]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
FIX: hf mf eload - now supports specifying 0,1,2,4 in card memory for the file to...
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
15
16 #include "../include/proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21 #include <stdarg.h>
22
23
24 #include "legicrf.h"
25 #include "../include/hitag2.h"
26
27
28 #ifdef WITH_LCD
29 #include "LCD.h"
30 #endif
31
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
39
40 uint8_t ToSend[512];
41 int ToSendMax;
42 static int ToSendBit;
43 struct common_area common_area __attribute__((section(".commonarea")));
44
45 void BufferClear(void)
46 {
47 memset(BigBuf,0,sizeof(BigBuf));
48 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
49 }
50
51 void ToSendReset(void)
52 {
53 ToSendMax = -1;
54 ToSendBit = 8;
55 }
56
57 void ToSendStuffBit(int b)
58 {
59 if(ToSendBit >= 8) {
60 ToSendMax++;
61 ToSend[ToSendMax] = 0;
62 ToSendBit = 0;
63 }
64
65 if(b) {
66 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
67 }
68
69 ToSendBit++;
70
71 if(ToSendBit >= sizeof(ToSend)) {
72 ToSendBit = 0;
73 DbpString("ToSendStuffBit overflowed!");
74 }
75 }
76
77 //=============================================================================
78 // Debug print functions, to go out over USB, to the usual PC-side client.
79 //=============================================================================
80
81 void DbpString(char *str)
82 {
83 byte_t len = strlen(str);
84 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
85 }
86
87 #if 0
88 void DbpIntegers(int x1, int x2, int x3)
89 {
90 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
91 }
92 #endif
93
94 void Dbprintf(const char *fmt, ...) {
95 // should probably limit size here; oh well, let's just use a big buffer
96 char output_string[128];
97 va_list ap;
98
99 va_start(ap, fmt);
100 kvsprintf(fmt, output_string, 10, ap);
101 va_end(ap);
102
103 DbpString(output_string);
104 }
105
106 // prints HEX & ASCII
107 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
108 int l=0,i;
109 char ascii[9];
110
111 while (len>0) {
112 if (len>8) l=8;
113 else l=len;
114
115 memcpy(ascii,d,l);
116 ascii[l]=0;
117
118 // filter safe ascii
119 for (i=0;i<l;i++)
120 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
121
122 if (bAsci) {
123 Dbprintf("%-8s %*D",ascii,l,d," ");
124 } else {
125 Dbprintf("%*D",l,d," ");
126 }
127
128 len-=8;
129 d+=8;
130 }
131 }
132
133 //-----------------------------------------------------------------------------
134 // Read an ADC channel and block till it completes, then return the result
135 // in ADC units (0 to 1023). Also a routine to average 32 samples and
136 // return that.
137 //-----------------------------------------------------------------------------
138 static int ReadAdc(int ch)
139 {
140 uint32_t d;
141
142 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
143 AT91C_BASE_ADC->ADC_MR =
144 ADC_MODE_PRESCALE(32) |
145 ADC_MODE_STARTUP_TIME(16) |
146 ADC_MODE_SAMPLE_HOLD_TIME(8);
147 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
148
149 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
150 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
151 ;
152 d = AT91C_BASE_ADC->ADC_CDR[ch];
153
154 return d;
155 }
156
157 int AvgAdc(int ch) // was static - merlok
158 {
159 int i;
160 int a = 0;
161
162 for(i = 0; i < 32; i++) {
163 a += ReadAdc(ch);
164 }
165
166 return (a + 15) >> 5;
167 }
168
169 void MeasureAntennaTuning(void)
170 {
171 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
172 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
173 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
174
175 LED_B_ON();
176 DbpString("Measuring antenna characteristics, please wait...");
177 memset(dest,0,sizeof(FREE_BUFFER_SIZE));
178
179 /*
180 * Sweeps the useful LF range of the proxmark from
181 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
182 * read the voltage in the antenna, the result left
183 * in the buffer is a graph which should clearly show
184 * the resonating frequency of your LF antenna
185 * ( hopefully around 95 if it is tuned to 125kHz!)
186 */
187
188 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
189 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
190 for (i=255; i>19; i--) {
191 WDT_HIT();
192 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
193 SpinDelay(20);
194 // Vref = 3.3V, and a 10000:240 voltage divider on the input
195 // can measure voltages up to 137500 mV
196 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
197 if (i==95) vLf125 = adcval; // voltage at 125Khz
198 if (i==89) vLf134 = adcval; // voltage at 134Khz
199
200 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
201 if(dest[i] > peak) {
202 peakv = adcval;
203 peak = dest[i];
204 peakf = i;
205 //ptr = i;
206 }
207 }
208
209 LED_A_ON();
210 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
211 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
213 SpinDelay(20);
214 // Vref = 3300mV, and an 10:1 voltage divider on the input
215 // can measure voltages up to 33000 mV
216 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
217
218 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
219 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
220 // c.arg[1] = vHf;
221 // c.arg[2] = peakf | (peakv << 16);
222
223 DbpString("Measuring complete, sending report back to host");
224 cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0);
225 // UsbSendPacket((uint8_t *)&c, sizeof(c));
226 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
227 LED_A_OFF();
228 LED_B_OFF();
229 return;
230 }
231
232 void MeasureAntennaTuningHf(void)
233 {
234 int vHf = 0; // in mV
235
236 DbpString("Measuring HF antenna, press button to exit");
237
238 for (;;) {
239 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
240 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
241 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
242 SpinDelay(20);
243 // Vref = 3300mV, and an 10:1 voltage divider on the input
244 // can measure voltages up to 33000 mV
245 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
246
247 Dbprintf("%d mV",vHf);
248 if (BUTTON_PRESS()) break;
249 }
250 DbpString("cancelled");
251 }
252
253
254 void SimulateTagHfListen(void)
255 {
256 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
257 uint8_t v = 0;
258 int i;
259 int p = 0;
260
261 // We're using this mode just so that I can test it out; the simulated
262 // tag mode would work just as well and be simpler.
263 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
264 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
265
266 // We need to listen to the high-frequency, peak-detected path.
267 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
268
269 FpgaSetupSsc();
270
271 i = 0;
272 for(;;) {
273 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
274 AT91C_BASE_SSC->SSC_THR = 0xff;
275 }
276 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
277 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
278
279 v <<= 1;
280 if(r & 1) {
281 v |= 1;
282 }
283 p++;
284
285 if(p >= 8) {
286 dest[i] = v;
287 v = 0;
288 p = 0;
289 i++;
290
291 if(i >= FREE_BUFFER_SIZE) {
292 break;
293 }
294 }
295 }
296 }
297 DbpString("simulate tag (now type bitsamples)");
298 }
299
300 void ReadMem(int addr)
301 {
302 const uint8_t *data = ((uint8_t *)addr);
303
304 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
305 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
306 }
307
308 /* osimage version information is linked in */
309 extern struct version_information version_information;
310 /* bootrom version information is pointed to from _bootphase1_version_pointer */
311 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
312 void SendVersion(void)
313 {
314 char temp[256]; /* Limited data payload in USB packets */
315 DbpString("Prox/RFID mark3 RFID instrument");
316
317 /* Try to find the bootrom version information. Expect to find a pointer at
318 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
319 * pointer, then use it.
320 */
321 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
322 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
323 DbpString("bootrom version information appears invalid");
324 } else {
325 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
326 DbpString(temp);
327 }
328
329 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
330 DbpString(temp);
331
332 FpgaGatherVersion(temp, sizeof(temp));
333 DbpString(temp);
334 // Send Chip ID
335 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
336 }
337
338 #ifdef WITH_LF
339 // samy's sniff and repeat routine
340 void SamyRun()
341 {
342 DbpString("Stand-alone mode! No PC necessary.");
343 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
344
345 // 3 possible options? no just 2 for now
346 #define OPTS 2
347
348 int high[OPTS], low[OPTS];
349
350 // Oooh pretty -- notify user we're in elite samy mode now
351 LED(LED_RED, 200);
352 LED(LED_ORANGE, 200);
353 LED(LED_GREEN, 200);
354 LED(LED_ORANGE, 200);
355 LED(LED_RED, 200);
356 LED(LED_ORANGE, 200);
357 LED(LED_GREEN, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_RED, 200);
360
361 int selected = 0;
362 int playing = 0;
363 int cardRead = 0;
364
365 // Turn on selected LED
366 LED(selected + 1, 0);
367
368 for (;;)
369 {
370 // UsbPoll(FALSE);
371 usb_poll();
372 WDT_HIT();
373
374 // Was our button held down or pressed?
375 int button_pressed = BUTTON_HELD(1000);
376 SpinDelay(300);
377
378 // Button was held for a second, begin recording
379 if (button_pressed > 0 && cardRead == 0)
380 {
381 LEDsoff();
382 LED(selected + 1, 0);
383 LED(LED_RED2, 0);
384
385 // record
386 DbpString("Starting recording");
387
388 // wait for button to be released
389 while(BUTTON_PRESS())
390 WDT_HIT();
391
392 /* need this delay to prevent catching some weird data */
393 SpinDelay(500);
394
395 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
396 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
397
398 LEDsoff();
399 LED(selected + 1, 0);
400 // Finished recording
401
402 // If we were previously playing, set playing off
403 // so next button push begins playing what we recorded
404 playing = 0;
405
406 cardRead = 1;
407
408 }
409
410 else if (button_pressed > 0 && cardRead == 1)
411 {
412 LEDsoff();
413 LED(selected + 1, 0);
414 LED(LED_ORANGE, 0);
415
416 // record
417 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
418
419 // wait for button to be released
420 while(BUTTON_PRESS())
421 WDT_HIT();
422
423 /* need this delay to prevent catching some weird data */
424 SpinDelay(500);
425
426 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
427 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
428
429 LEDsoff();
430 LED(selected + 1, 0);
431 // Finished recording
432
433 // If we were previously playing, set playing off
434 // so next button push begins playing what we recorded
435 playing = 0;
436
437 cardRead = 0;
438
439 }
440
441 // Change where to record (or begin playing)
442 else if (button_pressed)
443 {
444 // Next option if we were previously playing
445 if (playing)
446 selected = (selected + 1) % OPTS;
447 playing = !playing;
448
449 LEDsoff();
450 LED(selected + 1, 0);
451
452 // Begin transmitting
453 if (playing)
454 {
455 LED(LED_GREEN, 0);
456 DbpString("Playing");
457 // wait for button to be released
458 while(BUTTON_PRESS())
459 WDT_HIT();
460 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
461 CmdHIDsimTAG(high[selected], low[selected], 0);
462 DbpString("Done playing");
463 if (BUTTON_HELD(1000) > 0)
464 {
465 DbpString("Exiting");
466 LEDsoff();
467 return;
468 }
469
470 /* We pressed a button so ignore it here with a delay */
471 SpinDelay(300);
472
473 // when done, we're done playing, move to next option
474 selected = (selected + 1) % OPTS;
475 playing = !playing;
476 LEDsoff();
477 LED(selected + 1, 0);
478 }
479 else
480 while(BUTTON_PRESS())
481 WDT_HIT();
482 }
483 }
484 }
485 #endif
486
487 /*
488 OBJECTIVE
489 Listen and detect an external reader. Determine the best location
490 for the antenna.
491
492 INSTRUCTIONS:
493 Inside the ListenReaderField() function, there is two mode.
494 By default, when you call the function, you will enter mode 1.
495 If you press the PM3 button one time, you will enter mode 2.
496 If you press the PM3 button a second time, you will exit the function.
497
498 DESCRIPTION OF MODE 1:
499 This mode just listens for an external reader field and lights up green
500 for HF and/or red for LF. This is the original mode of the detectreader
501 function.
502
503 DESCRIPTION OF MODE 2:
504 This mode will visually represent, using the LEDs, the actual strength of the
505 current compared to the maximum current detected. Basically, once you know
506 what kind of external reader is present, it will help you spot the best location to place
507 your antenna. You will probably not get some good results if there is a LF and a HF reader
508 at the same place! :-)
509
510 LIGHT SCHEME USED:
511 */
512 static const char LIGHT_SCHEME[] = {
513 0x0, /* ---- | No field detected */
514 0x1, /* X--- | 14% of maximum current detected */
515 0x2, /* -X-- | 29% of maximum current detected */
516 0x4, /* --X- | 43% of maximum current detected */
517 0x8, /* ---X | 57% of maximum current detected */
518 0xC, /* --XX | 71% of maximum current detected */
519 0xE, /* -XXX | 86% of maximum current detected */
520 0xF, /* XXXX | 100% of maximum current detected */
521 };
522 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
523
524 void ListenReaderField(int limit)
525 {
526 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
527 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
528 int mode=1, display_val, display_max, i;
529
530 #define LF_ONLY 1
531 #define HF_ONLY 2
532
533 LEDsoff();
534
535 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
536
537 if(limit != HF_ONLY) {
538 Dbprintf("LF 125/134 Baseline: %d", lf_av);
539 lf_baseline = lf_av;
540 }
541
542 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
543
544 if (limit != LF_ONLY) {
545 Dbprintf("HF 13.56 Baseline: %d", hf_av);
546 hf_baseline = hf_av;
547 }
548
549 for(;;) {
550 if (BUTTON_PRESS()) {
551 SpinDelay(500);
552 switch (mode) {
553 case 1:
554 mode=2;
555 DbpString("Signal Strength Mode");
556 break;
557 case 2:
558 default:
559 DbpString("Stopped");
560 LEDsoff();
561 return;
562 break;
563 }
564 }
565 WDT_HIT();
566
567 if (limit != HF_ONLY) {
568 if(mode==1) {
569 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
570 else LED_D_OFF();
571 }
572
573 ++lf_count;
574 lf_av_new= ReadAdc(ADC_CHAN_LF);
575 // see if there's a significant change
576 if(abs(lf_av - lf_av_new) > 10) {
577 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
578 lf_av = lf_av_new;
579 if (lf_av > lf_max)
580 lf_max = lf_av;
581 lf_count= 0;
582 }
583 }
584
585 if (limit != LF_ONLY) {
586 if (mode == 1){
587 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
588 else LED_B_OFF();
589 }
590
591 ++hf_count;
592 hf_av_new= ReadAdc(ADC_CHAN_HF);
593 // see if there's a significant change
594 if(abs(hf_av - hf_av_new) > 10) {
595 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
596 hf_av = hf_av_new;
597 if (hf_av > hf_max)
598 hf_max = hf_av;
599 hf_count= 0;
600 }
601 }
602
603 if(mode == 2) {
604 if (limit == LF_ONLY) {
605 display_val = lf_av;
606 display_max = lf_max;
607 } else if (limit == HF_ONLY) {
608 display_val = hf_av;
609 display_max = hf_max;
610 } else { /* Pick one at random */
611 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
612 display_val = hf_av;
613 display_max = hf_max;
614 } else {
615 display_val = lf_av;
616 display_max = lf_max;
617 }
618 }
619 for (i=0; i<LIGHT_LEN; i++) {
620 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
621 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
622 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
623 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
624 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
625 break;
626 }
627 }
628 }
629 }
630 }
631
632 void UsbPacketReceived(uint8_t *packet, int len)
633 {
634 UsbCommand *c = (UsbCommand *)packet;
635
636 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
637
638 switch(c->cmd) {
639 #ifdef WITH_LF
640 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
641 AcquireRawAdcSamples125k(c->arg[0]);
642 cmd_send(CMD_ACK,0,0,0,0,0);
643 break;
644 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
645 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
646 break;
647 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
648 SnoopLFRawAdcSamples(c->arg[0], c->arg[1]);
649 cmd_send(CMD_ACK,0,0,0,0,0);
650 break;
651 case CMD_HID_DEMOD_FSK:
652 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
653 break;
654 case CMD_HID_SIM_TAG:
655 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
656 break;
657 case CMD_HID_CLONE_TAG: // Clone HID tag by ID to T55x7
658 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
659 break;
660 case CMD_IO_DEMOD_FSK:
661 CmdIOdemodFSK(1, 0, 0, 1); // Demodulate IO tag
662 break;
663 case CMD_IO_CLONE_TAG: // Clone IO tag by ID to T55x7
664 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
665 break;
666 case CMD_EM410X_WRITE_TAG:
667 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
668 break;
669 case CMD_READ_TI_TYPE:
670 ReadTItag();
671 break;
672 case CMD_WRITE_TI_TYPE:
673 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
674 break;
675 case CMD_SIMULATE_TAG_125K:
676 LED_A_ON();
677 SimulateTagLowFrequency(c->arg[0], c->arg[1], 0);
678 LED_A_OFF();
679 break;
680 case CMD_LF_SIMULATE_BIDIR:
681 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
682 break;
683 case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
684 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
685 break;
686 case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
687 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
688 break;
689 case CMD_T55XX_READ_BLOCK:
690 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
691 break;
692 case CMD_T55XX_WRITE_BLOCK:
693 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
694 break;
695 case CMD_T55XX_READ_TRACE: // Clone HID tag by ID to T55x7
696 T55xxReadTrace();
697 break;
698 case CMD_PCF7931_READ: // Read PCF7931 tag
699 ReadPCF7931();
700 cmd_send(CMD_ACK,0,0,0,0,0);
701 break;
702 case CMD_EM4X_READ_WORD:
703 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
704 break;
705 case CMD_EM4X_WRITE_WORD:
706 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
707 break;
708 #endif
709
710 #ifdef WITH_HITAG
711 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
712 SnoopHitag(c->arg[0]);
713 break;
714 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
715 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
716 break;
717 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
718 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
719 break;
720 #endif
721
722 #ifdef WITH_ISO15693
723 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
724 AcquireRawAdcSamplesIso15693();
725 break;
726 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
727 RecordRawAdcSamplesIso15693();
728 break;
729
730 case CMD_ISO_15693_COMMAND:
731 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
732 break;
733
734 case CMD_ISO_15693_FIND_AFI:
735 BruteforceIso15693Afi(c->arg[0]);
736 break;
737
738 case CMD_ISO_15693_DEBUG:
739 SetDebugIso15693(c->arg[0]);
740 break;
741
742 case CMD_READER_ISO_15693:
743 ReaderIso15693(c->arg[0]);
744 break;
745 case CMD_SIMTAG_ISO_15693:
746 SimTagIso15693(c->arg[0], c->d.asBytes);
747 break;
748 #endif
749
750 #ifdef WITH_LEGICRF
751 case CMD_SIMULATE_TAG_LEGIC_RF:
752 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
753 break;
754
755 case CMD_WRITER_LEGIC_RF:
756 LegicRfWriter(c->arg[1], c->arg[0]);
757 break;
758
759 case CMD_READER_LEGIC_RF:
760 LegicRfReader(c->arg[0], c->arg[1]);
761 break;
762 #endif
763
764 #ifdef WITH_ISO14443b
765 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
766 AcquireRawAdcSamplesIso14443(c->arg[0]);
767 break;
768 case CMD_READ_SRI512_TAG:
769 ReadSTMemoryIso14443(0x0F);
770 break;
771 case CMD_READ_SRIX4K_TAG:
772 ReadSTMemoryIso14443(0x7F);
773 break;
774 case CMD_SNOOP_ISO_14443:
775 SnoopIso14443();
776 break;
777 case CMD_SIMULATE_TAG_ISO_14443:
778 SimulateIso14443Tag();
779 break;
780 case CMD_ISO_14443B_COMMAND:
781 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
782 break;
783 #endif
784
785 #ifdef WITH_ISO14443a
786 case CMD_SNOOP_ISO_14443a:
787 SnoopIso14443a(c->arg[0]);
788 break;
789 case CMD_READER_ISO_14443a:
790 ReaderIso14443a(c);
791 break;
792 case CMD_SIMULATE_TAG_ISO_14443a:
793 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
794 break;
795 case CMD_EPA_PACE_COLLECT_NONCE:
796 EPA_PACE_Collect_Nonce(c);
797 break;
798
799 case CMD_READER_MIFARE:
800 ReaderMifare(c->arg[0]);
801 break;
802 case CMD_MIFARE_READBL:
803 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
804 break;
805 case CMD_MIFAREU_READBL:
806 MifareUReadBlock(c->arg[0],c->d.asBytes);
807 break;
808 case CMD_MIFAREUC_AUTH1:
809 MifareUC_Auth1(c->arg[0],c->d.asBytes);
810 break;
811 case CMD_MIFAREUC_AUTH2:
812 MifareUC_Auth2(c->arg[0],c->d.asBytes);
813 break;
814 case CMD_MIFAREU_READCARD:
815 MifareUReadCard(c->arg[0],c->arg[1],c->d.asBytes);
816 break;
817 case CMD_MIFAREUC_READCARD:
818 MifareUReadCard(c->arg[0],c->arg[1],c->d.asBytes);
819 break;
820 case CMD_MIFARE_READSC:
821 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
822 break;
823 case CMD_MIFARE_WRITEBL:
824 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
825 break;
826 case CMD_MIFAREU_WRITEBL_COMPAT:
827 MifareUWriteBlock(c->arg[0], c->d.asBytes);
828 break;
829 case CMD_MIFAREU_WRITEBL:
830 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
831 break;
832 case CMD_MIFARE_NESTED:
833 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
834 break;
835 case CMD_MIFARE_CHKKEYS:
836 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
837 break;
838 case CMD_SIMULATE_MIFARE_CARD:
839 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
840 break;
841
842 // emulator
843 case CMD_MIFARE_SET_DBGMODE:
844 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
845 break;
846 case CMD_MIFARE_EML_MEMCLR:
847 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
848 break;
849 case CMD_MIFARE_EML_MEMSET:
850 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
851 break;
852 case CMD_MIFARE_EML_MEMGET:
853 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
854 break;
855 case CMD_MIFARE_EML_CARDLOAD:
856 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
857 break;
858
859 // Work with "magic Chinese" card
860 case CMD_MIFARE_EML_CSETBLOCK:
861 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
862 break;
863 case CMD_MIFARE_EML_CGETBLOCK:
864 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
865 break;
866
867 // mifare sniffer
868 case CMD_MIFARE_SNIFFER:
869 SniffMifare(c->arg[0]);
870 break;
871
872 // mifare desfire
873 case CMD_MIFARE_DESFIRE_READBL:
874 break;
875 case CMD_MIFARE_DESFIRE_WRITEBL:
876 break;
877 case CMD_MIFARE_DESFIRE_AUTH1:
878 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
879 break;
880 case CMD_MIFARE_DESFIRE_AUTH2:
881 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
882 break;
883 // case CMD_MIFARE_DES_READER:
884 // ReaderMifareDES(c->arg[0], c->arg[1], c->d.asBytes);
885 //break;
886 case CMD_MIFARE_DESFIRE_INFO:
887 MifareDesfireGetInformation();
888 break;
889 case CMD_MIFARE_DESFIRE:
890 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
891 break;
892
893 #endif
894
895 #ifdef WITH_ICLASS
896 // Makes use of ISO14443a FPGA Firmware
897 case CMD_SNOOP_ICLASS:
898 SnoopIClass();
899 break;
900 case CMD_SIMULATE_TAG_ICLASS:
901 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
902 break;
903 case CMD_READER_ICLASS:
904 ReaderIClass(c->arg[0]);
905 break;
906 case CMD_READER_ICLASS_REPLAY:
907 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
908 break;
909 #endif
910
911 case CMD_SIMULATE_TAG_HF_LISTEN:
912 SimulateTagHfListen();
913 break;
914
915 case CMD_BUFF_CLEAR:
916 BufferClear();
917 break;
918
919 case CMD_MEASURE_ANTENNA_TUNING:
920 MeasureAntennaTuning();
921 break;
922
923 case CMD_MEASURE_ANTENNA_TUNING_HF:
924 MeasureAntennaTuningHf();
925 break;
926
927 case CMD_LISTEN_READER_FIELD:
928 ListenReaderField(c->arg[0]);
929 break;
930
931 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
932 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
933 SpinDelay(200);
934 LED_D_OFF(); // LED D indicates field ON or OFF
935 break;
936
937 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
938
939 LED_B_ON();
940 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
941 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
942 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
943 }
944 // Trigger a finish downloading signal with an ACK frame
945 cmd_send(CMD_ACK,0,0,0,0,0);
946 LED_B_OFF();
947 break;
948
949 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
950 uint8_t *b = (uint8_t *)BigBuf;
951 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
952 cmd_send(CMD_ACK,0,0,0,0,0);
953 break;
954 }
955 case CMD_READ_MEM:
956 ReadMem(c->arg[0]);
957 break;
958
959 case CMD_SET_LF_DIVISOR:
960 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
961 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
962 break;
963
964 case CMD_SET_ADC_MUX:
965 switch(c->arg[0]) {
966 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
967 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
968 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
969 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
970 }
971 break;
972
973 case CMD_VERSION:
974 SendVersion();
975 break;
976
977 #ifdef WITH_LCD
978 case CMD_LCD_RESET:
979 LCDReset();
980 break;
981 case CMD_LCD:
982 LCDSend(c->arg[0]);
983 break;
984 #endif
985 case CMD_SETUP_WRITE:
986 case CMD_FINISH_WRITE:
987 case CMD_HARDWARE_RESET:
988 usb_disable();
989 SpinDelay(1000);
990 SpinDelay(1000);
991 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
992 for(;;) {
993 // We're going to reset, and the bootrom will take control.
994 }
995 break;
996
997 case CMD_START_FLASH:
998 if(common_area.flags.bootrom_present) {
999 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1000 }
1001 usb_disable();
1002 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1003 for(;;);
1004 break;
1005
1006 case CMD_DEVICE_INFO: {
1007 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1008 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1009 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1010 break;
1011 }
1012 default:
1013 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1014 break;
1015 }
1016 }
1017
1018 void __attribute__((noreturn)) AppMain(void)
1019 {
1020 SpinDelay(100);
1021
1022 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1023 /* Initialize common area */
1024 memset(&common_area, 0, sizeof(common_area));
1025 common_area.magic = COMMON_AREA_MAGIC;
1026 common_area.version = 1;
1027 }
1028 common_area.flags.osimage_present = 1;
1029
1030 LED_D_OFF();
1031 LED_C_OFF();
1032 LED_B_OFF();
1033 LED_A_OFF();
1034
1035 // Init USB device
1036 usb_enable();
1037
1038 // The FPGA gets its clock from us from PCK0 output, so set that up.
1039 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1040 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1041 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1042 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1043 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1044 AT91C_PMC_PRES_CLK_4;
1045 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1046
1047 // Reset SPI
1048 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1049 // Reset SSC
1050 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1051
1052 // Load the FPGA image, which we have stored in our flash.
1053 // (the HF version by default)
1054 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1055
1056 StartTickCount();
1057
1058 #ifdef WITH_LCD
1059 LCDInit();
1060 #endif
1061
1062 byte_t rx[sizeof(UsbCommand)];
1063 size_t rx_len;
1064
1065 for(;;) {
1066 if (usb_poll()) {
1067 rx_len = usb_read(rx,sizeof(UsbCommand));
1068 if (rx_len) {
1069 UsbPacketReceived(rx,rx_len);
1070 }
1071 }
1072 WDT_HIT();
1073
1074 #ifdef WITH_LF
1075 if (BUTTON_HELD(1000) > 0)
1076 SamyRun();
1077 #endif
1078 }
1079 }
Impressum, Datenschutz