1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
23 * Function to do a modulation and then get samples.
29 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
32 int divisor_used
= 95; // 125 KHz
33 // see if 'h' was specified
35 if (command
[strlen((char *) command
) - 1] == 'h')
36 divisor_used
= 88; // 134.8 KHz
38 sample_config sc
= { 0,0,1, divisor_used
, 0};
39 setSamplingConfig(&sc
);
41 /* Make sure the tag is reset */
42 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
46 LFSetupFPGAForADC(sc
.divisor
, 1);
48 // And a little more time for the tag to fully power up
51 // now modulate the reader field
52 while(*command
!= '\0' && *command
!= ' ') {
53 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
55 SpinDelayUs(delay_off
);
56 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
58 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
60 if(*(command
++) == '0')
61 SpinDelayUs(period_0
);
63 SpinDelayUs(period_1
);
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
67 SpinDelayUs(delay_off
);
68 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
73 DoAcquisition_config(false);
76 /* blank r/w tag data stream
77 ...0000000000000000 01111111
78 1010101010101010101010101010101010101010101010101010101010101010
81 101010101010101[0]000...
83 [5555fe852c5555555555555555fe0000]
87 // some hardcoded initial params
88 // when we read a TI tag we sample the zerocross line at 2Mhz
89 // TI tags modulate a 1 as 16 cycles of 123.2Khz
90 // TI tags modulate a 0 as 16 cycles of 134.2Khz
91 #define FSAMPLE 2000000
95 signed char *dest
= (signed char *)BigBuf_get_addr();
96 uint16_t n
= BigBuf_max_traceLen();
97 // 128 bit shift register [shift3:shift2:shift1:shift0]
98 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
100 int i
, cycles
=0, samples
=0;
101 // how many sample points fit in 16 cycles of each frequency
102 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
103 // when to tell if we're close enough to one freq or another
104 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
106 // TI tags charge at 134.2Khz
107 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
108 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
110 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
111 // connects to SSP_DIN and the SSP_DOUT logic level controls
112 // whether we're modulating the antenna (high)
113 // or listening to the antenna (low)
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
116 // get TI tag data into the buffer
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
121 for (i
=0; i
<n
-1; i
++) {
122 // count cycles by looking for lo to hi zero crossings
123 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
125 // after 16 cycles, measure the frequency
128 samples
=i
-samples
; // number of samples in these 16 cycles
130 // TI bits are coming to us lsb first so shift them
131 // right through our 128 bit right shift register
132 shift0
= (shift0
>>1) | (shift1
<< 31);
133 shift1
= (shift1
>>1) | (shift2
<< 31);
134 shift2
= (shift2
>>1) | (shift3
<< 31);
137 // check if the cycles fall close to the number
138 // expected for either the low or high frequency
139 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
140 // low frequency represents a 1
142 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
143 // high frequency represents a 0
145 // probably detected a gay waveform or noise
146 // use this as gaydar or discard shift register and start again
147 shift3
= shift2
= shift1
= shift0
= 0;
151 // for each bit we receive, test if we've detected a valid tag
153 // if we see 17 zeroes followed by 6 ones, we might have a tag
154 // remember the bits are backwards
155 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
156 // if start and end bytes match, we have a tag so break out of the loop
157 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
158 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
166 // if flag is set we have a tag
168 DbpString("Info: No valid tag detected.");
170 // put 64 bit data into shift1 and shift0
171 shift0
= (shift0
>>24) | (shift1
<< 8);
172 shift1
= (shift1
>>24) | (shift2
<< 8);
174 // align 16 bit crc into lower half of shift2
175 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
177 // if r/w tag, check ident match
178 if (shift3
& (1<<15) ) {
179 DbpString("Info: TI tag is rewriteable");
180 // only 15 bits compare, last bit of ident is not valid
181 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
182 DbpString("Error: Ident mismatch!");
184 DbpString("Info: TI tag ident is valid");
187 DbpString("Info: TI tag is readonly");
190 // WARNING the order of the bytes in which we calc crc below needs checking
191 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
192 // bytes in reverse or something
196 crc
= update_crc16(crc
, (shift0
)&0xff);
197 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
198 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
200 crc
= update_crc16(crc
, (shift1
)&0xff);
201 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
202 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
205 Dbprintf("Info: Tag data: %x%08x, crc=%x",
206 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
207 if (crc
!= (shift2
&0xffff)) {
208 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
210 DbpString("Info: CRC is good");
215 void WriteTIbyte(uint8_t b
)
219 // modulate 8 bits out to the antenna
223 // stop modulating antenna
230 // stop modulating antenna
240 void AcquireTiType(void)
243 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
244 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
245 #define TIBUFLEN 1250
248 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
249 memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t));
251 // Set up the synchronous serial port
252 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
253 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
255 // steal this pin from the SSP and use it to control the modulation
256 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
257 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
259 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
260 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
262 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
263 // 48/2 = 24 MHz clock must be divided by 12
264 AT91C_BASE_SSC
->SSC_CMR
= 12;
266 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
267 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
268 AT91C_BASE_SSC
->SSC_TCMR
= 0;
269 AT91C_BASE_SSC
->SSC_TFMR
= 0;
276 // Charge TI tag for 50ms.
279 // stop modulating antenna and listen
286 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
287 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
288 i
++; if(i
>= TIBUFLEN
) break;
293 // return stolen pin to SSP
294 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
295 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
297 char *dest
= (char *)BigBuf_get_addr();
300 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
301 for (j
=0; j
<32; j
++) {
302 if(BigBuf
[i
] & (1 << j
)) {
311 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
312 // if crc provided, it will be written with the data verbatim (even if bogus)
313 // if not provided a valid crc will be computed from the data and written.
314 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
316 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
318 crc
= update_crc16(crc
, (idlo
)&0xff);
319 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
320 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
321 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
322 crc
= update_crc16(crc
, (idhi
)&0xff);
323 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
324 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
325 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
327 Dbprintf("Writing to tag: %x%08x, crc=%x",
328 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
330 // TI tags charge at 134.2Khz
331 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
332 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
333 // connects to SSP_DIN and the SSP_DOUT logic level controls
334 // whether we're modulating the antenna (high)
335 // or listening to the antenna (low)
336 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
339 // steal this pin from the SSP and use it to control the modulation
340 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
341 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
343 // writing algorithm:
344 // a high bit consists of a field off for 1ms and field on for 1ms
345 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
346 // initiate a charge time of 50ms (field on) then immediately start writing bits
347 // start by writing 0xBB (keyword) and 0xEB (password)
348 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
349 // finally end with 0x0300 (write frame)
350 // all data is sent lsb firts
351 // finish with 15ms programming time
355 SpinDelay(50); // charge time
357 WriteTIbyte(0xbb); // keyword
358 WriteTIbyte(0xeb); // password
359 WriteTIbyte( (idlo
)&0xff );
360 WriteTIbyte( (idlo
>>8 )&0xff );
361 WriteTIbyte( (idlo
>>16)&0xff );
362 WriteTIbyte( (idlo
>>24)&0xff );
363 WriteTIbyte( (idhi
)&0xff );
364 WriteTIbyte( (idhi
>>8 )&0xff );
365 WriteTIbyte( (idhi
>>16)&0xff );
366 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
367 WriteTIbyte( (crc
)&0xff ); // crc lo
368 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
369 WriteTIbyte(0x00); // write frame lo
370 WriteTIbyte(0x03); // write frame hi
372 SpinDelay(50); // programming time
376 // get TI tag data into the buffer
379 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
380 DbpString("Now use tiread to check");
383 void SimulateTagLowFrequency(uint16_t period
, uint32_t gap
, uint8_t ledcontrol
)
386 uint8_t *tab
= BigBuf_get_addr();
388 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
389 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
391 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
393 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
394 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
396 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
397 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
401 //wait until SSC_CLK goes HIGH
402 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
403 if(BUTTON_PRESS() || usb_poll()) {
404 DbpString("Stopped");
419 //wait until SSC_CLK goes LOW
420 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
422 DbpString("Stopped");
440 #define DEBUG_FRAME_CONTENTS 1
441 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
445 // compose fc/8 fc/10 waveform (FSK2)
446 static void fc(int c
, int *n
)
448 uint8_t *dest
= BigBuf_get_addr();
451 // for when we want an fc8 pattern every 4 logical bits
463 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
465 for (idx
=0; idx
<6; idx
++) {
477 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
479 for (idx
=0; idx
<5; idx
++) {
493 // compose fc/X fc/Y waveform (FSKx)
494 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
496 uint8_t *dest
= BigBuf_get_addr();
497 uint8_t halfFC
= fc
/2;
498 uint8_t wavesPerClock
= clock
/fc
;
499 uint8_t mod
= clock
% fc
; //modifier
500 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
501 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
502 // loop through clock - step field clock
503 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
504 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
505 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
506 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
509 if (mod
>0) (*modCnt
)++;
510 if ((mod
>0) && modAdjOk
){ //fsk2
511 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
512 memset(dest
+(*n
), 0, fc
-halfFC
);
513 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
517 if (mod
>0 && !modAdjOk
){ //fsk1
518 memset(dest
+(*n
), 0, mod
-(mod
/2));
519 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
524 // prepare a waveform pattern in the buffer based on the ID given then
525 // simulate a HID tag until the button is pressed
526 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
530 HID tag bitstream format
531 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
532 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
533 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
534 A fc8 is inserted before every 4 bits
535 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
536 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
540 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
544 // special start of frame marker containing invalid bit sequences
545 fc(8, &n
); fc(8, &n
); // invalid
546 fc(8, &n
); fc(10, &n
); // logical 0
547 fc(10, &n
); fc(10, &n
); // invalid
548 fc(8, &n
); fc(10, &n
); // logical 0
551 // manchester encode bits 43 to 32
552 for (i
=11; i
>=0; i
--) {
553 if ((i
%4)==3) fc(0,&n
);
555 fc(10, &n
); fc(8, &n
); // low-high transition
557 fc(8, &n
); fc(10, &n
); // high-low transition
562 // manchester encode bits 31 to 0
563 for (i
=31; i
>=0; i
--) {
564 if ((i
%4)==3) fc(0,&n
);
566 fc(10, &n
); fc(8, &n
); // low-high transition
568 fc(8, &n
); fc(10, &n
); // high-low transition
574 SimulateTagLowFrequency(n
, 0, ledcontrol
);
580 // prepare a waveform pattern in the buffer based on the ID given then
581 // simulate a FSK tag until the button is pressed
582 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
583 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
587 uint8_t fcHigh
= arg1
>> 8;
588 uint8_t fcLow
= arg1
& 0xFF;
590 uint8_t clk
= arg2
& 0xFF;
591 uint8_t invert
= (arg2
>> 8) & 1;
593 for (i
=0; i
<size
; i
++){
594 if (BitStream
[i
] == invert
){
595 fcAll(fcLow
, &n
, clk
, &modCnt
);
597 fcAll(fcHigh
, &n
, clk
, &modCnt
);
600 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
601 /*Dbprintf("DEBUG: First 32:");
602 uint8_t *dest = BigBuf_get_addr();
604 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
606 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
611 SimulateTagLowFrequency(n
, 0, ledcontrol
);
617 // compose ask waveform for one bit(ASK)
618 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
620 uint8_t *dest
= BigBuf_get_addr();
621 uint8_t halfClk
= clock
/2;
622 // c = current bit 1 or 0
624 memset(dest
+(*n
), c
, halfClk
);
625 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
627 memset(dest
+(*n
), c
, clock
);
632 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
634 uint8_t *dest
= BigBuf_get_addr();
635 uint8_t halfClk
= clock
/2;
637 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
638 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
640 memset(dest
+(*n
), c
^ *phase
, clock
);
646 // args clock, ask/man or askraw, invert, transmission separator
647 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
651 uint8_t clk
= (arg1
>> 8) & 0xFF;
652 uint8_t encoding
= arg1
& 1;
653 uint8_t separator
= arg2
& 1;
654 uint8_t invert
= (arg2
>> 8) & 1;
656 if (encoding
==2){ //biphase
658 for (i
=0; i
<size
; i
++){
659 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
661 if (BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted to keep phase in check
662 for (i
=0; i
<size
; i
++){
663 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
666 } else { // ask/manchester || ask/raw
667 for (i
=0; i
<size
; i
++){
668 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
670 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
671 for (i
=0; i
<size
; i
++){
672 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
677 if (separator
==1) Dbprintf("sorry but separator option not yet available");
679 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
681 //Dbprintf("First 32:");
682 //uint8_t *dest = BigBuf_get_addr();
684 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
686 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
691 SimulateTagLowFrequency(n
, 0, ledcontrol
);
697 //carrier can be 2,4 or 8
698 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
700 uint8_t *dest
= BigBuf_get_addr();
701 uint8_t halfWave
= waveLen
/2;
705 // write phase change
706 memset(dest
+(*n
), *curPhase
^1, halfWave
);
707 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
712 //write each normal clock wave for the clock duration
713 for (; i
< clk
; i
+=waveLen
){
714 memset(dest
+(*n
), *curPhase
, halfWave
);
715 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
720 // args clock, carrier, invert,
721 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
725 uint8_t clk
= arg1
>> 8;
726 uint8_t carrier
= arg1
& 0xFF;
727 uint8_t invert
= arg2
& 0xFF;
728 uint8_t curPhase
= 0;
729 for (i
=0; i
<size
; i
++){
730 if (BitStream
[i
] == curPhase
){
731 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
733 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
736 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
737 //Dbprintf("DEBUG: First 32:");
738 //uint8_t *dest = BigBuf_get_addr();
740 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
742 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
746 SimulateTagLowFrequency(n
, 0, ledcontrol
);
752 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
753 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
755 uint8_t *dest
= BigBuf_get_addr();
756 const size_t sizeOfBigBuff
= BigBuf_max_traceLen();
758 uint32_t hi2
=0, hi
=0, lo
=0;
760 // Configure to go in 125Khz listen mode
761 LFSetupFPGAForADC(95, true);
763 while(!BUTTON_PRESS()) {
766 if (ledcontrol
) LED_A_ON();
768 DoAcquisition_default(-1,true);
770 size
= sizeOfBigBuff
; //variable size will change after demod so re initialize it before use
771 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
774 // final loop, go over previously decoded manchester data and decode into usable tag ID
775 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
776 if (hi2
!= 0){ //extra large HID tags
777 Dbprintf("TAG ID: %x%08x%08x (%d)",
778 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
779 }else { //standard HID tags <38 bits
780 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
783 uint32_t cardnum
= 0;
784 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
786 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
788 while(lo2
> 1){ //find last bit set to 1 (format len bit)
796 cardnum
= (lo
>>1)&0xFFFF;
800 cardnum
= (lo
>>1)&0x7FFFF;
801 fc
= ((hi
&0xF)<<12)|(lo
>>20);
804 cardnum
= (lo
>>1)&0xFFFF;
805 fc
= ((hi
&1)<<15)|(lo
>>17);
808 cardnum
= (lo
>>1)&0xFFFFF;
809 fc
= ((hi
&1)<<11)|(lo
>>21);
812 else { //if bit 38 is not set then 37 bit format is used
817 cardnum
= (lo
>>1)&0x7FFFF;
818 fc
= ((hi
&0xF)<<12)|(lo
>>20);
821 //Dbprintf("TAG ID: %x%08x (%d)",
822 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
823 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
824 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
825 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
828 if (ledcontrol
) LED_A_OFF();
838 DbpString("Stopped");
839 if (ledcontrol
) LED_A_OFF();
842 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
844 uint8_t *dest
= BigBuf_get_addr();
846 size_t size
=0, idx
=0;
847 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
850 // Configure to go in 125Khz listen mode
851 LFSetupFPGAForADC(95, true);
853 while(!BUTTON_PRESS()) {
856 if (ledcontrol
) LED_A_ON();
858 DoAcquisition_default(-1,true);
859 size
= BigBuf_max_traceLen();
860 //Dbprintf("DEBUG: Buffer got");
861 //askdemod and manchester decode
862 errCnt
= askmandemod(dest
, &size
, &clk
, &invert
, maxErr
);
863 //Dbprintf("DEBUG: ASK Got");
867 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
868 //Dbprintf("DEBUG: EM GOT");
871 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
875 (uint32_t)(lo
&0xFFFF),
876 (uint32_t)((lo
>>16LL) & 0xFF),
877 (uint32_t)(lo
& 0xFFFFFF));
879 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
882 (uint32_t)(lo
&0xFFFF),
883 (uint32_t)((lo
>>16LL) & 0xFF),
884 (uint32_t)(lo
& 0xFFFFFF));
888 if (ledcontrol
) LED_A_OFF();
890 *low
=lo
& 0xFFFFFFFF;
894 //Dbprintf("DEBUG: No Tag");
903 DbpString("Stopped");
904 if (ledcontrol
) LED_A_OFF();
907 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
909 uint8_t *dest
= BigBuf_get_addr();
911 uint32_t code
=0, code2
=0;
913 uint8_t facilitycode
=0;
916 uint16_t calccrc
= 0;
917 // Configure to go in 125Khz listen mode
918 LFSetupFPGAForADC(95, true);
920 while(!BUTTON_PRESS()) {
922 if (ledcontrol
) LED_A_ON();
923 DoAcquisition_default(-1,true);
924 //fskdemod and get start index
926 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
931 //0 10 20 30 40 50 60
933 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
934 //-----------------------------------------------------------------------------
935 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
938 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
939 //preamble F0 E0 01 03 B6 75
940 // How to calc checksum,
941 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
942 // F0 + E0 + 01 + 03 + B6 = 28A
946 //XSF(version)facility:codeone+codetwo
948 if(findone
){ //only print binary if we are doing one
949 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
950 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
951 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
952 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
953 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
954 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
955 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
957 code
= bytebits_to_byte(dest
+idx
,32);
958 code2
= bytebits_to_byte(dest
+idx
+32,32);
959 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
960 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
961 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
963 crc
= bytebits_to_byte(dest
+idx
+54,8);
964 for (uint8_t i
=1; i
<6; ++i
)
965 calccrc
+= bytebits_to_byte(dest
+idx
+9*i
,8);
967 calccrc
= 0xff - calccrc
;
969 char *crcStr
= (crc
== calccrc
) ? "ok":"!crc";
971 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
);
972 // if we're only looking for one tag
974 if (ledcontrol
) LED_A_OFF();
981 version
=facilitycode
=0;
987 DbpString("Stopped");
988 if (ledcontrol
) LED_A_OFF();
991 /*------------------------------
992 * T5555/T5557/T5567 routines
993 *------------------------------
996 /* T55x7 configuration register definitions */
997 #define T55x7_POR_DELAY 0x00000001
998 #define T55x7_ST_TERMINATOR 0x00000008
999 #define T55x7_PWD 0x00000010
1000 #define T55x7_MAXBLOCK_SHIFT 5
1001 #define T55x7_AOR 0x00000200
1002 #define T55x7_PSKCF_RF_2 0
1003 #define T55x7_PSKCF_RF_4 0x00000400
1004 #define T55x7_PSKCF_RF_8 0x00000800
1005 #define T55x7_MODULATION_DIRECT 0
1006 #define T55x7_MODULATION_PSK1 0x00001000
1007 #define T55x7_MODULATION_PSK2 0x00002000
1008 #define T55x7_MODULATION_PSK3 0x00003000
1009 #define T55x7_MODULATION_FSK1 0x00004000
1010 #define T55x7_MODULATION_FSK2 0x00005000
1011 #define T55x7_MODULATION_FSK1a 0x00006000
1012 #define T55x7_MODULATION_FSK2a 0x00007000
1013 #define T55x7_MODULATION_MANCHESTER 0x00008000
1014 #define T55x7_MODULATION_BIPHASE 0x00010000
1015 #define T55x7_BITRATE_RF_8 0
1016 #define T55x7_BITRATE_RF_16 0x00040000
1017 #define T55x7_BITRATE_RF_32 0x00080000
1018 #define T55x7_BITRATE_RF_40 0x000C0000
1019 #define T55x7_BITRATE_RF_50 0x00100000
1020 #define T55x7_BITRATE_RF_64 0x00140000
1021 #define T55x7_BITRATE_RF_100 0x00180000
1022 #define T55x7_BITRATE_RF_128 0x001C0000
1024 /* T5555 (Q5) configuration register definitions */
1025 #define T5555_ST_TERMINATOR 0x00000001
1026 #define T5555_MAXBLOCK_SHIFT 0x00000001
1027 #define T5555_MODULATION_MANCHESTER 0
1028 #define T5555_MODULATION_PSK1 0x00000010
1029 #define T5555_MODULATION_PSK2 0x00000020
1030 #define T5555_MODULATION_PSK3 0x00000030
1031 #define T5555_MODULATION_FSK1 0x00000040
1032 #define T5555_MODULATION_FSK2 0x00000050
1033 #define T5555_MODULATION_BIPHASE 0x00000060
1034 #define T5555_MODULATION_DIRECT 0x00000070
1035 #define T5555_INVERT_OUTPUT 0x00000080
1036 #define T5555_PSK_RF_2 0
1037 #define T5555_PSK_RF_4 0x00000100
1038 #define T5555_PSK_RF_8 0x00000200
1039 #define T5555_USE_PWD 0x00000400
1040 #define T5555_USE_AOR 0x00000800
1041 #define T5555_BITRATE_SHIFT 12
1042 #define T5555_FAST_WRITE 0x00004000
1043 #define T5555_PAGE_SELECT 0x00008000
1046 * Relevant times in microsecond
1047 * To compensate antenna falling times shorten the write times
1048 * and enlarge the gap ones.
1050 #define START_GAP 50*8 // 10 - 50fc 250
1051 #define WRITE_GAP 20*8 // 8 - 30fc
1052 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
1053 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
1055 // VALUES TAKEN FROM EM4x function: SendForward
1056 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1057 // WRITE_GAP = 128; (16*8)
1058 // WRITE_1 = 256 32*8; (32*8)
1060 // These timings work for 4469/4269/4305 (with the 55*8 above)
1061 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1063 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1064 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1065 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1066 // T0 = TIMER_CLOCK1 / 125000 = 192
1067 // 1 Cycle = 8 microseconds(us)
1069 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1071 // Write one bit to card
1072 void T55xxWriteBit(int bit
)
1074 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1075 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1076 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1078 SpinDelayUs(WRITE_0
);
1080 SpinDelayUs(WRITE_1
);
1081 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1082 SpinDelayUs(WRITE_GAP
);
1085 // Write one card block in page 0, no lock
1086 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1090 // Set up FPGA, 125kHz
1091 // Wait for config.. (192+8190xPOW)x8 == 67ms
1092 LFSetupFPGAForADC(0, true);
1094 // Now start writting
1095 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1096 SpinDelayUs(START_GAP
);
1100 T55xxWriteBit(0); //Page 0
1103 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1104 T55xxWriteBit(Pwd
& i
);
1110 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1111 T55xxWriteBit(Data
& i
);
1114 for (i
= 0x04; i
!= 0; i
>>= 1)
1115 T55xxWriteBit(Block
& i
);
1117 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1118 // so wait a little more)
1119 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1120 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1122 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1125 void TurnReadLFOn(){
1126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1127 // Give it a bit of time for the resonant antenna to settle.
1132 // Read one card block in page 0
1133 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1136 uint8_t *dest
= BigBuf_get_addr();
1137 uint16_t bufferlength
= BigBuf_max_traceLen();
1138 if ( bufferlength
> T55xx_SAMPLES_SIZE
)
1139 bufferlength
= T55xx_SAMPLES_SIZE
;
1141 // Clear destination buffer before sending the command
1142 memset(dest
, 0x80, bufferlength
);
1144 // Set up FPGA, 125kHz
1145 // Wait for config.. (192+8190xPOW)x8 == 67ms
1146 LFSetupFPGAForADC(0, true);
1147 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1148 SpinDelayUs(START_GAP
);
1152 T55xxWriteBit(0); //Page 0
1155 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1156 T55xxWriteBit(Pwd
& i
);
1161 for (i
= 0x04; i
!= 0; i
>>= 1)
1162 T55xxWriteBit(Block
& i
);
1164 // Turn field on to read the response
1166 // Now do the acquisition
1169 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1170 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1173 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1174 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1177 if (i
>= bufferlength
) break;
1181 cmd_send(CMD_ACK
,0,0,0,0,0);
1182 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1186 // Read card traceability data (page 1)
1187 void T55xxReadTrace(void){
1190 uint8_t *dest
= BigBuf_get_addr();
1191 uint16_t bufferlength
= BigBuf_max_traceLen();
1192 if ( bufferlength
> T55xx_SAMPLES_SIZE
)
1193 bufferlength
= T55xx_SAMPLES_SIZE
;
1195 // Clear destination buffer before sending the command
1196 memset(dest
, 0x80, bufferlength
);
1198 LFSetupFPGAForADC(0, true);
1199 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1200 SpinDelayUs(START_GAP
);
1204 T55xxWriteBit(1); //Page 1
1206 // Turn field on to read the response
1209 // Now do the acquisition
1211 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1212 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1215 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1216 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1220 if (i
>= bufferlength
) break;
1224 cmd_send(CMD_ACK
,0,0,0,0,0);
1225 cmd_send(CMD_ACK
,0,0,0,0,0);
1226 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1230 void TurnReadLFOn(){
1231 //FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1232 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1233 // Give it a bit of time for the resonant antenna to settle.
1238 /*-------------- Cloning routines -----------*/
1239 // Copy HID id to card and setup block 0 config
1240 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1242 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1246 // Ensure no more than 84 bits supplied
1248 DbpString("Tags can only have 84 bits.");
1251 // Build the 6 data blocks for supplied 84bit ID
1253 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1254 for (int i
=0;i
<4;i
++) {
1255 if (hi2
& (1<<(19-i
)))
1256 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1258 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1262 for (int i
=0;i
<16;i
++) {
1263 if (hi2
& (1<<(15-i
)))
1264 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1266 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1270 for (int i
=0;i
<16;i
++) {
1271 if (hi
& (1<<(31-i
)))
1272 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1274 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1278 for (int i
=0;i
<16;i
++) {
1279 if (hi
& (1<<(15-i
)))
1280 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1282 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1286 for (int i
=0;i
<16;i
++) {
1287 if (lo
& (1<<(31-i
)))
1288 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1290 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1294 for (int i
=0;i
<16;i
++) {
1295 if (lo
& (1<<(15-i
)))
1296 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1298 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1302 // Ensure no more than 44 bits supplied
1304 DbpString("Tags can only have 44 bits.");
1308 // Build the 3 data blocks for supplied 44bit ID
1311 data1
= 0x1D000000; // load preamble
1313 for (int i
=0;i
<12;i
++) {
1314 if (hi
& (1<<(11-i
)))
1315 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1317 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1321 for (int i
=0;i
<16;i
++) {
1322 if (lo
& (1<<(31-i
)))
1323 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1325 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1329 for (int i
=0;i
<16;i
++) {
1330 if (lo
& (1<<(15-i
)))
1331 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1333 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1338 // Program the data blocks for supplied ID
1339 // and the block 0 for HID format
1340 T55xxWriteBlock(data1
,1,0,0);
1341 T55xxWriteBlock(data2
,2,0,0);
1342 T55xxWriteBlock(data3
,3,0,0);
1344 if (longFMT
) { // if long format there are 6 blocks
1345 T55xxWriteBlock(data4
,4,0,0);
1346 T55xxWriteBlock(data5
,5,0,0);
1347 T55xxWriteBlock(data6
,6,0,0);
1350 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1351 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1352 T55x7_MODULATION_FSK2a
|
1353 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1361 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1363 int data1
=0, data2
=0; //up to six blocks for long format
1365 data1
= hi
; // load preamble
1369 // Program the data blocks for supplied ID
1370 // and the block 0 for HID format
1371 T55xxWriteBlock(data1
,1,0,0);
1372 T55xxWriteBlock(data2
,2,0,0);
1375 T55xxWriteBlock(0x00147040,0,0,0);
1381 // Define 9bit header for EM410x tags
1382 #define EM410X_HEADER 0x1FF
1383 #define EM410X_ID_LENGTH 40
1385 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1388 uint64_t id
= EM410X_HEADER
;
1389 uint64_t rev_id
= 0; // reversed ID
1390 int c_parity
[4]; // column parity
1391 int r_parity
= 0; // row parity
1394 // Reverse ID bits given as parameter (for simpler operations)
1395 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1397 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1400 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1405 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1406 id_bit
= rev_id
& 1;
1409 // Don't write row parity bit at start of parsing
1411 id
= (id
<< 1) | r_parity
;
1412 // Start counting parity for new row
1419 // First elements in column?
1421 // Fill out first elements
1422 c_parity
[i
] = id_bit
;
1424 // Count column parity
1425 c_parity
[i
% 4] ^= id_bit
;
1428 id
= (id
<< 1) | id_bit
;
1432 // Insert parity bit of last row
1433 id
= (id
<< 1) | r_parity
;
1435 // Fill out column parity at the end of tag
1436 for (i
= 0; i
< 4; ++i
)
1437 id
= (id
<< 1) | c_parity
[i
];
1442 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1446 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1447 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1449 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1451 // Clock rate is stored in bits 8-15 of the card value
1452 clock
= (card
& 0xFF00) >> 8;
1453 Dbprintf("Clock rate: %d", clock
);
1457 clock
= T55x7_BITRATE_RF_32
;
1460 clock
= T55x7_BITRATE_RF_16
;
1463 // A value of 0 is assumed to be 64 for backwards-compatibility
1466 clock
= T55x7_BITRATE_RF_64
;
1469 Dbprintf("Invalid clock rate: %d", clock
);
1473 // Writing configuration for T55x7 tag
1474 T55xxWriteBlock(clock
|
1475 T55x7_MODULATION_MANCHESTER
|
1476 2 << T55x7_MAXBLOCK_SHIFT
,
1480 // Writing configuration for T5555(Q5) tag
1481 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1482 T5555_MODULATION_MANCHESTER
|
1483 2 << T5555_MAXBLOCK_SHIFT
,
1487 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1488 (uint32_t)(id
>> 32), (uint32_t)id
);
1491 // Clone Indala 64-bit tag by UID to T55x7
1492 void CopyIndala64toT55x7(int hi
, int lo
)
1495 //Program the 2 data blocks for supplied 64bit UID
1496 // and the block 0 for Indala64 format
1497 T55xxWriteBlock(hi
,1,0,0);
1498 T55xxWriteBlock(lo
,2,0,0);
1499 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1500 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1501 T55x7_MODULATION_PSK1
|
1502 2 << T55x7_MAXBLOCK_SHIFT
,
1504 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1505 // T5567WriteBlock(0x603E1042,0);
1511 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1514 //Program the 7 data blocks for supplied 224bit UID
1515 // and the block 0 for Indala224 format
1516 T55xxWriteBlock(uid1
,1,0,0);
1517 T55xxWriteBlock(uid2
,2,0,0);
1518 T55xxWriteBlock(uid3
,3,0,0);
1519 T55xxWriteBlock(uid4
,4,0,0);
1520 T55xxWriteBlock(uid5
,5,0,0);
1521 T55xxWriteBlock(uid6
,6,0,0);
1522 T55xxWriteBlock(uid7
,7,0,0);
1523 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1524 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1525 T55x7_MODULATION_PSK1
|
1526 7 << T55x7_MAXBLOCK_SHIFT
,
1528 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1529 // T5567WriteBlock(0x603E10E2,0);
1536 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1537 #define max(x,y) ( x<y ? y:x)
1539 int DemodPCF7931(uint8_t **outBlocks
) {
1541 uint8_t bits
[256] = {0x00};
1542 uint8_t blocks
[8][16];
1543 uint8_t *dest
= BigBuf_get_addr();
1545 int GraphTraceLen
= BigBuf_max_traceLen();
1546 if ( GraphTraceLen
> 18000 )
1547 GraphTraceLen
= 18000;
1550 int i
, j
, lastval
, bitidx
, half_switch
;
1552 int tolerance
= clock
/ 8;
1553 int pmc
, block_done
;
1554 int lc
, warnings
= 0;
1556 int lmin
=128, lmax
=128;
1559 LFSetupFPGAForADC(95, true);
1560 DoAcquisition_default(0, true);
1567 /* Find first local max/min */
1568 if(dest
[1] > dest
[0]) {
1569 while(i
< GraphTraceLen
) {
1570 if( !(dest
[i
] > dest
[i
-1]) && dest
[i
] > lmax
)
1577 while(i
< GraphTraceLen
) {
1578 if( !(dest
[i
] < dest
[i
-1]) && dest
[i
] < lmin
)
1590 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1592 if ( (dest
[i
-1] > dest
[i
] && dir
== 1 && dest
[i
] > lmax
) || (dest
[i
-1] < dest
[i
] && dir
== 0 && dest
[i
] < lmin
))
1597 // Switch depending on lc length:
1598 // Tolerance is 1/8 of clock rate (arbitrary)
1599 if (abs(lc
-clock
/4) < tolerance
) {
1601 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1603 i
+= (128+127+16+32+33+16)-1;
1611 } else if (abs(lc
-clock
/2) < tolerance
) {
1613 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1615 i
+= (128+127+16+32+33)-1;
1620 else if(half_switch
== 1) {
1626 } else if (abs(lc
-clock
) < tolerance
) {
1634 Dbprintf("Error: too many detection errors, aborting.");
1639 if(block_done
== 1) {
1641 for(j
=0; j
<16; j
++) {
1642 blocks
[num_blocks
][j
] = 128*bits
[j
*8+7]+
1658 if(i
< GraphTraceLen
)
1659 dir
=(dest
[i
-1] > dest
[i
]) ? 0 : 1;
1664 if(num_blocks
== 4) break;
1666 memcpy(outBlocks
, blocks
, 16*num_blocks
);
1670 int IsBlock0PCF7931(uint8_t *Block
) {
1671 // Assume RFU means 0 :)
1672 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1674 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1679 int IsBlock1PCF7931(uint8_t *Block
) {
1680 // Assume RFU means 0 :)
1681 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1682 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1690 void ReadPCF7931() {
1691 uint8_t Blocks
[8][17];
1692 uint8_t tmpBlocks
[4][16];
1693 int i
, j
, ind
, ind2
, n
;
1700 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1703 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1704 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1707 if(error
==10 && num_blocks
== 0) {
1708 Dbprintf("Error, no tag or bad tag");
1711 else if (tries
==20 || error
==10) {
1712 Dbprintf("Error reading the tag");
1713 Dbprintf("Here is the partial content");
1718 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1719 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1720 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1722 for(i
=0; i
<n
; i
++) {
1723 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1725 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1729 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1730 Blocks
[0][ALLOC
] = 1;
1731 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1732 Blocks
[1][ALLOC
] = 1;
1733 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1735 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1737 // Handle following blocks
1738 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1741 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1742 Blocks
[ind2
][ALLOC
] = 1;
1750 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1751 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1752 for(j
=0; j
<max_blocks
; j
++) {
1753 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1754 // Found an identical block
1755 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1758 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1759 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1760 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1761 Blocks
[ind2
][ALLOC
] = 1;
1763 if(num_blocks
== max_blocks
) goto end
;
1766 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1767 if(ind2
> max_blocks
)
1769 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1770 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1771 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1772 Blocks
[ind2
][ALLOC
] = 1;
1774 if(num_blocks
== max_blocks
) goto end
;
1783 if (BUTTON_PRESS()) return;
1784 } while (num_blocks
!= max_blocks
);
1786 Dbprintf("-----------------------------------------");
1787 Dbprintf("Memory content:");
1788 Dbprintf("-----------------------------------------");
1789 for(i
=0; i
<max_blocks
; i
++) {
1790 if(Blocks
[i
][ALLOC
]==1)
1791 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1792 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1793 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1795 Dbprintf("<missing block %d>", i
);
1797 Dbprintf("-----------------------------------------");
1803 //-----------------------------------
1804 // EM4469 / EM4305 routines
1805 //-----------------------------------
1806 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1807 #define FWD_CMD_WRITE 0xA
1808 #define FWD_CMD_READ 0x9
1809 #define FWD_CMD_DISABLE 0x5
1812 uint8_t forwardLink_data
[64]; //array of forwarded bits
1813 uint8_t * forward_ptr
; //ptr for forward message preparation
1814 uint8_t fwd_bit_sz
; //forwardlink bit counter
1815 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1817 //====================================================================
1818 // prepares command bits
1820 //====================================================================
1821 //--------------------------------------------------------------------
1822 uint8_t Prepare_Cmd( uint8_t cmd
) {
1823 //--------------------------------------------------------------------
1825 *forward_ptr
++ = 0; //start bit
1826 *forward_ptr
++ = 0; //second pause for 4050 code
1828 *forward_ptr
++ = cmd
;
1830 *forward_ptr
++ = cmd
;
1832 *forward_ptr
++ = cmd
;
1834 *forward_ptr
++ = cmd
;
1836 return 6; //return number of emited bits
1839 //====================================================================
1840 // prepares address bits
1842 //====================================================================
1844 //--------------------------------------------------------------------
1845 uint8_t Prepare_Addr( uint8_t addr
) {
1846 //--------------------------------------------------------------------
1848 register uint8_t line_parity
;
1853 *forward_ptr
++ = addr
;
1854 line_parity
^= addr
;
1858 *forward_ptr
++ = (line_parity
& 1);
1860 return 7; //return number of emited bits
1863 //====================================================================
1864 // prepares data bits intreleaved with parity bits
1866 //====================================================================
1868 //--------------------------------------------------------------------
1869 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1870 //--------------------------------------------------------------------
1872 register uint8_t line_parity
;
1873 register uint8_t column_parity
;
1874 register uint8_t i
, j
;
1875 register uint16_t data
;
1880 for(i
=0; i
<4; i
++) {
1882 for(j
=0; j
<8; j
++) {
1883 line_parity
^= data
;
1884 column_parity
^= (data
& 1) << j
;
1885 *forward_ptr
++ = data
;
1888 *forward_ptr
++ = line_parity
;
1893 for(j
=0; j
<8; j
++) {
1894 *forward_ptr
++ = column_parity
;
1895 column_parity
>>= 1;
1899 return 45; //return number of emited bits
1902 //====================================================================
1903 // Forward Link send function
1904 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1905 // fwd_bit_count set with number of bits to be sent
1906 //====================================================================
1907 void SendForward(uint8_t fwd_bit_count
) {
1909 fwd_write_ptr
= forwardLink_data
;
1910 fwd_bit_sz
= fwd_bit_count
;
1915 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1916 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1917 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1919 // Give it a bit of time for the resonant antenna to settle.
1920 // And for the tag to fully power up
1923 // force 1st mod pulse (start gap must be longer for 4305)
1924 fwd_bit_sz
--; //prepare next bit modulation
1926 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1927 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1928 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1929 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1930 SpinDelayUs(16*8); //16 cycles on (8us each)
1932 // now start writting
1933 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1934 if(((*fwd_write_ptr
++) & 1) == 1)
1935 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1937 //These timings work for 4469/4269/4305 (with the 55*8 above)
1938 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1939 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1940 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1941 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1942 SpinDelayUs(9*8); //16 cycles on (8us each)
1947 void EM4xLogin(uint32_t Password
) {
1949 uint8_t fwd_bit_count
;
1951 forward_ptr
= forwardLink_data
;
1952 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1953 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1955 SendForward(fwd_bit_count
);
1957 //Wait for command to complete
1962 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1964 uint8_t *dest
= BigBuf_get_addr();
1965 uint16_t bufferlength
= BigBuf_max_traceLen();
1968 // Clear destination buffer before sending the command 0x80 = average.
1969 memset(dest
, 0x80, bufferlength
);
1971 uint8_t fwd_bit_count
;
1973 //If password mode do login
1974 if (PwdMode
== 1) EM4xLogin(Pwd
);
1976 forward_ptr
= forwardLink_data
;
1977 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1978 fwd_bit_count
+= Prepare_Addr( Address
);
1980 // Connect the A/D to the peak-detected low-frequency path.
1981 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1982 // Now set up the SSC to get the ADC samples that are now streaming at us.
1985 SendForward(fwd_bit_count
);
1987 // Now do the acquisition
1990 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1991 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1993 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1994 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1996 if (i
>= bufferlength
) break;
2000 cmd_send(CMD_ACK
,0,0,0,0,0);
2001 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2005 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
2007 uint8_t fwd_bit_count
;
2009 //If password mode do login
2010 if (PwdMode
== 1) EM4xLogin(Pwd
);
2012 forward_ptr
= forwardLink_data
;
2013 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
2014 fwd_bit_count
+= Prepare_Addr( Address
);
2015 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
2017 SendForward(fwd_bit_count
);
2019 //Wait for write to complete
2021 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off