests anticollission CSN:");
1129 } else if(receivedCmd[0] == 0x81) {
1130 // Reader selects anticollission CSN.
1131 // Tag sends the corresponding real CSN
1132 resp = resp3; respLen = resp3Len; //order = 3;
1133 respdata = response3;
1134 respsize = sizeof(response3);
1135 //DbpString("Reader selects anticollission CSN:");
1136 } else if(receivedCmd[0] == 0x88) {
1137 // Read e-purse (88 02)
1138 resp = resp4; respLen = resp4Len; //order = 4;
1139 respdata = response4;
1140 respsize = sizeof(response4);
1141 LED_B_ON();
1142 } else if(receivedCmd[0] == 0x05) {
1143 // Reader random and reader MAC!!!
1144 // Do not respond
1145 // We do not know what to answer, so lets keep quiet
1146 resp = resp1; respLen = 0; //order = 5;
1147 respdata = NULL;
1148 respsize = 0;
1149 if (breakAfterMacReceived){
1150 // dbprintf:ing ...
1151 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1152 ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1153 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
1154 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1155 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1156 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1157 if (reader_mac_buf != NULL)
1158 {
1159 memcpy(reader_mac_buf,receivedCmd+1,8);
1160 }
1161 exitLoop = true;
1162 }
1163 } else if(receivedCmd[0] == 0x00 && len == 1) {
1164 // Reader ends the session
1165 resp = resp1; respLen = 0; //order = 0;
1166 respdata = NULL;
1167 respsize = 0;
1168 } else {
1169 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1170 // Never seen this command before
1171 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1172 len,
1173 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1174 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1175 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1176 // Do not respond
1177 resp = resp1; respLen = 0; //order = 0;
1178 respdata = NULL;
1179 respsize = 0;
1180 }
1181
1182 if(cmdsRecvd > 100) {
1183 //DbpString("100 commands later...");
1184 //break;
1185 }
1186 else {
1187 cmdsRecvd++;
1188 }
1189
1190 if(respLen > 0) {
1191 SendIClassAnswer(resp, respLen, 21);
1192 t2r_time = GetCountSspClk();
1193 }
1194
1195 if (tracing) {
1196 uint8_t parity[MAX_PARITY_SIZE];
1197 GetParity(receivedCmd, len, parity);
1198 LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE);
1199
1200 if (respdata != NULL) {
1201 GetParity(respdata, respsize, parity);
1202 LogTrace(respdata, respsize, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE);
1203 }
1204 if(!tracing) {
1205 DbpString("Trace full");
1206 //break;
1207 }
1208
1209 }
1210 memset(receivedCmd, 0x44, MAX_FRAME_SIZE);
1211 }
1212
1213 //Dbprintf("%x", cmdsRecvd);
1214 LED_A_OFF();
1215 LED_B_OFF();
1216 if(buttonPressed)
1217 {
1218 DbpString("Button pressed");
1219 }
1220 return buttonPressed;
1221 }
1222
1223 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
1224 {
1225 int i = 0, d=0;//, u = 0, d = 0;
1226 uint8_t b = 0;
1227
1228 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1229
1230 AT91C_BASE_SSC->SSC_THR = 0x00;
1231 FpgaSetupSsc();
1232 while(!BUTTON_PRESS()) {
1233 if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
1234 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1235 }
1236 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
1237 b = 0x00;
1238 if(d < delay) {
1239 d++;
1240 }
1241 else {
1242 if( i < respLen){
1243 b = resp[i];
1244 //Hack
1245 //b = 0xAC;
1246 }
1247 i++;
1248 }
1249 AT91C_BASE_SSC->SSC_THR = b;
1250 }
1251
1252 if (i > respLen +4) break;
1253 }
1254
1255 return 0;
1256 }
1257
1258 /// THE READER CODE
1259
1260 //-----------------------------------------------------------------------------
1261 // Transmit the command (to the tag) that was placed in ToSend[].
1262 //-----------------------------------------------------------------------------
1263 static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
1264 {
1265 int c;
1266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1267 AT91C_BASE_SSC->SSC_THR = 0x00;
1268 FpgaSetupSsc();
1269
1270 if (wait)
1271 {
1272 if(*wait < 10) *wait = 10;
1273
1274 for(c = 0; c < *wait;) {
1275 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1276 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1277 c++;
1278 }
1279 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1280 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1281 (void)r;
1282 }
1283 WDT_HIT();
1284 }
1285
1286 }
1287
1288
1289 uint8_t sendbyte;
1290 bool firstpart = TRUE;
1291 c = 0;
1292 for(;;) {
1293 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1294
1295 // DOUBLE THE SAMPLES!
1296 if(firstpart) {
1297 sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
1298 }
1299 else {
1300 sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
1301 c++;
1302 }
1303 if(sendbyte == 0xff) {
1304 sendbyte = 0xfe;
1305 }
1306 AT91C_BASE_SSC->SSC_THR = sendbyte;
1307 firstpart = !firstpart;
1308
1309 if(c >= len) {
1310 break;
1311 }
1312 }
1313 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1314 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1315 (void)r;
1316 }
1317 WDT_HIT();
1318 }
1319 if (samples) *samples = (c + *wait) << 3;
1320 }
1321
1322
1323 //-----------------------------------------------------------------------------
1324 // Prepare iClass reader command to send to FPGA
1325 //-----------------------------------------------------------------------------
1326 void CodeIClassCommand(const uint8_t * cmd, int len)
1327 {
1328 int i, j, k;
1329 uint8_t b;
1330
1331 ToSendReset();
1332
1333 // Start of Communication: 1 out of 4
1334 ToSend[++ToSendMax] = 0xf0;
1335 ToSend[++ToSendMax] = 0x00;
1336 ToSend[++ToSendMax] = 0x0f;
1337 ToSend[++ToSendMax] = 0x00;
1338
1339 // Modulate the bytes
1340 for (i = 0; i < len; i++) {
1341 b = cmd[i];
1342 for(j = 0; j < 4; j++) {
1343 for(k = 0; k < 4; k++) {
1344 if(k == (b & 3)) {
1345 ToSend[++ToSendMax] = 0x0f;
1346 }
1347 else {
1348 ToSend[++ToSendMax] = 0x00;
1349 }
1350 }
1351 b >>= 2;
1352 }
1353 }
1354
1355 // End of Communication
1356 ToSend[++ToSendMax] = 0x00;
1357 ToSend[++ToSendMax] = 0x00;
1358 ToSend[++ToSendMax] = 0xf0;
1359 ToSend[++ToSendMax] = 0x00;
1360
1361 // Convert from last character reference to length
1362 ToSendMax++;
1363 }
1364
1365 void ReaderTransmitIClass(uint8_t* frame, int len)
1366 {
1367 int wait = 0;
1368 int samples = 0;
1369
1370 // This is tied to other size changes
1371 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1372 CodeIClassCommand(frame,len);
1373
1374 // Select the card
1375 TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
1376 if(trigger)
1377 LED_A_ON();
1378
1379 // Store reader command in buffer
1380 if (tracing) {
1381 uint8_t par[MAX_PARITY_SIZE];
1382 GetParity(frame, len, par);
1383 LogTrace(frame, len, rsamples, rsamples, par, TRUE);
1384 }
1385 }
1386
1387 //-----------------------------------------------------------------------------
1388 // Wait a certain time for tag response
1389 // If a response is captured return TRUE
1390 // If it takes too long return FALSE
1391 //-----------------------------------------------------------------------------
1392 static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1393 {
1394 // buffer needs to be 512 bytes
1395 int c;
1396
1397 // Set FPGA mode to "reader listen mode", no modulation (listen
1398 // only, since we are receiving, not transmitting).
1399 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1400
1401 // Now get the answer from the card
1402 Demod.output = receivedResponse;
1403 Demod.len = 0;
1404 Demod.state = DEMOD_UNSYNCD;
1405
1406 uint8_t b;
1407 if (elapsed) *elapsed = 0;
1408
1409 bool skip = FALSE;
1410
1411 c = 0;
1412 for(;;) {
1413 WDT_HIT();
1414
1415 if(BUTTON_PRESS()) return FALSE;
1416
1417 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1418 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1419 if (elapsed) (*elapsed)++;
1420 }
1421 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1422 if(c < timeout) { c++; } else { return FALSE; }
1423 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1424 skip = !skip;
1425 if(skip) continue;
1426 /*if(ManchesterDecoding((b>>4) & 0xf)) {
1427 *samples = ((c - 1) << 3) + 4;
1428 return TRUE;
1429 }*/
1430 if(ManchesterDecoding(b & 0x0f)) {
1431 *samples = c << 3;
1432 return TRUE;
1433 }
1434 }
1435 }
1436 }
1437
1438 int ReaderReceiveIClass(uint8_t* receivedAnswer)
1439 {
1440 int samples = 0;
1441 if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE;
1442 rsamples += samples;
1443 if (tracing) {
1444 uint8_t parity[MAX_PARITY_SIZE];
1445 GetParity(receivedAnswer, Demod.len, parity);
1446 LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE);
1447 }
1448 if(samples == 0) return FALSE;
1449 return Demod.len;
1450 }
1451
1452 void setupIclassReader()
1453 {
1454 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1455 // Reset trace buffer
1456 iso14a_set_tracing(TRUE);
1457 iso14a_clear_trace();
1458
1459 // Setup SSC
1460 FpgaSetupSsc();
1461 // Start from off (no field generated)
1462 // Signal field is off with the appropriate LED
1463 LED_D_OFF();
1464 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1465 SpinDelay(200);
1466
1467 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1468
1469 // Now give it time to spin up.
1470 // Signal field is on with the appropriate LED
1471 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1472 SpinDelay(200);
1473 LED_A_ON();
1474
1475 }
1476
1477 // Reader iClass Anticollission
1478 void ReaderIClass(uint8_t arg0) {
1479 uint8_t act_all[] = { 0x0a };
1480 uint8_t identify[] = { 0x0c };
1481 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1482 uint8_t readcheck_cc[]= { 0x88, 0x02 };
1483
1484 uint8_t card_data[24]={0};
1485 uint8_t last_csn[8]={0};
1486
1487 uint8_t *resp = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
1488
1489 int read_status= 0;
1490 bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
1491
1492 setupIclassReader();
1493
1494 size_t datasize = 0;
1495 while(!BUTTON_PRESS())
1496 {
1497 WDT_HIT();
1498
1499 // Send act_all
1500 ReaderTransmitIClass(act_all, 1);
1501 // Card present?
1502 if(ReaderReceiveIClass(resp)) {
1503
1504 ReaderTransmitIClass(identify, 1);
1505
1506 if(ReaderReceiveIClass(resp) == 10) {
1507 //Copy the Anti-collision CSN to our select-packet
1508 memcpy(&select[1],resp,8);
1509 //Dbprintf("Anti-collision CSN: %02x %02x %02x %02x %02x %02x %02x %02x",resp[0], resp[1], resp[2],
1510 // resp[3], resp[4], resp[5],
1511 // resp[6], resp[7]);
1512 //Select the card
1513 ReaderTransmitIClass(select, sizeof(select));
1514
1515 if(ReaderReceiveIClass(resp) == 10) {
1516 //Save CSN in response data
1517 memcpy(card_data,resp,8);
1518 datasize += 8;
1519 //Flag that we got to at least stage 1, read CSN
1520 read_status = 1;
1521
1522 // Card selected
1523 //Dbprintf("Readcheck on Sector 2");
1524 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1525 if(ReaderReceiveIClass(resp) == 8) {
1526 //Save CC (e-purse) in response data
1527 memcpy(card_data+8,resp,8);
1528 datasize += 8;
1529 //Got both
1530 read_status = 2;
1531 }
1532
1533 LED_B_ON();
1534 //Send back to client, but don't bother if we already sent this
1535 if(memcmp(last_csn, card_data, 8) != 0)
1536 cmd_send(CMD_ACK,read_status,0,0,card_data,datasize);
1537
1538 //Save that we already sent this....
1539 if(read_status == 2)
1540 memcpy(last_csn, card_data, 8);
1541
1542 LED_B_OFF();
1543
1544 if(abort_after_read) break;
1545 }
1546 }
1547 }
1548
1549 if(traceLen > TRACE_SIZE) {
1550 DbpString("Trace full");
1551 break;
1552 }
1553 }
1554 LED_A_OFF();
1555 }
1556
1557 void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
1558 uint8_t act_all[] = { 0x0a };
1559 uint8_t identify[] = { 0x0c };
1560 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1561 uint8_t readcheck_cc[]= { 0x88, 0x02 };
1562 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1563 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1564
1565 uint16_t crc = 0;
1566 uint8_t cardsize=0;
1567 bool read_success=false;
1568 uint8_t mem=0;
1569
1570 static struct memory_t{
1571 int k16;
1572 int book;
1573 int k2;
1574 int lockauth;
1575 int keyaccess;
1576 } memory;
1577
1578 uint8_t* resp = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
1579
1580 setupIclassReader();
1581
1582
1583 for(int i=0;i<1;i++) {
1584
1585 if(traceLen > TRACE_SIZE) {
1586 DbpString("Trace full");
1587 break;
1588 }
1589
1590 if (BUTTON_PRESS()) break;
1591
1592 // Send act_all
1593 ReaderTransmitIClass(act_all, 1);
1594 // Card present?
1595 if(ReaderReceiveIClass(resp)) {
1596 ReaderTransmitIClass(identify, 1);
1597 if(ReaderReceiveIClass(resp) == 10) {
1598 // Select card
1599 memcpy(&select[1],resp,8);
1600 ReaderTransmitIClass(select, sizeof(select));
1601
1602 if(ReaderReceiveIClass(resp) == 10) {
1603 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1604 resp[0], resp[1], resp[2],
1605 resp[3], resp[4], resp[5],
1606 resp[6], resp[7]);
1607 }
1608 // Card selected
1609 Dbprintf("Readcheck on Sector 2");
1610 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1611 if(ReaderReceiveIClass(resp) == 8) {
1612 Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
1613 resp[0], resp[1], resp[2],
1614 resp[3], resp[4], resp[5],
1615 resp[6], resp[7]);
1616 }else return;
1617 Dbprintf("Authenticate");
1618 //for now replay captured auth (as cc not updated)
1619 memcpy(check+5,MAC,4);
1620 //Dbprintf(" AA: %02x %02x %02x %02x",
1621 // check[5], check[6], check[7],check[8]);
1622 ReaderTransmitIClass(check, sizeof(check));
1623 if(ReaderReceiveIClass(resp) == 4) {
1624 Dbprintf(" AR: %02x %02x %02x %02x",
1625 resp[0], resp[1], resp[2],resp[3]);
1626 }else {
1627 Dbprintf("Error: Authentication Fail!");
1628 return;
1629 }
1630 Dbprintf("Dump Contents");
1631 //first get configuration block
1632 read_success=false;
1633 read[1]=1;
1634 uint8_t *blockno=&read[1];
1635 crc = iclass_crc16((char *)blockno,1);
1636 read[2] = crc >> 8;
1637 read[3] = crc & 0xff;
1638 while(!read_success){
1639 ReaderTransmitIClass(read, sizeof(read));
1640 if(ReaderReceiveIClass(resp) == 10) {
1641 read_success=true;
1642 mem=resp[5];
1643 memory.k16= (mem & 0x80);
1644 memory.book= (mem & 0x20);
1645 memory.k2= (mem & 0x8);
1646 memory.lockauth= (mem & 0x2);
1647 memory.keyaccess= (mem & 0x1);
1648
1649 }
1650 }
1651 if (memory.k16){
1652 cardsize=255;
1653 }else cardsize=32;
1654 //then loop around remaining blocks
1655 for(uint8_t j=0; j<cardsize; j++){
1656 read_success=false;
1657 uint8_t *blockno=&j;
1658 //crc_data[0]=j;
1659 read[1]=j;
1660 crc = iclass_crc16((char *)blockno,1);
1661 read[2] = crc >> 8;
1662 read[3] = crc & 0xff;
1663 while(!read_success){
1664 ReaderTransmitIClass(read, sizeof(read));
1665 if(ReaderReceiveIClass(resp) == 10) {
1666 read_success=true;
1667 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1668 j, resp[0], resp[1], resp[2],
1669 resp[3], resp[4], resp[5],
1670 resp[6], resp[7]);
1671 }
1672 }
1673 }
1674 }
1675 }
1676 WDT_HIT();
1677 }
1678
1679 LED_A_OFF();
1680 }
1681
1682 //2. Create Read method (cut-down from above) based off responses from 1.
1683 // Since we have the MAC could continue to use replay function.
1684 //3. Create Write method
1685 /*
1686 void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) {
1687 uint8_t act_all[] = { 0x0a };
1688 uint8_t identify[] = { 0x0c };
1689 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1690 uint8_t readcheck_cc[]= { 0x88, 0x02 };
1691 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1692 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1693 uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1694
1695 uint16_t crc = 0;
1696
1697 uint8_t* resp = (((uint8_t *)BigBuf) + 3560);
1698
1699 // Reset trace buffer
1700 memset(trace, 0x44, RECV_CMD_OFFSET);
1701 traceLen = 0;
1702
1703 // Setup SSC
1704 FpgaSetupSsc();
1705 // Start from off (no field generated)
1706 // Signal field is off with the appropriate LED
1707 LED_D_OFF();
1708 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1709 SpinDelay(200);
1710
1711 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1712
1713 // Now give it time to spin up.
1714 // Signal field is on with the appropriate LED
1715 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1716 SpinDelay(200);
1717
1718 LED_A_ON();
1719
1720 for(int i=0;i<1;i++) {
1721
1722 if(traceLen > TRACE_SIZE) {
1723 DbpString("Trace full");
1724 break;
1725 }
1726
1727 if (BUTTON_PRESS()) break;
1728
1729 // Send act_all
1730 ReaderTransmitIClass(act_all, 1);
1731 // Card present?
1732 if(ReaderReceiveIClass(resp)) {
1733 ReaderTransmitIClass(identify, 1);
1734 if(ReaderReceiveIClass(resp) == 10) {
1735 // Select card
1736 memcpy(&select[1],resp,8);
1737 ReaderTransmitIClass(select, sizeof(select));
1738
1739 if(ReaderReceiveIClass(resp) == 10) {
1740 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1741 resp[0], resp[1], resp[2],
1742 resp[3], resp[4], resp[5],
1743 resp[6], resp[7]);
1744 }
1745 // Card selected
1746 Dbprintf("Readcheck on Sector 2");
1747 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1748 if(ReaderReceiveIClass(resp) == 8) {
1749 Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
1750 resp[0], resp[1], resp[2],
1751 resp[3], resp[4], resp[5],
1752 resp[6], resp[7]);
1753 }else return;
1754 Dbprintf("Authenticate");
1755 //for now replay captured auth (as cc not updated)
1756 memcpy(check+5,MAC,4);
1757 Dbprintf(" AA: %02x %02x %02x %02x",
1758 check[5], check[6], check[7],check[8]);
1759 ReaderTransmitIClass(check, sizeof(check));
1760 if(ReaderReceiveIClass(resp) == 4) {
1761 Dbprintf(" AR: %02x %02x %02x %02x",
1762 resp[0], resp[1], resp[2],resp[3]);
1763 }else {
1764 Dbprintf("Error: Authentication Fail!");
1765 return;
1766 }
1767 Dbprintf("Write Block");
1768
1769 //read configuration for max block number
1770 read_success=false;
1771 read[1]=1;
1772 uint8_t *blockno=&read[1];
1773 crc = iclass_crc16((char *)blockno,1);
1774 read[2] = crc >> 8;
1775 read[3] = crc & 0xff;
1776 while(!read_success){
1777 ReaderTransmitIClass(read, sizeof(read));
1778 if(ReaderReceiveIClass(resp) == 10) {
1779 read_success=true;
1780 mem=resp[5];
1781 memory.k16= (mem & 0x80);
1782 memory.book= (mem & 0x20);
1783 memory.k2= (mem & 0x8);
1784 memory.lockauth= (mem & 0x2);
1785 memory.keyaccess= (mem & 0x1);
1786
1787 }
1788 }
1789 if (memory.k16){
1790 cardsize=255;
1791 }else cardsize=32;
1792 //check card_size
1793
1794 memcpy(write+1,blockNo,1);
1795 memcpy(write+2,data,8);
1796 memcpy(write+10,mac,4);
1797 while(!send_success){
1798 ReaderTransmitIClass(write, sizeof(write));
1799 if(ReaderReceiveIClass(resp) == 10) {
1800 write_success=true;
1801 }
1802 }//
1803 }
1804 WDT_HIT();
1805 }
1806
1807 LED_A_OFF();
1808 }*/
Impressum, Datenschutz